1
|
Fischer M, Luck M, Werle M, Vogel A, Bashawat M, Ludwig K, Scheidt HA, Müller P. The small-molecule kinase inhibitor ceritinib, unlike imatinib, causes a significant disturbance of lipid membrane integrity: A combined experimental and MD study. Chem Phys Lipids 2023; 257:105351. [PMID: 37863350 DOI: 10.1016/j.chemphyslip.2023.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Ceritinib and imatinib are small-molecule protein kinase inhibitors which are applied as therapeutic agents against various diseases. The fundamentals of their clinical use, i.e. their pharmacokinetics as well as the mechanisms of the inhibition of the respective kinases, are relatively well studied. However, the interaction of the drugs with membranes, which can be a possible cause of side effects, has hardly been investigated so far. Therefore, we have characterized the interaction of both drugs with lipid membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the absence and in the presence of cholesterol. For determining the membrane impact of both drugs on a molecular level, different experimental (NMR, ESR, fluorescence) and theoretical (MD simulations) approaches were applied. The data show that ceritinib, in contrast to imatinib, interacts more effectively with membranes significantly affecting various physico-chemical membrane parameters like membrane order and transmembrane permeation of polar solutes. The pronounced membrane impact of ceritinib can be explained by a strong affinity of the drug towards POPC which competes with the POPC-cholesterol interaction by that attenuating the ordering effect of cholesterol. The data are relevant for understanding putative toxic and cytotoxic side effects of these drugs such as the triggering of cell lysis or apoptosis.
Collapse
Affiliation(s)
- Markus Fischer
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Meike Luck
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Max Werle
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Alexander Vogel
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Mohammad Bashawat
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Kai Ludwig
- Freie Universität Berlin, Research Center for Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Holger A Scheidt
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Peter Müller
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|
2
|
Shetu SA, James N, Rivera G, Bandyopadhyay D. Molecular Research in Pancreatic Cancer: Small Molecule Inhibitors, Their Mechanistic Pathways and Beyond. Curr Issues Mol Biol 2023; 45:1914-1949. [PMID: 36975494 PMCID: PMC10047141 DOI: 10.3390/cimb45030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Pancreatic enzymes assist metabolic digestion, and hormones like insulin and glucagon play a critical role in maintaining our blood sugar levels. A malignant pancreas is incapable of doing its regular functions, which results in a health catastrophe. To date, there is no effective biomarker to detect early-stage pancreatic cancer, which makes pancreatic cancer the cancer with the highest mortality rate of all cancer types. Primarily, mutations of the KRAS, CDKN2A, TP53, and SMAD4 genes are responsible for pancreatic cancer, of which mutations of the KRAS gene are present in more than 80% of pancreatic cancer cases. Accordingly, there is a desperate need to develop effective inhibitors of the proteins that are responsible for the proliferation, propagation, regulation, invasion, angiogenesis, and metastasis of pancreatic cancer. This article discusses the effectiveness and mode of action at the molecular level of a wide range of small molecule inhibitors that include pharmaceutically privileged molecules, compounds under clinical trials, and commercial drugs. Both natural and synthetic small molecule inhibitors have been counted. Anti-pancreatic cancer activity and related benefits of using single and combined therapy have been discussed separately. This article sheds light on the scenario, constraints, and future aspects of various small molecule inhibitors for treating pancreatic cancer-the most dreadful cancer so far.
Collapse
Affiliation(s)
- Shaila A. Shetu
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Nneoma James
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
3
|
You Y, Niu Y, Zhang J, Huang S, Ding P, Sun F, Wang X. U0126: Not only a MAPK kinase inhibitor. Front Pharmacol 2022; 13:927083. [PMID: 36091807 PMCID: PMC9452634 DOI: 10.3389/fphar.2022.927083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
U0126, as an inhibitor of the MAPK signaling pathway, is closely related to various biological processes, such as differentiation, cell growth, autophagy, apoptosis, and stress responses. It makes U0126 play an essential role in balancing cellular homeostasis. Although U0126 has been suggested to inhibit various cancers, its complete mechanisms have not been clarified in cancers. This review summarized the most recent and relevant research on the many applications of U0126 and described its role and mechanisms in different cancer cell types. Moreover, some acknowledged functions of U0126 researched in the laboratory were listed in our review. We discussed the probability of using U0126 to restain cancers or suppress the MAPK pathway as a novel way of cancer treatment.
