1
|
Zhang Y, Zhang Z, Cao L, Lin J, Yang Z, Zhang X. A common CD55 rs2564978 variant is associated with the susceptibility of non-small cell lung cancer. Oncotarget 2018; 8:6216-6221. [PMID: 28008159 PMCID: PMC5351625 DOI: 10.18632/oncotarget.14053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022] Open
Abstract
CD55, as one of key membrane-bound complement-regulatory proteins (mCRPs), is crucial for the progression of various cancers. This study aims to investigate the role of CD55 variants in the development of non-small cell lung cancer (NSCLC). A case-control study, including 706 lung cancer cases and 706 health controls, was conducted in a Chinese population. The odds ratio (OR) and 95% confidence interval (95% CI) were estimated by unconditional logistic regression. We found that significantly higher lung cancer risk was linked with CD55 rs2564978 CC genotype (OR = 1.52, 95% CI = 1.11−2.07) or CT genotypes (OR = 1.34, 95% CI = 1.05−1.71), compared to the TT genotype. Stratified analysis showed that rs2564978 CC was associated with NSCLC risk among males (OR = 1.69, 95% CI = 1.14−2.49) and older subjects (OR = 1.75, 95% CI = 1.08−2.82). When stratified by smoking status, the risk effect of rs2564978 CC was more evident among smokers (OR = 2.01, 95% CI = 1.18−3.43) than non-smokers (OR = 1.30, 95% CI = 0.88−1.90). We also conducted the stratified analysis by NSCLC histological types and found that CD55 rs2564978 CC increased the risk of adenocarcinoma with OR (95% CI) of 1.35 (1.01−1.80). The reporter gene expression driven by rs2564978T-containing CD55 promoter was respectively 1.48-fold, 1.96-fold and 1.93-fold higher than those driven by the rs2564978C-containing CD55 promoter in A549, NCI-H2030 and NCI-H23 cells (P = 0.045, 0.010 and < 0.001). These findings indicate that CD55 rs2564978 polymorphism may contribute to an increased risk of NSCLC in Chinese population.
Collapse
Affiliation(s)
- Yanyan Zhang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Institute of Epidemiology, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Lei Cao
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Jia Lin
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
2
|
On phagocytes and macular degeneration. Prog Retin Eye Res 2017; 61:98-128. [DOI: 10.1016/j.preteyeres.2017.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022]
|
3
|
Calippe B, Augustin S, Beguier F, Charles-Messance H, Poupel L, Conart JB, Hu SJ, Lavalette S, Fauvet A, Rayes J, Levy O, Raoul W, Fitting C, Denèfle T, Pickering MC, Harris C, Jorieux S, Sullivan PM, Sahel JA, Karoyan P, Sapieha P, Guillonneau X, Gautier EL, Sennlaub F. Complement Factor H Inhibits CD47-Mediated Resolution of Inflammation. Immunity 2017; 46:261-272. [DOI: 10.1016/j.immuni.2017.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/20/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
|
4
|
Lin J, Zhang Y, Wang H, Chang J, Wei L, Cao L, Zhang Z, Zhang X. Genetic Polymorphisms in the Apoptosis-Associated Gene CASP3 and the Risk of Lung Cancer in Chinese Population. PLoS One 2016; 11:e0164358. [PMID: 27723786 PMCID: PMC5056705 DOI: 10.1371/journal.pone.0164358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/24/2016] [Indexed: 11/30/2022] Open
Abstract
Caspase-3 (CASP3) plays a central role in executing cell apoptosis and thus in carcinogenesis. We previously investigated the relationship between functional polymorphisms in CAPS3 829 A>C and 20541 C>T and risk of esophageal squamous cell carcinoma. However little is known about the role of CASP3 variants in susceptibility to lung cancer. To figure out the contribution of CASP3 polymorphisms to lung cancer risk, genotypes of 1000 lung cancer patients and 1000 controls were conducted by RFLP-PCR (restriction fragment length polymorphism PCR). The transcriptional activity of CASP3 829 A>C was examined by dual luciferase reporter assay. Logistic regression was applied to calculate Odds ratios (OR) and 95% confidence intervals (95%CI). Compared with CASP3 829 AA genotype, AC and CC genotype had significantly increased risk of lung cancer with OR (95% CI) of 1.33 (1.09–1.63) and 1.55 (1.19–2.01), respectively. To further explore the possible impact of 829 A>C SNP on CASP3 transcriptional activity, we detected the dual luciferase activity of PGL3-promoter vectors containing 829A or 829C alleles in lung cancer cell lines and found that report gene expressions driven by 829A containing CASP3 promoter were 1.64-fold, 1.94-fold greater than those driven by CASP3 829C containing counterparts in A549 and NCI-H1975 