1
|
Abo Elwafa R, Abd Elrahman A, Ghallab O. Long intergenic non-coding RNA-p21 is associated with poor prognosis in chronic lymphocytic leukemia. Clin Transl Oncol 2020; 23:92-99. [PMID: 32468342 DOI: 10.1007/s12094-020-02398-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are RNA transcripts longer than 200 nucleotides. They are new players in transcriptional regulation and cancer research. LincRNA-p21 is a p53-regulated lncRNA involved in the p53 transcriptional network. It has an important role in regulating cellular proliferation and apoptosis. Chronic lymphocytic leukemia is derived by a typical defect in apoptosis and characterized by clonal proliferation and accumulation of mature B cells. The aim of the present study was to assess the expression pattern of the lincRNA-p21 and investigate its potential role as a new prognostic marker in CLL. METHODS The study was conducted on 80 newly diagnosed CLL patients and 80 age- and sex-matched controls. The analysis of LincRNA-p21 and the p53 downstream proapoptotic target genes (MDM2, PUMA, BAX, and NOXA) was performed by real-time PCR. The cytogenetic abrasions and expression of ZAP70 and CD38 were detected by FISH and Flow cytometry, respectively. RESULTS LincRNA-p21 was significantly downregulated in CLL patients compared to controls. The downstream proapoptotic targets were significantly downregulated in CLL patients and positively correlated with lincRNA-p21. Low expression of lincRNA-p21 was associated with poor prognostic markers (advanced stages of CLL, del 17p13, ZAP70, and CD38 expression), failure of complete remission, shorter progression free survival, and overall survival. Low lincRNA-p21 expression was independently prognostic for shorter time to treatment. CONCLUSION Low expression of lincRNA-p21 demarcates a more aggressive form of CLL with poor prognosis. Therefore, it could be considered as a new prognostic marker to predict disease outcome in CLL.
Collapse
Affiliation(s)
- R Abo Elwafa
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - A Abd Elrahman
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - O Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Farahat NMG, Elkaffash DMNED, Alghandour AH, Swelem RS, Abo El-Wafa RAH. Study of microRNA Profile as a Molecular Biomarker in Egyptian Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2019; 35:89-99. [PMID: 30828154 PMCID: PMC6369084 DOI: 10.1007/s12288-018-1000-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/31/2018] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs target mRNAs for cleavage or translational repression. They play a critical role in the progression of malignancies and leukemias including chronic lymphocytic leukemia (CLL). However, microRNA expression levels in Egyptian patients with CLL, and their prognostic value remain elusive. Our main aim was to assess the expression pattern of a panel of microRNAs in CLL patients to create an informative microRNA profile. The study subjects were 40 newly diagnosed CLL patients of both sexes and 40 age and sex matched controls. The expression levels of 12 microRNAs were evaluated by qRT-PCR, including miR-15a, 16, 23b, 24, 29a, 29c, 34a, 146a, 155, 181a, 195, and 221. Flow cytometry was used to determine the expression levels of BCL2, CD38, and ZAP-70 in CLL patients. We identified various degrees of upregulated miRNAs (miR-29a, miR-29c, miR-34a, miR-155, miR-146a, and miR-195) and down-regulated ones (miR-15a, miR-16, miR-23b, miR-24, miR-181a, and miR-221) in CLL patients relative to controls. The mean fluorescence intensity ratio (MFI-R) of BCL2 was recorded and was significantly upregulated in CLL patients compared with normal controls. In addition, inverse correlations were observed between microRNAs (miR-15a, miR-16, miR-155, and miR-195) and BCL2 MFI-R while positive correlations were observed between miR-29a and miR-29c, and BCL2 MFI-R. These findings suggest that these miRNAs regulate BCL2 levels. Moreover, we found that miR-15a, miR-16, miR-155, miR-181a, miR-195 and miR-221 were significantly upregulated, while miR-29a and miR-29c were significantly downregulated in ZAP-70 positive CLL patients. Various miRNAs may play an important role in the pathogenesis of CLL and have the potential to be used for the prognosis of patients with CLL.
