1
|
Bai H, Yan DS, Chen YL, Li QZ, Qi YC. Potential biomarkers: The hypomethylation of cg18949415 and cg22193385 sites in colon adenocarcinoma. Comput Biol Med 2024; 169:107884. [PMID: 38154158 DOI: 10.1016/j.compbiomed.2023.107884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Overall cancer hypomethylation had been identified in the past, but it is not clear exactly which hypomethylation site is the more important for the occurrence of cancer. To identify key hypomethylation sites, we studied the effect of hypomethylation in twelve regions on gene expression in colon adenocarcinoma (COAD). The key DNA methylation sites of cg18949415, cg22193385 and important genes of C6orf223, KRT7 were found by constructing a prognostic model, survival analysis and random combination prediction a series of in-depth systematic calculations and analyses, and the results were validated by GEO database, immune microenvironment, drug and functional enrichment analysis. Based on the expression values of C6orf223, KRT7 genes and the DNA methylation values of cg18949415, cg22193385 sites, the least diversity increment algorithm were used to predict COAD and normal sample. The 100 % reliability and 97.12 % correctness of predicting tumor samples were obtained in jackknife test. Moreover, we found that C6orf223 gene, cg18949415 site play a more important role than KRT7 gene, cg22193385 site in COAD. In addition, we investigate the impact of key methylation sites on three-dimensional chromatin structure. Our results will be help for experimental studies and may be an epigenetic biomarker for COAD.
Collapse
Affiliation(s)
- Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Dong-Sheng Yan
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Ying-Li Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| | - Ye-Chen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
2
|
Kim JH, Ahn JS, Lee DS, Hong SH, Lee HJ. Anti-Cancer Effect of Neural Stem Cells Transfected with Carboxylesterase and sTRAIL Genes in Animals with Brain Lesions of Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1156. [PMID: 37631070 PMCID: PMC10458428 DOI: 10.3390/ph16081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application.
Collapse
Affiliation(s)
- Jung Hak Kim
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Ho Hong
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hong J. Lee
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
3
|
Zheng W, Wu F, Fu K, Sun G, Sun G, Li X, Jiang W, Cao H, Wang H, Tang W. Emerging Mechanisms and Treatment Progress on Liver Metastasis of Colorectal Cancer. Onco Targets Ther 2021; 14:3013-3036. [PMID: 33986602 PMCID: PMC8110277 DOI: 10.2147/ott.s301371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is currently the third largest malignant tumor in the world, with high new cases and high mortality. Metastasis is one of the most common causes of death of colorectal cancer, of which liver metastasis is the most fatal. Since the beginning of the Human Genome Project in 2001, people have gradually recognized the 3 billion base pairs that make up the human genome, of which only about 1.5% of the nucleic acid sequences are used for protein coding, including proto-oncogenes and tumor suppressor genes. A large number of differences in the expression of proto-oncogenes and tumor suppressor genes have also been found in the study of colorectal cancer, which proves that they are also actively involved in the progression of colorectal cancer and promote the occurrence of liver metastasis. Except for 1.5% of the coding sequence, the rest of the nucleic acid sequence does not encode any protein, which is called non-coding RNA. With the deepening of research, genome sequences without protein coding potential that were originally considered “junk sequences” may have important biological functions. Many years of studies have found that a large number of abnormal expression of ncRNA in colorectal cancer liver metastasis, indicating that ncRNA plays an important role in it. To explore the role and mechanism of these coding sequences and non-coding RNA in liver metastasis of colorectal cancer is very important for the early diagnosis and treatment of liver metastasis of colorectal cancer. This article reviews the coding genes and ncRNA that have been found in the study of liver metastasis of colorectal cancer in recent years, as well as the mechanisms that have been identified or are still under study, as well as the clinical treatment of liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Oh YT, Sun SY. Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
Affiliation(s)
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA;
| |
Collapse
|
5
|