Collapse
Affiliation(s)
- Yijie You
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Yunlian Niu
- Department of Neurology, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Jian Zhang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Sheng Huang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Peiyuan Ding
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Fengbing Sun
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
4
|
Chen N, Zheng Q, Wan G, Guo F, Zeng X, Shi P. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments. Cancer Metastasis Rev 2021; 40:739-759. [PMID: 34342796 DOI: 10.1007/s10555-021-09980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is a highly aggressive cancer, with a 9% 5-year survival rate and a high risk of recurrence. In part, this is because PC is composed of heterogeneous subgroups with different biological and functional characteristics and personalized anticancer treatments are required. Posttranslational modifications (PTMs) play an important role in modifying protein functions/roles and are required for the maintenance of cell viability and biological processes; thus, their dysregulation can lead to disease. Different types of PTMs increase the functional diversity of the proteome, which subsequently influences most aspects of normal cell biology or pathogenesis. This review primarily focuses on ubiquitination, SUMOylation, and NEDDylation, as well as the current understanding of their roles and molecular mechanisms in pancreatic carcinogenesis. Additionally, we briefly summarize studies and clinical trials on PC treatments to advance our knowledge of drugs available to target the ubiquitination, SUMOylation, and NEDDylation PTM types. Further investigation of PTMs could be a critical field of study in relation to PC, as they have been implicated in the initiation and progression of many other types of cancer.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
- Department of Cell Biology & University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China
| | - Feng Guo
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Taymaz-Nikerel H, Eraslan S, Kırdar B. Insights Into the Mechanism of Anticancer Drug Imatinib Revealed Through Multi-Omic Analyses in Yeast. ACTA ACUST UNITED AC 2020; 24:667-678. [DOI: 10.1089/omi.2020.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
- Koç University Hospital, Diagnosis Center for Genetic Disorders, Istanbul, Turkey
| | - Betül Kırdar
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
6
|
Mizutani T, Yokoyama Y, Kokuryo T, Ebata T, Igami T, Sugawara G, Nagino M. Does inchinkoto, a herbal medicine, have hepatoprotective effects in major hepatectomy? A prospective randomized study. HPB (Oxford) 2015; 17:461-9. [PMID: 25581163 PMCID: PMC4402058 DOI: 10.1111/hpb.12384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This randomized clinical trial was designed to investigate whether inchinkoto has a hepatoprotective effect on postoperative outcome after major hepatectomy. METHODS Sixty-one patients scheduled for major hepatectomy were randomly assigned to one of two groups in which preoperative inchinkoto was (inchinkoto group, n = 30) or was not (non-inchinkoto group, n = 31) administered. Inchinkoto was administered for at least 7 days before surgery. The primary endpoint was the incidence of post-hepatectomy liver damage. The expression of nuclear factor E2-related factor 2 (Nrf2) and other oxygen stress-related markers in the liver were also determined. RESULTS There was no significant difference in clinical characteristics between the inchinkoto and non-inchinkoto groups. Serum levels in liver function tests and incidences of post-hepatectomy liver failure did not differ significantly between the two groups. However, there was a significantly higher induction of antioxidant factors in the liver, such as Nrf2 protein and heme oxygenase-1 mRNA, after hepatectomy in the inchinkoto group than in the non-inchinkoto group. CONCLUSIONS The preoperative administration of inchinkoto did not have a significant impact on the overall outcome of major hepatectomy. However, inchinkoto induced the expression of Nrf2 during hepatectomy and may have exerted an antioxidative effect on the liver.