Collapse
Affiliation(s)
- Nahla Mohamed Gamal Farahat
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Khartoum Square, El Sultan Hussein Street, Azarita, Alexandria 21131 Egypt
| | - Dalal Mohamed Nasr El Din Elkaffash
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Khartoum Square, El Sultan Hussein Street, Azarita, Alexandria 21131 Egypt
| | - Ashraf Hussein Alghandour
- Internal Medicine (Hematology), Faculty of Medicine, Alexandria University, Azarita, Alexandria Egypt
| | - Rania Shafik Swelem
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Khartoum Square, El Sultan Hussein Street, Azarita, Alexandria 21131 Egypt
| | - Reham Abdel Haleem Abo El-Wafa
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Khartoum Square, El Sultan Hussein Street, Azarita, Alexandria 21131 Egypt
| |
Collapse
|
3
|
Kent MS, Zwingenberger A, Westropp JL, Barrett LE, Durbin-Johnson BP, Ghosh P, Vinall RL. MicroRNA profiling of dogs with transitional cell carcinoma of the bladder using blood and urine samples. BMC Vet Res 2017; 13:339. [PMID: 29141625 PMCID: PMC5688639 DOI: 10.1186/s12917-017-1259-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Background Early signs of canine transitional cell carcinoma (TCC) are frequently assumed to be caused by other lower urinary tract diseases (LUTD) such as urinary tract infections, resulting in late diagnosis of TCC which could be fatal. The development of a non-invasive clinical test for TCC could dramatically reduce mortality. To determine whether microRNAs (miRNAs) can be used as non-invasive diagnostic biomarkers, we assessed miRNA expression in blood and/or urine from dogs with clinically normal bladders (n = 28), LUTD (n = 25), and TCC (n = 17). Expression levels of 5 miRNA associated with TCC pathophysiology (miR-34a, let-7c, miR-16, miR-103b, and miR-106b) were assessed by quantitative real-time PCR. Results Statistical analyses using ranked ANOVA identified significant differences in miR-103b and miR-16 levels between urine samples from LUTD and TCC patients (miR-103b, p = 0.002; and miR-16, p = 0.016). No statistically significant differences in miRNA levels were observed between blood samples from LUTD versus TCC patients. Expression levels of miR-34a trended with miR-16, let-7c, and miR-103b levels in individual normal urine samples, however, this coordination was completely lost in TCC urine samples. In contrast, co-ordination of miR-34a, miR-16, let-7c, and miR-103b expression levels was maintained in blood samples from TCC patients. Conclusions Our combined data indicate a potential role for miR-103b and miR-16 as diagnostic urine biomarkers for TCC, and that further investigation of miR-103b and miR-16 in the dysregulation of coordinated miRNA expression in bladder carcinogenesis is warranted. Electronic supplementary material The online version of this article (10.1186/s12917-017-1259-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Allison Zwingenberger
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jodi L Westropp
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Laura E Barrett
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Blythe P Durbin-Johnson
- Department of Public Health Sciences, University of California Davis, Davis, California, 95616, USA
| | - Paramita Ghosh
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, CA, USA. .,Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA. .,VA Northern California Health Care System, Sacramento, CA, USA.
| | - Ruth L Vinall
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, CA, USA. .,Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA. .,Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA, USA.
| |
Collapse
|
4
|
Bresin A, D'Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, Russo G. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. Cell Death Dis 2016; 7:e2071. [PMID: 26821067 PMCID: PMC4816192 DOI: 10.1038/cddis.2015.419] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy with a mature phenotype. In spite of its relatively indolent nature, no radical cure is as yet available. CLL is not associated with either a unique cytogenetic or a molecular defect, which might have been a potential therapeutic target. Instead, several factors are involved in disease development, such as environmental signals which interact with genetic abnormalities to promote survival, proliferation and an immune surveillance escape. Among these, PI3-Kinase signal pathway alterations are nowadays considered to be clearly important. The TCL1 gene, an AKT co-activator, is the cause of a mature T-cell leukemia, as well as being highly expressed in all B-CLL. A TCL1 transgenic mouse which reproduces leukemia with a distinct immunophenotype and similar to the course of the human B-CLL was developed several years ago and is widely used by many groups. This is a review of the CLL biology arising from work of many independent investigators who have used TCL1 transgenic mouse model focusing on pathogenetic, microenviroment and therapeutic targets.