cells (P<0.001). When stratified by sex, the significantly increased risk associated with CASP3 829 AC or CC genotype was obviousl in males with OR (95% CI) of 1.42 (1.11–1.81) and 1.51 (1.11–2.05), but not in females. When stratified by age, we found that CASP3 829 AC or CC genotype contributed to the risk of lung cancer in youngers with OR (95% CI) of 2.73 (1.71–4.34) and 4.02 (2.20–7.32), but not in elder group. We also found that 829AC or 829CC genotype increased adenocarcinoma risk compared with the AA genotype with OR (95%CI) of 1.33 (1.04–1.70) and 1.51(1.09–2.07). CASP3 polymorphism and smoking interaction was demonstrated related with higher risk of lung cancer. We achieved that the CASP3 829AC or 829CC genotypes was associated with increased risk of lung cancer in both non-smoker and smoker group, with OR (95%CI) of 1.48 (1.08–2.02) and OR (95%CI) of 1.64 (1.09–2.48) among non-smokers and OR (95%CI) of 2.68 (1.89–3.81) and OR (95%CI) of 3.23 (2.21–4.92) among smokers, respectively. Among carriers with 20541CT genotype, the ORs (95%CI) of risk with lung cancer for smoking <16, 16–28, or > 28 pack-years were 1.16(0.65–2.07), 1.66(0.98–2.82) and 5.01(3.31–7.58) compared with the 20541CC carriers. And among carriers with 20541CT genotype, the ORs (95%CI) were 0.86(0.33–2.20), 2.12(0.83–5.41) and 5.71(2.68–12.16). These results highlight apoptosis-related CASP3 as an important gene in human carcinogenesis and further support the CASP3 polymorphisms confer to the lung cancer susceptibility.
Collapse
Affiliation(s)
- Jia Lin
- Department of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Yanyan Zhang
- Department of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
- Department of Epidemiology, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongge Wang
- Department of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixuan Wei
- Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cao
- Department of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Department of Chemotherapy and Radiotherapy, Tangshan Gongren Hospital, Tangshan, China
| | - Xuemei Zhang
- Department of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
- * E-mail:
| |
Collapse
|
5
|
Tishchenko I, Milioli HH, Riveros C, Moscato P. Extensive Transcriptomic and Genomic Analysis Provides New Insights about Luminal Breast Cancers. PLoS One 2016; 11:e0158259. [PMID: 27341628 PMCID: PMC4920434 DOI: 10.1371/journal.pone.0158259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
Despite constituting approximately two thirds of all breast cancers, the luminal A and B tumours are poorly classified at both clinical and molecular levels. There are contradictory reports on the nature of these subtypes: some define them as intrinsic entities, others as a continuum. With the aim of addressing these uncertainties and identifying molecular signatures of patients at risk, we conducted a comprehensive transcriptomic and genomic analysis of 2,425 luminal breast cancer samples. Our results indicate that the separation between the molecular luminal A and B subtypes—per definition—is not associated with intrinsic characteristics evident in the differentiation between other subtypes. Moreover, t-SNE and MST-kNN clustering approaches based on 10,000 probes, associated with luminal tumour initiation and/or development, revealed the close connections between luminal A and B tumours, with no evidence of a clear boundary between them. Thus, we considered all luminal tumours as a single heterogeneous group for analysis purposes. We first stratified luminal tumours into two distinct groups by their HER2 gene cluster co-expression: HER2-amplified luminal and ordinary-luminal. The former group is associated with distinct transcriptomic and genomic profiles, and poor prognosis; it comprises approximately 8% of all luminal cases. For the remaining ordinary-luminal tumours we further identified the molecular signature correlated with disease outcomes, exhibiting an approximately continuous gene expression range from low to high risk. Thus, we employed four virtual quantiles to segregate the groups of patients. The clinico-pathological characteristics and ratios of genomic aberrations are concordant with the variations in gene expression profiles, hinting at a progressive staging. The comparison with the current separation into luminal A and B subtypes revealed a substantially improved survival stratification. Concluding, we suggest a review of the definition of luminal A and B subtypes. A proposition for a revisited delineation is provided in this study.