Collapse
Affiliation(s)
- Tetsushi Mizutani
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of MedicineNagoya, Japan,Correspondence, Yukihiro Yokoyama, Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan. Tel: + 81 52 744 2220. Fax: + 81 52 744 2230. E-mail:
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Tsuyoshi Igami
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Gen Sugawara
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
7
|
Oya S, Yokoyama Y, Kokuryo T, Uno M, Yamauchi K, Nagino M. Inhibition of Toll-like receptor 4 suppresses liver injury induced by biliary obstruction and subsequent intraportal lipopolysaccharide injection. Am J Physiol Gastrointest Liver Physiol 2014; 306:G244-52. [PMID: 24356883 DOI: 10.1152/ajpgi.00366.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objective of this study was to elucidate the role of Toll-like receptor 4 (TLR4) in liver injury induced by biliary obstruction and subsequent intraportal lipopolysaccharide (LPS) infusion in rats. Biliary obstruction often leads to the development of bacterial translocation. Rats were subjected to either a sham operation (Sham group) or bile duct ligation for 7 days (BDL group). Seven days after each operation, LPS (0.5 μg) was injected through the ileocecal vein. In other experiments, rats that had undergone BDL were pretreated, before LPS challenge, with internal biliary drainage (Drainage group); intravenous TAK-242, a TLR4 inhibitor (TAK group); or intravenous GdCl3, a Kupffer cell deactivator (GdCl3 group). The expression of the TLR4 protein and the number of Kupffer cells in the liver were significantly increased in the BDL group compared with the Sham group. These changes were normalized after biliary drainage. The expression of TLR4 colocalized with Kupffer cells, which was confirmed by double immunostaining. Serum levels of liver enzymes and proinflammatory cytokines after intraportal LPS injection were significantly higher in the BDL group than in the Sham group. However, pretreatment with TAK-242 or GdCl3 strongly attenuated these changes to levels similar to those seen with biliary drainage. These results imply that blocking TLR4 signaling effectively attenuates liver damage to the same level as that observed with biliary drainage in rats with BDL and subsequent intraportal LPS infusion. TAK-242 treatment may be used for patients who are susceptible to liver damage by biliary obstruction and endotoxemia.
Collapse
Affiliation(s)
- Shingo Oya
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Miyake T, Yokoyama Y, Kokuryo T, Mizutani T, Imamura A, Nagino M. Endothelial nitric oxide synthase plays a main role in producing nitric oxide in the superacute phase of hepatic ischemia prior to the upregulation of inducible nitric oxide synthase. J Surg Res 2013; 183:742-51. [DOI: 10.1016/j.jss.2013.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 12/23/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023]
|
9
|
Wang J, Zhang X, Ma D, Lee WNP, Xiao J, Zhao Y, Go VL, Wang Q, Yen Y, Recker R, Xiao GG. Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Exp Hematol Oncol 2013; 2:18. [PMID: 23890079 PMCID: PMC3733980 DOI: 10.1186/2162-3619-2-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/23/2013] [Indexed: 01/03/2023] Open
Abstract
Oxythiamine (OT), an analogue of anti-metabolite, can suppress the nonoxidative synthesis of ribose and induce cell apoptosis by causing a G1 phase arrest in vitro and in vivo. However, the molecular mechanism remains unclear yet. In the present study, a quantitative proteomic analysis using the modified SILAC method (mSILAC) was performed to determine the effect of metabolic inhibition on dynamic changes of protein expression in MIA PaCa-2 cancer cells treated with OT at various doses (0 μM, 5 μM, 50 μM and 500 μM) and time points (0 h, 12 h and 48 h). A total of 52 differential proteins in MIA PaCa-2 cells treated with OT were identified, including 14 phosphorylated proteins. Based on the dynamic expression pattern, these proteins were categorized in three clusters, straight down-regulation (cluster 1, 37% of total proteins), upright "V" shape expression pattern (cluster 2, 47.8% total), and downright "V" shape pattern (cluster 3, 15.2% total). Among them, Annexin A1 expression was significantly down-regulated by OT treatment in time-dependent manner, while no change of this protein was observed in OT dose-dependent fashion. Pathway analysis suggested that inhibition of transketolase resulted in changes of multiple cellular signaling pathways associated with cell apoptosis. The temporal expression patterns of proteins revealed that OT altered dynamics of protein expression in time-dependent fashion by suppressing phosphor kinase expression, resulting in cancer cell apoptosis. Results from this study suggest that interference of single metabolic enzyme activity altered multiple cellular signaling pathways.