Ethiraj P, Sambandam Y, Hathaway-Schrader JD, Haque A, Novince CM, Reddy SV. RANKL triggers resistance to TRAIL-induced cell death in oral squamous cell carcinoma. J Cell Physiol 2019; 235:1663-1673. [PMID: 31309556 DOI: 10.1002/jcp.29086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Oral squamous cell carcinoma (OSCC) occurs as a malignancy of the oral cavity. RANK ligand (RANKL) is essential for osteoclast formation/bone resorption. Recently, we showed autoregulation of receptor activator of nuclear factor-κB ligand (RANKL) stimulates OSCC cell proliferation. OSCC cells show resistance to tumor necrosis factor related apoptosis inducing ligand (TRAIL) treatment. Therefore, we hypothesize that RANKL promotes resistance for TRAIL induction of OSCC apoptotic cell death. In this study, SCC14A and SCC74A cells cultured with TRAIL revealed high-level expression of RANKL which increased resistance to TRAIL inhibition of tumor cell proliferation. RANKL stimulation inhibited terminal deoxynucleotidyl transferase dUTP nick end labeling positive staining in TRAIL-treated cells. CRISPR/Cas-9 knockout of RANKL (RANKL-KO) increased caspase-9, caspase-3 activity and cytochrome c release in OSCC cells. RANKL inhibited proapoptotic proteins BAD and BAX expression. TRAIL treatment suppressed the SQSTM1/p62 and RANKL restored the expression. Interestingly, RANKL alone significantly increased proteasome activity. RANKL-KO in OSCC cells inhibited autophagic activity as evidenced by decreased light chain 3B-II and beclin-1 expression. Thus, RANKL stimulation of OSCC tumor cells triggered resistance for TRAIL-induced OSCC cell death. Taken together, blockade of RANKL may inhibit OSCC tumor progression and enhance the potential of TRAIL induced OSCC tumor cell apoptosis.
Collapse
Affiliation(s)
- Purushoth Ethiraj
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Yuvaraj Sambandam
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sakamuri V Reddy
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
6
|
Motevaseli E, Dianatpour A, Ghafouri-Fard S. The Role of Probiotics in Cancer Treatment: Emphasis on their In Vivo and In Vitro Anti-metastatic Effects. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2017; 6:66-76. [PMID: 28890883 PMCID: PMC5581548 DOI: 10.22088/acadpub.bums.6.2.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
Abstract
Probiotics are defined as live bacteria and yeasts that exert beneficial effects for health. Among their various effects, anti-cancer properties have been highlighted in recent years. Such effects include suppression of the growth of microbiota implicated in the production of mutagens and carcinogens, alteration in carcinogen metabolism and protection of DNA from oxidative damage as well as regulation of immune system. We performed a computerized search of the MEDLINE/PUBMED databases with key words: cancer, probiotics, lactobacilli, metastasis and invasion. Cell line studies as well as animal models and human studies have shown the therapeutic effects of probiotics in reduction of invasion and metastasis in cancer cells. These results support the beneficial effects of probiotics both in vitro and in vivo. However, pre-clinical or clinical studies are not enough to decide about their application.
Collapse
Affiliation(s)
- Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Dianatpour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells. PLoS One 2016; 11:e0147960. [PMID: 26849051 PMCID: PMC4744000 DOI: 10.1371/journal.pone.0147960] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/10/2016] [Indexed: 12/11/2022] Open
Abstract
Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 10(9) CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 10(9) CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain.
Collapse
|
8
|
Lieber J, Ellerkamp V, Vogt F, Wenz J, Warmann SW, Fuchs J, Armeanu-Ebinger S. BH3-mimetic drugs prevent tumour onset in an orthotopic mouse model of hepatoblastoma. Exp Cell Res 2013; 322:217-25. [PMID: 24355809 DOI: 10.1016/j.yexcr.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 01/04/2023]
Abstract
Drug resistance and metastasis remain major challenges in the treatment of high-risk hepatoblastoma (HB) and require the development of alternative therapeutic strategies. Modulation of apoptosis in HB cells enhances the sensitivity of these cells towards various drugs and has been discussed to enforce treatment. We investigated the impact of apoptosis sensitisers, BH3-mimetics, on the interaction between the host and HB to reduce tumour growth and dissemination while enhancing immunity. BH3-mimetics, such as obatoclax and ABT-737, enhanced the apoptosis-inducing effect of TRAIL and TNF-α resistant HB cells (HepT1 and HUH6). Tumour cell migration was inhibited by ABT-737 and more markedly by obatoclax. In an orthotopic model of HB, tumour uptake was reduced when the cells were pretreated with low concentrations of obatoclax. Only 1 of 7 mice developed HB in the liver, compared with an incidence of 0.8 in the control group. In summary, our study showed that apoptosis sensitisers had broader effects on HB cells than expected including migration and susceptibility to cytokines in addition to the known effects on drug sensitization. Sensitising HB to apoptosis may also allow resistant HB to be targeted by immune cells and prevent tumour cell dissemination.