Collapse
Affiliation(s)
- Inna Tishchenko
- Information-based Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Heloisa Helena Milioli
- Information-based Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Carlos Riveros
- CReDITSS Unit, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Pablo Moscato
- Information-based Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| |
Collapse
|
6
|
Complement factor H polymorphism rs1061170 and the effect of cigarette smoking on the risk of lung cancer. Contemp Oncol (Pozn) 2015; 19:441-5. [PMID: 26843839 PMCID: PMC4731447 DOI: 10.5114/wo.2015.56202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023] Open
Abstract
Aim of the study Complement factor H (CFH) has been known to inhibit the complement pathway and to contribute to tumour growth by suppressing the anti-tumour cell mediated response in cell lines from several malignancies. We examined the association of Try402His single nucleotide polymorphism in CFH gene with lung cancer and the interaction with cigarette smoking. Material and methods This case-control study included 80 primary lung cancer patients and 106 control subjects who were genotyped for Try402His (rs1061170) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results Variant genotypes (Tyr/His and His/His) were overpresented among patients compared to controls (p = 0.03, OR = 2.510, 95% CI: 1.068–5.899), and the frequency of variant H allele was significantly overexpressed in cases compared to controls (p = 0.021). Tyr/His genotype was identified in 100% of small cell lung cancer (SCLC) patients vs. 34.5% of non-SCLC (NSCLC), while 20.7% of NSCLC patients were homozygous for the variant allele (His/His) (p = 0.001). Binary logistic regression analysis revealed a 2.5 times greater estimated risk for NSCLC than for SCLC among variant allele carriers, and a 7.3-fold increased risk of lung cancer among variant allele smoking carriers vs. 1.3-fold increased risk among wild allele smoking carriers. Moreover, the stage of cancer positively correlated with smoking and pack-years in allele H carriers, and the correlation was stronger among those who were homozygous for it (His/His) than those who were heterozygous (Tyr/His). Conclusions CFH 402H variant is a smoking-related risk factor for lung cancer, particularly the NSCLC.
Collapse
|
7
|
Zhao L, Zhang Z, Lin J, Cao L, He B, Han S, Zhang X. Complement receptor 1 genetic variants contribute to the susceptibility to gastric cancer in chinese population. J Cancer 2015; 6:525-30. [PMID: 26000043 PMCID: PMC4439937 DOI: 10.7150/jca.10749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022] Open
Abstract
As the receptor for C3b/C4b, type 1 complement receptor (CR1/CD35) plays an important role in the regulation of complement activity and is further involved in carcinogenesis. This study aimed to elucidate the association of CR1 genetic variants with the susceptibility to gastric cancer in Chinese population. Based on the NCBI database, totally 13 tag single nucleotide polymorphisms (SNPs) were selected by Haploview program and genotyped using iPlex Gold Genotyping Assay and Sequenom MassArray among 500 gastric cancer cases and 500 healthy controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression to evaluate the association of each SNP with gastric cancer. Of all selected Tag SNPs , CR1 rs9429942 T > C was found to confer to the risk of developing gastric cancer. Compared with the carriers with rs9429942 TT genotype, those with CT genotype had 88% decreased risk of developing gastric cancer with OR (95%CI) of 0.12 (0.03-0.50). Generalized multifactor dimensionality reduction (GMDR) analysis revealed a significant three-way interaction among rs75422544 C > A, rs10494885 C > T and rs7525160 G > C in the development of gastric cancer with a maximum testing balance accuracy of 56.07% and a cross-validation consistency of 7/10 (P = 0.011). In conclusion, our findings demonstrated the genetic role of CR1 gene in the development of gastric cancer in Chinese population.