Collapse
Affiliation(s)
- A Bresin
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - L D'Abundo
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - M G Narducci
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - M T Fiorenza
- Dipartimento di Psicologia, Sezione di Neuroscienze, Università La Sapienza di Roma, Rome, Italy
| | - C M Croce
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - M Negrini
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - G Russo
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
5
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
6
|
Bresin A, Callegari E, D'Abundo L, Cattani C, Bassi C, Zagatti B, Narducci MG, Caprini E, Pekarsky Y, Croce CM, Sabbioni S, Russo G, Negrini M. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Eµ-TCL1 mouse model. Oncotarget 2015; 6:19807-18. [PMID: 26090867 PMCID: PMC4637322 DOI: 10.18632/oncotarget.4415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/29/2015] [Indexed: 12/05/2022] Open
Abstract
The involvement of microRNAs (miRNAs) in chronic lymphocytic leukemia (CLL) pathogenesis suggests the possibility of anti-CLL therapeutic approaches based on miRNAs. Here, we used the Eµ-TCL1 transgenic mouse model, which reproduces leukemia with a similar course and distinct immunophenotype as human B-CLL, to test miR-181b as a therapeutic agent.In vitro enforced expression of miR-181b mimics induced significant apoptotic effects in human B-cell lines (RAJI, EHEB), as well as in mouse Eµ-TCL1 leukemic splenocytes. Molecular analyses revealed that miR-181b not only affected the expression of TCL1, Bcl2 and Mcl1 anti-apoptotic proteins, but also reduced the levels of Akt and phospho-Erk1/2. Notably, a siRNA anti-TCL1 could similarly down-modulate TCL1, but exhibited a reduced or absent activity in other relevant proteins, as well as a reduced effect on cell apoptosis and viability. In vivo studies demonstrated the capability of miR-181b to reduce leukemic cell expansion and to increase survival of treated mice.These data indicate that miR-181b exerts a broad range of actions, affecting proliferative, survival and apoptotic pathways, both in mice and human cells, and can potentially be used to reduce expansion of B-CLL leukemic cells.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mice, Transgenic
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- Signal Transduction
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Antonella Bresin
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - Elisa Callegari
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - Lucilla D'Abundo
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - Caterina Cattani
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratorio di Oncologia Molecolare, Rome, Italy
| | - Cristian Bassi
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - Barbara Zagatti
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - M. Grazia Narducci
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratorio di Oncologia Molecolare, Rome, Italy
| | - Elisabetta Caprini
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratorio di Oncologia Molecolare, Rome, Italy
| | - Yuri Pekarsky
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - Carlo M. Croce
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - Silvia Sabbioni
- Università di Ferrara, Dipartimento di Scienze della Vita e Biotecnologie, Ferrara, Italy
| | - Giandomenico Russo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratorio di Oncologia Molecolare, Rome, Italy
| | - Massimo Negrini
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| |
Collapse
|
7
|
Shahjahani M, Mohammadiasl J, Noroozi F, Seghatoleslami M, Shahrabi S, Saba F, Saki N. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol (Dordr) 2015; 38:93-109. [PMID: 25563586 DOI: 10.1007/s13402-014-0215-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults and is characterized by a clonal accumulation of mature apoptosis-resistant neoplastic cells. It is also a heterogeneous disease with a variable clinical outcome. Here, we present a review of currently known (epi)genetic alterations that are related to the etiology, progression and chemo-refractoriness of CLL. Relevant literature was identified through a PubMed search (1994-2014) of English-language papers using the terms CLL, signaling pathway, cytogenetic abnormality, somatic mutation, epigenetic alteration and micro-RNA. RESULTS CLL is characterized by the presence of gross chromosomal abnormalities, epigenetic alterations, micro-RNA expression alterations, immunoglobulin heavy chain gene mutations and other genetic lesions. The expression of unmutated immunoglobulin heavy chain variable region (IGHV) genes, ZAP-70 and CD38 proteins, the occurrence of chromosomal abnormalities such as 17p and 11q deletions and mutations of the NOTCH1, SF3B1 and BIRC3 genes have been associated with a poor prognosis. In addition, mutations in tumor suppressor genes, such as TP53 and ATM, have been associated with refractoriness to conventional chemotherapeutic agents. Micro-RNA expression alterations and aberrant methylation patterns in genes that are specifically deregulated in CLL, including the BCL-2, TCL1 and ZAP-70 genes, have also been encountered and linked to distinct clinical parameters. CONCLUSIONS Specific chromosomal abnormalities and gene mutations may serve as diagnostic and prognostic indicators for disease progression and survival. The identification of these anomalies by state-of-the-art molecular (cyto)genetic techniques such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) microarray-based genomic profiling and next-generation sequencing (NGS) can be of paramount help for the clinical management of these patients, including optimal treatment design. The efficacy of novel therapeutics should to be tested according to the presence of these molecular lesions in CLL patients.