Collapse
Affiliation(s)
- Jiarui Wang
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, 601 N 30th ST, Suite 6730, Omaha, NE 68131, USA
- Department of Respiratory Medicine, The Fifth Hospital of Dalian, Dalian 116027, China
| | - Xuemei Zhang
- The Medical College of Dalian University, Dalian Economic & Technological Development Zone, Dalian 116622, China
| | - Danjun Ma
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, 601 N 30th ST, Suite 6730, Omaha, NE 68131, USA
| | - Wai-Nang Paul Lee
- Metabolomics Core, UCLA Center of Excellence in Pancreatic Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jing Xiao
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, 601 N 30th ST, Suite 6730, Omaha, NE 68131, USA
| | - Yingchun Zhao
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, 601 N 30th ST, Suite 6730, Omaha, NE 68131, USA
| | - Vay Liang Go
- Metabolomics Core, UCLA Center of Excellence in Pancreatic Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Qi Wang
- Department of Respiratory Medicine, Dalian Medical University, Dalian 116027, China
| | - Yun Yen
- Molecular Clinical Pharmacology, City of Hope Cancer Center, Duarte, CA 90101, USA
| | - Robert Recker
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, 601 N 30th ST, Suite 6730, Omaha, NE 68131, USA
| | - Gary Guishan Xiao
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, 601 N 30th ST, Suite 6730, Omaha, NE 68131, USA
| |
Collapse
|
10
|
Todd JR, Becker TM, Kefford RF, Rizos H. Secondary c-Kit mutations confer acquired resistance to RTK inhibitors in c-Kit mutant melanoma cells. Pigment Cell Melanoma Res 2013; 26:518-26. [DOI: 10.1111/pcmr.12107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/11/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Jason R. Todd
- Westmead Institute for Cancer Research; University of Sydney at Westmead Millennium Institute, Westmead Hospital; Westmead; NSW; Australia
| | - Therese M. Becker
- Westmead Institute for Cancer Research; University of Sydney at Westmead Millennium Institute, Westmead Hospital; Westmead; NSW; Australia
| | | | - Helen Rizos
- Westmead Institute for Cancer Research; University of Sydney at Westmead Millennium Institute, Westmead Hospital; Westmead; NSW; Australia
| |
Collapse
|
11
|
Wörmann SM, Algül H. Risk Factors and Therapeutic Targets in Pancreatic Cancer. Front Oncol 2013; 3:282. [PMID: 24303367 PMCID: PMC3831165 DOI: 10.3389/fonc.2013.00282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/03/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sonja Maria Wörmann
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hana Algül
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- *Correspondence: Hana Algül, II. Medizinische Klinik, Klinikum rechts der Isar, Universität München, Ismaninger Str. 22, Munich 81675, Germany e-mail:
| |
Collapse
|
12
|
Todd JR, Scurr LL, Becker TM, Kefford RF, Rizos H. The MAPK pathway functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma. Oncogene 2012; 33:236-45. [PMID: 23246970 DOI: 10.1038/onc.2012.562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/05/2012] [Accepted: 10/16/2012] [Indexed: 12/16/2022]
Abstract
Stimulation of the c-Kit receptor tyrosine kinase has a critical role in the development and migration of melanocytes, and oncogenic c-Kit mutants contribute to the progression of some melanomas. c-Kit signalling activates the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways and their relative contribution to the activities of oncogenic and ligand-dependent c-Kit remains uncertain. We show that PI3K is a major regulator of MAPK activation in response to c-Kit activity and the dominant effector of c-Kit-driven melanocyte proliferation and melanoma survival. Nevertheless, inhibition of the PI3K pathway in c-Kit mutant melanoma cells did not replicate the apoptotic efficacy of the c-Kit inhibitor, imatinib mesylate. Instead, the simultaneous suppression of the PI3K and MAPK pathways promoted a strong synergistic apoptotic effect. These data indicate that MAPK functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma. Thus, the concurrent inhibition of PI3K and MAPK signalling is required to suppress oncogenic c-Kit activity and may provide an effective therapeutic strategy in c-Kit mutant melanomas.