Collapse
Affiliation(s)
- Lina Zhao
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| | - Zhi Zhang
- 2. Affiliated Tangshan Gongren Hospital, Hebei United University, Tangshan, China
| | - Jia Lin
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| | - Lei Cao
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| | - Bing He
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| | - Sugui Han
- 3. Department of Clinical laboratory, Tangshan Renmin Hospital, Tangshan, China
| | - Xuemei Zhang
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| |
Collapse
|
8
|
Zhang R, Chu M, Zhao Y, Wu C, Guo H, Shi Y, Dai J, Wei Y, Jin G, Ma H, Dong J, Yi H, Bai J, Gong J, Sun C, Zhu M, Wu T, Hu Z, Lin D, Shen H, Chen F. A genome-wide gene-environment interaction analysis for tobacco smoke and lung cancer susceptibility. Carcinogenesis 2014; 35:1528-35. [PMID: 24658283 PMCID: PMC4076813 DOI: 10.1093/carcin/bgu076] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/19/2022] Open
Abstract
Tobacco smoke is the major environmental risk factor underlying lung carcinogenesis. However, approximately one-tenth smokers develop lung cancer in their lifetime indicating there is significant individual variation in susceptibility to lung cancer. And, the reasons for this are largely unknown. In particular, the genetic variants discovered in genome-wide association studies (GWAS) account for only a small fraction of the phenotypic variations for lung cancer, and gene-environment interactions are thought to explain the missing fraction of disease heritability. The ability to identify smokers at high risk of developing cancer has substantial preventive implications. Thus, we undertook a gene-smoking interaction analysis in a GWAS of lung cancer in Han Chinese population using a two-phase designed case-control study. In the discovery phase, we evaluated all pair-wise (591 370) gene-smoking interactions in 5408 subjects (2331 cases and 3077 controls) using a logistic regression model with covariate adjustment. In the replication phase, promising interactions were validated in an independent population of 3023 subjects (1534 cases and 1489 controls). We identified interactions between two single nucleotide polymorphisms and smoking. The interaction P values are 6.73 × 10(-) (6) and 3.84 × 10(-) (6) for rs1316298 and rs4589502, respectively, in the combined dataset from the two phases. An antagonistic interaction (rs1316298-smoking) and a synergetic interaction (rs4589502-smoking) were observed. The two interactions identified in our study may help explain some of the missing heritability in lung cancer susceptibility and present strong evidence for further study of these gene-smoking interactions, which are benefit to intensive screening and smoking cessation interventions.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Minjie Chu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huan Guo
- Institute of Occupational Medicine and Ministry of Education, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongyong Shi
- Bio-X Center and Affiliated Changning Mental Health Center, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yongyue Wei
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jing Dong
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jianling Bai
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jianhang Gong
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chongqi Sun
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China, Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 210029, China and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China, Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 210029, China and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Feng Chen
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China,
| |
Collapse
|
9
|
Tag SNPs in complement receptor-1 contribute to the susceptibility to non-small cell lung cancer. Mol Cancer 2014; 13:56. [PMID: 24621201 PMCID: PMC3995685 DOI: 10.1186/1476-4598-13-56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/24/2014] [Indexed: 12/31/2022] Open
Abstract
Background Complement receptor 1 (CR1), the receptor for C3b/C4b complement peptides, plays a crucial role in carcinogenesis. However, the association of genetic variants of CR1 with susceptibility to lung cancer remains unexplored. Methods This case-control study included 470 non-small cell lung cancer (NSCLC) patients and 470 cancer-free controls. Based on the Chinese population data from HapMap database, we used Haploview 4.2 program to select candidate tag SNPs. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed by logistic regression to evaluate the association of each tag SNP with NSCLC. Results Multivariate regression analysis indicated that the rs7525160 CC genotype was associated with an increased risk of developing NSCLC (OR = 1.52, 95% CI = 1.02-2.28; P = 0.028) compared with the GG genotype. When stratified by smoking status, the risk of NSCLC was associated with the rs7525160 C allele carriers in smokers with OR (95% CI) of 1.72 (1.15-2.79), but not in non-smokers with OR (95% CI) of 1.15 (0.81-1.65). When the interaction between smoking status and rs7525160 G > C variant was analyzed with cumulative smoking dose (pack-year). Similarly, GC or CC genotype carriers have increased risk of NSCLC among heavy smokers (pack-year ≥ 25) with OR (95% CI) of 2.01 (1.26-3.20), but not among light smokers (pack-year <25) with OR (95% CI) of 1.32 (0.81-2.16). Conclusion CR1 rs7525160 G > C polymorphism was associated with an increased risk of developing NSCLC in Chinese population. The association displays a manner of gene-environmental interaction between CR1 rs7525160 tagSNP and smoking status.
Collapse
|
10
|
Boué S, De León H, Schlage WK, Peck MJ, Weiler H, Berges A, Vuillaume G, Martin F, Friedrichs B, Lebrun S, Meurrens K, Schracke N, Moehring M, Steffen Y, Schueller J, Vanscheeuwijck P, Peitsch MC, Hoeng J. Cigarette smoke induces molecular responses in respiratory tissues of ApoE−/− mice that are progressively deactivated upon cessation. Toxicology 2013; 314:112-24. [DOI: 10.1016/j.tox.2013.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
|