Collapse
Affiliation(s)
- Mohammad Shahjahani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
8
|
MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood 2014; 124:546-54. [PMID: 24914134 DOI: 10.1182/blood-2014-03-559690] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-level leukemia cell expression of micro-RNA 155 (miR-155) is associated with more aggressive disease in patients with chronic lymphocytic leukemia (CLL), including those cases with a low-level expression of ζ-chain-associated protein of 70 kD. CLL with high-level miR-155 expressed lower levels of Src homology-2 domain-containing inositol 5-phosphatase 1 and were more responsive to B-cell receptor (BCR) ligation than CLL with low-level miR-155. Transfection with miR-155 enhanced responsiveness to BCR ligation, whereas transfection with a miR-155 inhibitor had the opposite effect. CLL in lymphoid tissue expressed higher levels of miR155HG than CLL in the blood of the same patient. Also, isolated CD5(bright)CXCR4(dim) cells, representing CLL that had been newly released from the microenvironment, expressed higher levels of miR-155 and were more responsive to BCR ligation than isolated CD5(dim)CXCR4(bright) cells of the same patient. Treatment of CLL or normal B cells with CD40-ligand or B-cell-activating factor upregulated miR-155 and enhanced sensitivity to BCR ligation, effects that could be blocked by inhibitors to miR-155. This study demonstrates that the sensitivity to BCR ligation can be enhanced by high-level expression of miR-155, which in turn can be induced by crosstalk within the tissue microenvironment, potentially contributing to its association with adverse clinical outcome in patients with CLL.
Collapse
|
9
|
Mazan-Mamczarz K, Zhao XF, Dai B, Steinhardt JJ, Peroutka RJ, Berk KL, Landon AL, Sadowska M, Zhang Y, Lehrmann E, Becker KG, Shaknovich R, Liu Z, Gartenhaus RB. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development. PLoS Genet 2014; 10:e1004105. [PMID: 24497838 PMCID: PMC3907297 DOI: 10.1371/journal.pgen.1004105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023] Open
Abstract
Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity. Control of gene expression on the translational level is critical for proper function of major cellular processes and deregulation of translation can promote cellular transformation. Emerging actors in this post-transcriptional gene regulation are small non-coding RNAs referred to as microRNAs (miRNAs). We established that miR-520c-3p represses tumor growth through the repression of eIF4GII, a major structural component of the translation initiation complex. Since translation of most cellular mRNAs is primarily regulated at the level of initiation, this node is becoming a potential target for therapeutic intervention. Identified in this study, tumor suppressor function of miR-520c-3p is mediated through the inhibition of translational factor eIF4GII, resulting in the repression of global translational machinery and induction of senescence in tumor cells. While aging and senescence has been shown to be associated with reduced translation the linkage between translational deregulation and senescence in malignant cells has not been previously described. Lending further clinical significance to our findings, we were able to demonstrate that primary DLBCL samples had elevated levels of eIF4GII while having reciprocally low miR-520c-3p expression.
Collapse
Affiliation(s)
- Krystyna Mazan-Mamczarz
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - X. Frank Zhao
- Department of Pathology, University of Maryland, Baltimore, Maryland, United States of America
| | - Bojie Dai
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - James J. Steinhardt
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Raymond J. Peroutka
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Kimberly L. Berk
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Ari L. Landon
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Mariola Sadowska
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Rita Shaknovich
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Zhenqiu Liu
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Ronald B. Gartenhaus
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Veterans Administration Medical Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data.
Collapse
Affiliation(s)
- Cassandra Love
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
11
|
Lobetti-Bodoni C, Bertoni F, Stussi G, Cavalli F, Zucca E. The changing paradigm of chronic lymphocytic leukemia management. Eur J Intern Med 2013; 24:401-10. [PMID: 23583413 DOI: 10.1016/j.ejim.2013.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
B cell-chronic lymphocytic leukemia (CLL), the commonest adult leukemia in western world, is today most often diagnosed at early-stage, following the accidental detection of lymphocytosis during a routine blood analysis. Moreover, the expectations of CLL patients have dramatically changed in the past decade and for the first time a significant overall survival improvement has been demonstrated in the disease--at least in the younger and fit patients--with the use of the FCR regimen, which combines rituximab fludarabine and cyclophosphamide. New drugs and new regimens are currently being developed for the relapsed patients and for those too old or too frail to receive aggressive treatments. Some of these promising compounds will likely be part of the future front-line treatments. Additionally, the increasing knowledge on the molecular features that predict the clinical outcome may soon result in a molecular classification of the disease. These acquisitions are producing a migration from palliative care to a curative and individually-tailored approach. In this review we tried to summarize the advances achieved in the past decade and help the specialists in internal medicine and the general practitioners to understand the completely changed scenario in which the disease should nowadays be managed.