Collapse
Affiliation(s)
- Justus Lieber
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Verena Ellerkamp
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Fabian Vogt
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Julia Wenz
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Steven W Warmann
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Jörg Fuchs
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Sorin Armeanu-Ebinger
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| |
Collapse
|
9
|
Marrero MT, Estévez S, Negrín G, Quintana J, López M, Pérez FJ, Triana J, León F, Estévez F. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells. Biochem Biophys Res Commun 2012; 428:116-20. [DOI: 10.1016/j.bbrc.2012.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
|
10
|
Liu M, Li ZH, Xu FJ, Lai LH, Wang QQ, Tang GP, Yang WT. An oligopeptide ligand-mediated therapeutic gene nanocomplex for liver cancer-targeted therapy. Biomaterials 2011; 33:2240-50. [PMID: 22177837 DOI: 10.1016/j.biomaterials.2011.11.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 11/26/2011] [Indexed: 01/05/2023]
Abstract
The epidermal growth factor receptor (EGFR) is over-expressed in a wide variety of epithelial-derived cancer cells. In this study, EGFR-targeted gene carriers were designed to complex the therapeutic acetylcholinesterase gene (AChE gene), which suppresses cell proliferation via inactivating mitogen-activated protein kinase and PI3K/Akt pathways in cells, for treatment of EGFR-positive liver cancers. Different amounts of target ligand YC21 (an oligopeptide composed of 21 amino acid units) were coupled with the PEI(600)-CD (PC) vectors composed of β-cyclodextrin (β-CD) and low-molecular-weight polyethylenimine (PEI, Mw 600) to form the EGFR-targeted gene vectors (termed as YPCs). The YPC vectors possessed the highly efficient gene delivery ability to the EGFR-positive liver cancer cells. YPCs could effectively promote AChE gene expression. The YPC/AChE complexes produced excellent gene transfection abilities in EGFR-positive liver cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- M Liu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Ben Q, Wang K, Yuan Y, Li Z. Pancreatic cancer incidence and outcome in relation to ABO blood groups among Han Chinese patients: a case-control study. Int J Cancer 2011; 128:1179-86. [PMID: 20473916 DOI: 10.1002/ijc.25426] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of the current study was to determine the association between ABO blood group and the risk and progression of pancreatic ductal adenocarcinoma (PDAC) in the Han Chinese ethnic group. During the period of 2000-2009, 1,431 patients with PDAC and 1,449 age- and sex-matched controls were recruited in two university-affiliated hospitals. An unconditional multivariable logistic regression analysis was used to estimate adjusted odds ratios (ORs). The relationship between patient ABO blood group and clinicopathologic features was also analyzed. Compared with subjects having blood group O, a modestly higher risk was observed among cases with blood group A or AB with adjusted ORs (95% confidence interval) of 1.368 (1.127-1.661) and 1.391 (1.053-1.838), respectively. The TNM stages of tumors in patients with non-O blood groups (A, B or AB) were more highly advanced than in patients with blood group O (p < 0.001). Among patients who underwent a potentially curative operation, the median survival time of patients with blood group O was significantly longer than that of patients with non-O blood groups (16.0 months vs. 11.0 months, p = 0.001, log-rank test). This study shows evidence of an association between blood group type and risk for development and progression of PDAC. These findings merit further confirmation in a large population-based prospective study in patients of the Han Chinese ethnic group.