Collapse
Affiliation(s)
- J R Todd
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - L L Scurr
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - T M Becker
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - R F Kefford
- 1] Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia [2] Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - H Rizos
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
13
|
Mizutani T, Yokoyama Y, Kokuryo T, Kawai K, Miyake T, Nagino M. Calcitonin gene-related peptide regulates the early phase of liver regeneration. J Surg Res 2012; 183:138-45. [PMID: 23218524 DOI: 10.1016/j.jss.2012.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 09/24/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the expression of calcitonin gene-related peptide (CGRP) and its role in the liver regeneration process after 70% hepatectomy (Hx). MATERIALS AND METHODS Wistar rats were divided into eight groups based on time after Hx. Remnant liver samples were collected serially 0 h, 1 h, 6 h, 12 h, 1 d, 2 d, 7 d, and 14 d after Hx (n = 6 for each time point). The expression level of the calcitonin/CGRP gene in the remnant liver was measured. Western bolts and immunohistochemistry were performed to determine the levels of CGRP in the regenerating liver. Furthermore, CGRP8-37 (a CGRP receptor antagonist) was used to examine the role of CGRP during liver regeneration. RESULTS A marked upregulation of the calcitonin/CGRP gene was observed immediately after Hx, and the protein levels of CGRP in the liver, which were measured by western blot and immunohistochemistry, also rapidly increased after Hx. The liver regeneration rate was significantly attenuated by an administration of CGRP8-37 2 d after Hx. The mitotic index was evaluated by histologic examination 1 and 2 d after Hx and was also significantly lower in the CGRP8-37 group. In addition, CGRP8-37 treatment inhibited the phosphorylation of extracellular-signal regulated kinase 1/2. The levels of early response genes, such as c-fos, c-jun, and c-myc, were also downregulated by CGRP8-37. CONCLUSION The calcitonin/CGRP gene may have an important role in the early phase of liver regeneration after Hx.
Collapse
Affiliation(s)
- Tetsushi Mizutani
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Iovanna J, Mallmann MC, Gonçalves A, Turrini O, Dagorn JC. Current knowledge on pancreatic cancer. Front Oncol 2012; 2:6. [PMID: 22655256 PMCID: PMC3356035 DOI: 10.3389/fonc.2012.00006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3-5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer.