Collapse
Affiliation(s)
- Chiara Lobetti-Bodoni
- Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Yu HWH, Sze DMY, Cho WCS. MicroRNAs Involved in Anti-Tumour Immunity. Int J Mol Sci 2013; 14:5587-607. [PMID: 23478435 PMCID: PMC3634477 DOI: 10.3390/ijms14035587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/26/2012] [Accepted: 02/19/2013] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a category of small RNAs that constitute a new layer of complexity to gene regulation within the cell, which has provided new perspectives in understanding cancer biology. The deregulation of miRNAs contributes critically to the development and pathophysiology of a number of cancers. miRNAs have been found to participate in cell transformation and multiplication by acting as tumour oncogenes or suppressors; therefore, harnessing miRNAs may provide promising cancer therapeutics. Another major function of miRNAs is their activity as critical regulatory vehicles eliciting important regulatory processes in anti-tumour immunity through their influence on the development, differentiation and activation of various immune cells of both innate and adaptive immunity. This review aims to summarise recent findings focusing on the regulatory mechanisms of the development, differentiation, and proliferative aspects of the major immune populations by a diverse profile of miRNAs and may enrich our current understanding of the involvement of miRNAs in anti-tumour immunity.
Collapse
Affiliation(s)
- Hong W. H. Yu
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +852-3400-8591; Fax: +852-3904-7867
| | - Daniel M. Y. Sze
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China; E-Mail:
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong, China; E-Mail: or
| |
Collapse
|
13
|
Rodríguez-Vicente AE, Díaz MG, Hernández-Rivas JM. Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet 2013; 206:49-62. [DOI: 10.1016/j.cancergen.2013.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 12/11/2022]
|
14
|
Ferrer G, Navarro A, Hodgson K, Aymerich M, Pereira A, Baumann T, Monzo M, Moreno C, Montserrat E. MicroRNA expression in chronic lymphocytic leukemia developing autoimmune hemolytic anemia. Leuk Lymphoma 2013; 54:2016-22. [PMID: 23286334 DOI: 10.3109/10428194.2012.763123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is frequently associated with autoimmune hemolytic anemia (AIHA). However, the mechanisms governing the association between CLL and AIHA are poorly understood. MicroRNAs (miRNAs) have been associated with different clinico-biological forms of CLL and are also known to play a substantial role in autoimmunity. However, there are no studies correlating miRNA expression with the likelihood that patients with CLL will develop AIHA. In this study, we found that malignant B-cells from patients with CLL subsequently developing AIHA present nine down-regulated (i.e. miR-19a, miR-20a, miR-29c, miR-146b-5p, miR-186, miR-223, miR-324-3p, miR-484 and miR-660) miRNAs. Interestingly, two of these miRNAs (i.e. miR-20a and miR-146b-5p) are involved in autoimmune phenomena, and one (i.e. miR-146b-5p) in both autoimmunity and CLL. Furthermore, we demonstrated that miR-146b-5p modulates CD80, a molecule associated with the B-T-cell synapse and in restoration of the antigen presenting cell capacity of CLL cells.
Collapse
Affiliation(s)
- Gerardo Ferrer
- Institute of Hematology and Oncology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
MicroRNAs in Acute Myeloid Leukemia and Other Blood Disorders. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:603830. [PMID: 23259069 PMCID: PMC3505936 DOI: 10.1155/2012/603830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
Common blood disorders include hematopoietic cell malignancies or leukemias and plasma cell dyscrasia, all of which have associated microRNA abnormalities. In this paper, we discuss several leukemias including acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) and identify altered microRNAs and their targets. Immune disorders with altered blood levels of antibodies include autoimmune disorders, such as systemic lupus erythematosus (SLE) with associated anti-self-autoantibodies and immunoglobulin A nephropathy (IgAN) also have related microRNA abnormalities. The alterations in microRNAs may serve as therapeutic targets in these blood disorders.
Collapse
|
16
|
Small RNAs derived from longer non-coding RNAs. Biochimie 2011; 93:1905-15. [PMID: 21843590 DOI: 10.1016/j.biochi.2011.07.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
|