Collapse
Affiliation(s)
- Qiwen Ben
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis 2008; 13:1232-42. [PMID: 18726190 DOI: 10.1007/s10495-008-0250-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our study aimed to compare death signalling pathways triggered by lupulone in TRAIL-sensitive human colon cancer cells (SW480) and in their derived TRAIL-resistant metastatic cells (SW620). Lupulone (40 microg/ml) up-regulated expression of TRAIL DR4/DR5 death receptors at the cell surface of both cell lines, even in the absence of exogenous TRAIL ligand. Cell death induced by lupulone was inhibited in SW480 and SW620 cells exposed to blocking anti-DR4/DR5 antibodies. In SW480 cells, lupulone triggered cell death through a cross-talk between TRAIL-DR4/DR5 and the mitochondrial (intrinsic) pathways involving caspase-8 activation and Bid protein cleavage. As a consequence mitochondrial cytochrome c was released into the cytosol and activation of caspases-9 and -3 was observed. In the metastatic SW620 cells, lupulone restored the sensibility of these cells to TRAIL ligand and activated the extrinsic apoptotic pathway via DR4/DR5 death receptors and the involvement of the caspase-8/caspase-3 cascade. The demonstration that lupulone is able to activate TRAIL-death signalling pathways even in TRAIL resistant cancer cells highlights the potential of this natural compound for cancer prevention and therapy.
Collapse
|
13
|
Altered phenotype of natural killer cell subsets after haploidentical stem cell transplantation. Exp Hematol 2008; 36:378-89. [DOI: 10.1016/j.exphem.2007.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 11/09/2007] [Accepted: 12/06/2007] [Indexed: 11/22/2022]
|
14
|
Mérino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets 2007; 11:1299-314. [PMID: 17907960 PMCID: PMC2976473 DOI: 10.1517/14728222.11.10.1299] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since its identification in 1995, TNF-related apoptosis-inducing ligand (TRAIL) has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. In contrast to other members of the TNF superfamily, TRAIL administration in vivo is safe. The relative absence of toxic side effects of this naturally occurring cytokine, in addition to its antitumoural properties, has led to its preclinical evaluation. However, despite intensive investigations, little is known in regards to the mechanisms underlying TRAIL selectivity or efficiency. An appropriate understanding of its physiological relevance, and of the mechanisms controlling cancer cells escape from TRAIL-induced cell death, will be required to optimally use the cytokine in clinics. The present review focuses on recent advances in the understanding of TRAIL signal transduction and discusses the existing and future challenges of TRAIL-based cancer therapy development.
Collapse
|
15
|
Wang MJ, Liu S, Liu Y, Zheng D. Actinomycin D enhances TRAIL-induced caspase-dependent and -independent apoptosis in SH-SY5Y neuroblastoma cells. Neurosci Res 2007; 59:40-6. [PMID: 17707539 DOI: 10.1016/j.neures.2007.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/10/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted great attention as a promising anti-cancer reagent. Recombinant soluble TRAIL (rsTRAIL) derivatives induce apoptosis in various cancer cells, but not in most normal cells. However, a number of cancerous cell types are resistant to TRAIL cytotoxicity, limiting its application in cancer therapy. In the present study, we report that actinomycin D (Act D) pretreatment increases apoptosis in human neuroblastoma SH-SY5Y cells treated with rsTRAIL. Both caspase-9 and caspase-7, but not caspase-3, were activated during the apoptosis process. z-VAD-fmk, a pan-caspase inhibitor, only partially suppressed apoptosis of the cells, suggesting that the Act D-enhanced apoptosis of SH-SY5Y occurred via caspase-dependent and -independent manners. In cells pretreated with Act D, we found decreased mitochondrial transmembrane potential, high levels of reactive oxygen species (ROS), and up-regulated apoptotic-inducing factor (AIF). Cell death was blocked in cells stably transfected with AIF-siRNA plasmid. Taken together, these data indicate that Act D sensitizes SH-SY5Y cells to rsTRAIL-induced apoptosis via caspase activation, impairment of the mitochondrial membrane, release of ROS, and up-regulation of AIF expression. This study provides a novel strategy for the therapy of malignant neuroblastoma resistant to rsTRAIL cytotoxicity.
Collapse
Affiliation(s)
- Ming-Jie Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | |
Collapse
|