Collapse
Affiliation(s)
- Juan Iovanna
- INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de LuminyMarseille, France
| | | | - Anthony Gonçalves
- Département d’Oncologie Médicale, Institut Paoli-CalmettesMarseille, France
| | - Olivier Turrini
- Département de Chirurgie Oncologique, Institut Paoli-CalmettesMarseille, France
| | - Jean-Charles Dagorn
- INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de LuminyMarseille, France
| |
Collapse
|
15
|
Kawai K, Yokoyama Y, Kokuryo T, Watanabe K, Kitagawa T, Nagino M. Inchinkoto, an Herbal Medicine, Exerts Beneficial Effects in the Rat Liver Under Stress With Hepatic Ischemia-Reperfusion and Subsequent Hepatectomy. Ann Surg 2010; 251:692-700. [DOI: 10.1097/sla.0b013e3181d50299] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Suzuki M, Abe A, Imagama S, Nomura Y, Tanizaki R, Minami Y, Hayakawa F, Ito Y, Katsumi A, Yamamoto K, Emi N, Kiyoi H, Naoe T. BCR-ABL-independent and RAS / MAPK pathway-dependent form of imatinib resistance in Ph-positive acute lymphoblastic leukemia cell line with activation of EphB4. Eur J Haematol 2009; 84:229-38. [PMID: 20002159 DOI: 10.1111/j.1600-0609.2009.01387.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We investigated the mechanism responsible for imatinib (IM) resistance in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL) cell lines. METHODS We established cell lines from a patient with Ph(+) ALL at the time of first diagnosis and relapsed phase and designated as NPhA1 and NPhA2, respectively. We also derived IM-resistant cells, NPhA2/STIR, from NPhA2 under gradually increasing IM concentrations. RESULTS NPhA1 was sensitive to IM (IC(50) 0.05 microm) and NPhA2 showed mild IM resistance (IC(50) 0.3 microm). NPhA2/STIR could be maintained in the presence of 10 microm IM. Phosphorylation of MEK and ERK was slightly elevated in NPhA2 and significantly elevated in NPhA2/STIR compared to NPhA1 cells. After treatment with IM, phosphorylation of MEK and ERK was not suppressed but rather increased in NPhA2 and NPhA2/STIR. Active RAS was also increased markedly in NPhA2/STIR after IM treatment. The expression of BCL-2 was increased in NPhA2 compared to NPhA1, but no further increase in NPhA2/STIR. Proliferation of NPhA2/STIR was significantly inhibited by a combination of MEK inhibitor and IM. Analysis of tyrosine phosphorylation status with a protein tyrosine kinase array showed increased phosphorylation of EphB4 in NPhA2/STIR after IM treatment. Although transcription of EphB4 was suppressed in NPhA1 and NPhA2 after IM treatment, it was not suppressed and its ligand, ephrinB2, was increased in NPhA2/STIR. Suppression of EphB4 transcripts by introducing short hairpin RNA into NPhA2/STIR partially restored their sensitivity to IM. CONCLUSIONS These results suggest a new mechanism of IM resistance mediated by the activation of RAS/MAPK pathway and EphB4.
Collapse
Affiliation(s)
- Momoko Suzuki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Patients with pancreatic cancer normally present with advanced disease that is lethal and notoriously difficult to treat. Survival has not improved dramatically despite routine use of chemotherapy and radiotherapy; this situation signifies an urgent need for novel therapeutic approaches. Over the past decade, a large number of studies have been published that aimed to target the molecular abnormalities implicated in pancreatic tumor growth, invasion, metastasis, angiogenesis and resistance to apoptosis. This research is of particular importance, as data suggest that a large number of genetic alterations affect only a few major signaling pathways and processes involved in pancreatic tumorigenesis. Although laboratory results of targeted therapies have been impressive, until now only erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has demonstrated modest survival benefit in combination with gemcitabine in a phase III clinical trial. Whilst the failures of targeted therapies in the clinical setting are discouraging, lessons have been learnt and new therapeutic targets that hold promise for the future management of the disease are continuously emerging. This Review describes some of the important developments and targeted agents for pancreatic cancer that have been tested in clinical trials.
Collapse
Affiliation(s)
- Han H Wong
- Centre for Molecular Oncology and Imaging, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | |
Collapse
|
18
|
Diculescu VC, Chiorcea-Paquim AM, Tugulea L, Vivan M, Oliveira-Brett AM. Interaction of imatinib with liposomes: Voltammetric and AFM characterization. Bioelectrochemistry 2009; 74:278-88. [DOI: 10.1016/j.bioelechem.2008.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 12/18/2022]
|