1
|
Wang H, Dang J, Guo Q, Liang G. qPCR Genotyping of Polyploid Species. Methods Mol Biol 2023; 2638:115-122. [PMID: 36781638 DOI: 10.1007/978-1-0716-3024-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
A simple and cost-effective method for genotyping polyploid plants using quantitative PCR (qPCR) is described in this chapter. There is no additional operation, only simultaneous amplification of alleles and reference sequences with constant copy number in the genome. The qPCR genotyping can detect the genotypes of important traits in polyploid plants without whole genome sequencing data.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
2
|
Wang H, Dang J, Wu D, Xie Z, Yan S, Luo J, Guo Q, Liang G. Genotyping of polyploid plants using quantitative PCR: application in the breeding of white-fleshed triploid loquats (Eriobotrya japonica). PLANT METHODS 2021; 17:93. [PMID: 34479588 PMCID: PMC8418031 DOI: 10.1186/s13007-021-00792-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ploidy manipulation is effective in seedless loquat breeding, in which flesh color is a key agronomic and economic trait. Few techniques are currently available for detecting the genotypes of polyploids in plants, but this ability is essential for most genetic research and molecular breeding. RESULTS We developed a system for genotyping by quantitative PCR (qPCR) that allowed flesh color genotyping in multiple tetraploid and triploid loquat varieties (lines). The analysis of 13 different ratios of DNA mixtures between two homozygous diploids (AA and aa) showed that the proportion of allele A has a high correlation (R2 = 0.9992) with parameter b [b = a1/(a1 + a2)], which is derived from the two normalized allele signals (a1 and a2) provided by qPCR. Cluster analysis and variance analysis from simulating triploid and tetraploid hybrids provided completely correct allelic configurations. Four genotypes (AAA, AAa, Aaa, aaa) were found in triploid loquats, and four (AAAA, AAAa, AAaa, Aaaa; absence of aaaa homozygotes) were found in tetraploid loquats. DNA markers analysis showed that the segregation of flesh color in all F1 hybrids conformed to Mendel's law. When tetraploid B431 was the female parent, more white-fleshed triploids occurred among the progeny. CONCLUSIONS qPCR can detect the flesh color genotypes of loquat polyploids and provides an alternative method for analyzing polyploid genotype and breeding, dose effects and allele-specific expression.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Zhongyi Xie
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Shuang Yan
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Jingnan Luo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
3
|
Cuenca J, Aleza P, Navarro L, Ollitrault P. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny. ANNALS OF BOTANY 2013; 111:731-42. [PMID: 23422023 PMCID: PMC3605964 DOI: 10.1093/aob/mct032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/04/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. SCOPE This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. CONCLUSIONS Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan(-1) (y/x) and y' = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis.
Collapse
Affiliation(s)
- José Cuenca
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - Pablo Aleza
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- For correspondence. E-mail or
| | - Patrick Ollitrault
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), TA A-108/02, 34398 Montpellier, Cedex 5, France
- For correspondence. E-mail or
| |
Collapse
|
4
|
Hirakawa Y, Medh RD, Metzenberg S. Quantitative polymerase chain reaction analysis by deconvolution of internal standard. BMC Mol Biol 2010; 11:30. [PMID: 20429911 PMCID: PMC2877679 DOI: 10.1186/1471-2199-11-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/29/2010] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Quantitative Polymerase Chain Reaction (qPCR) is a collection of methods for estimating the number of copies of a specific DNA template in a sample, but one that is not universally accepted because it can lead to highly inaccurate (albeit precise) results. The fundamental problem is that qPCR methods use mathematical models that explicitly or implicitly apply an estimate of amplification efficiency, the error of which is compounded in the analysis to unacceptable levels. RESULTS We present a new method of qPCR analysis that is efficiency-independent and yields accurate and precise results in controlled experiments. The method depends on a computer-assisted deconvolution that finds the point of concordant amplification behavior between the "unknown" template and an admixed amplicon standard. We apply the method to demonstrate dexamethasone-induced changes in gene expression in lymphoblastic leukemia cell lines. CONCLUSIONS This method of qPCR analysis does not use any explicit or implicit measure of efficiency, and may therefore be immune to problems inherent in other qPCR approaches. It yields an estimate of absolute initial copy number of template, and controlled tests show it generates accurate results.
Collapse
Affiliation(s)
- Yasuko Hirakawa
- Department of Biology, California State University, 18111 Nordhoff St. Northridge, California 91330, USA
| | - Rheem D Medh
- Department of Biology, California State University, 18111 Nordhoff St. Northridge, California 91330, USA
| | - Stan Metzenberg
- Department of Biology, California State University, 18111 Nordhoff St. Northridge, California 91330, USA
| |
Collapse
|