1
|
Sawai K, Goi T, Kimura Y, Koneri K. Reduction of Blood Oxidative Stress Following Colorectal Cancer Resection. Cancers (Basel) 2024; 16:3550. [PMID: 39456644 PMCID: PMC11505646 DOI: 10.3390/cancers16203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Colorectal cancer is a major global health burden, with surgical resection being the standard treatment aimed at curative tumor removal. Oxidative stress plays a crucial role in colorectal cancer progression and prognosis. This study hypothesized that physical removal of colorectal cancer, a primary source of oxidative stress, would reduce blood levels of reactive oxygen metabolite derivatives (d-ROMs), a marker of oxidative stress, and biologic antioxidant potential (BAP) levels, a marker of antioxidant potential. METHODS This study included 123 patients who underwent radical resection for colorectal cancer. d-ROM and BAP levels were measured before and one month after surgery. RESULTS The clinicopathological analysis showed a correlation between preoperative d-ROM levels and tumor size (p < 0.001). This study confirmed a significant reduction in d-ROM levels following tumor resection, indicating reduced systemic oxidative stress. The reduction was significant in stages II and III, but not in stage I. The d-ROM ratio before and after tumor resection was significantly higher in cases with positive lymph node metastasis and larger tumor size. BAP levels showed no significant changes post-surgery. CONCLUSIONS These results suggest that d-ROMs could serve as a valuable biomarker for monitoring tumor burden and surgical efficacy in patients with colorectal cancer.
Collapse
Affiliation(s)
- Katsuji Sawai
- First Department of Surgery, University of Fukui, Fukui 910-1193, Japan; (T.G.); (Y.K.); (K.K.)
| | | | | | | |
Collapse
|
2
|
Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
3
|
Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC-ECD Determination. Molecules 2022; 27:1620. [PMID: 35268721 PMCID: PMC8911600 DOI: 10.3390/molecules27051620] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Reactive oxygen species (ROS) are continuously produced in living cells due to metabolic and biochemical reactions and due to exposure to physical, chemical and biological agents. Excessive ROS cause oxidative stress and lead to oxidative DNA damage. Within ROS-mediated DNA lesions, 8-oxoguanine (8-oxoG) and its nucleotide 8-oxo-2'-deoxyguanosine (8-oxodG)-the guanine and deoxyguanosine oxidation products, respectively, are regarded as the most significant biomarkers for oxidative DNA damage. The quantification of 8-oxoG and 8-oxodG in urine, blood, tissue and saliva is essential, being employed to determine the overall effects of oxidative stress and to assess the risk, diagnose, and evaluate the treatment of autoimmune, inflammatory, neurodegenerative and cardiovascular diseases, diabetes, cancer and other age-related diseases. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) is largely employed for 8-oxoG and 8-oxodG determination in biological samples due to its high selectivity and sensitivity, down to the femtomolar range. This review seeks to provide an exhaustive analysis of the most recent reports on the HPLC-ECD determination of 8-oxoG and 8-oxodG in cellular DNA and body fluids, which is relevant for health research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemistry, 3004-535 Coimbra, Portugal;
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal
| |
Collapse
|
4
|
Cui X, Fu J. Urinary biomarkers for the early prediction of bronchopulmonary dysplasia in preterm infants: A pilot study. Front Pediatr 2022; 10:959513. [PMID: 36034571 PMCID: PMC9403535 DOI: 10.3389/fped.2022.959513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study investigated whether 8-hydroxy-2'-deoxyguanosine (8-OHdG) and N-terminal pro-brain natriuretic peptide (NT-proBNP) concentrations in the urine could predict bronchopulmonary dysplasia (BPD) in preterm infants. METHODS This prospective cohort study enrolled 165 preterm infants, of whom 70 developed BPD. We measured urinary 8-OHdG and NT-proBNP concentrations from day of life (DOL) 7 to 28. Then, we evaluated the prediction efficiency by receiver operating characteristic curves and assessed correlations between the two biomarkers. Finally, we identified the predictive risk factors for BPD by multivariable logistic regression. RESULTS 8-OHdG and NT-proBNP levels were significantly higher from DOL 7 to 28 in the BPD group than in the control group (P < 0.05). Additionally, the 8-OHdG level was positively correlated with the NT-proBNP level (r: 0.655-0.789, P < 0.001), and the 8-OHdG and NT-proBNP levels were positively correlated with mechanical ventilation duration and oxygen exposure time (r: 0.175-0.505, P < 0.05) from DOL 7 to 28. Furthermore, the 8-OHdG (DOL 14-28) and NT-proBNP (DOL 7-28) levels were significantly associated with BPD development (P < 0.05). CONCLUSION The urine 8-OHdG concentrations from DOL 14 to 28 and NT-proBNP concentrations from DOL 7 to 28 may be practical non-invasive predictors of BPD development in preterm infants.
Collapse
Affiliation(s)
- Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Weizman E, Levy O. The role of chromatin dynamics under global warming response in the symbiotic coral model Aiptasia. Commun Biol 2019; 2:282. [PMID: 31396562 PMCID: PMC6677750 DOI: 10.1038/s42003-019-0543-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
Extreme weather events frequency and scale are altered due to climate change. Symbiosis between corals and their endosymbiotic-dinoflagellates (Symbiodinium) is susceptible to these events and can lead to what is known as bleaching. However, there is evidence for coral adaptive plasticity in the role of epigenetic that have acclimated to high-temperature environments. We have implemented ATAC-seq and RNA-seq to study the cnidarian-dinoflagellate model Exaptasia pallida (Aiptasia) and expose the role of chromatin-dynamics in response to thermal-stress. We have identified 1309 genomic sites that change their accessibility in response to thermal changes. Moreover, apo-symbiotic Aiptasia accessible sites were enriched with NFAT, ATF4, GATA3, SOX14, and PAX3 motifs and expressed genes related to immunological pathways. Symbiotic Aiptasia accessible sites were enriched with NKx3-1, HNF4A, IRF4 motifs and expressed genes related to oxidative-stress pathways. Our work opens a new path towards understanding thermal-stress gene regulation in association with gene activity and chromatin-dynamics.
Collapse
Affiliation(s)
- Eviatar Weizman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| |
Collapse
|
6
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
7
|
The radiotherapy-sensitization effect of cantharidin: Mechanisms involving cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair. Pancreatology 2018; 18:822-832. [PMID: 30201439 DOI: 10.1016/j.pan.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/25/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cantharidin is an inhibitor of protein phosphatase 2 A (PP2A), and has been frequently used in clinical practice. In our previous study, we proved that cantharidin could arrest cell cycle in G2/M phase. Since cells at G2/M phase are sensitive to radiotherapy, in the present study, we investigated the radiotherapy-sesitization effect of cantharidin and the potential mechanisms involved. METHODS Cell growth was determined by MTT assay. Cell cycle was evaluated by flow cytometry. DNA damage was visualized by phospho-Histone H2A.X staining. Expression of mRNA was tested by microarray assay and real-time PCR. Clinical information and RNA-Seq expression data were derived from The Cancer Genome Atlas (TCGA) pancreatic cancer cohort. Survival analysis was obtained by Kaplan-Meier estimates. RESULTS Cantharidin strengthened the growth inhibition effect of irradiation. Cantharidin drove pancreatic cancer cells out of quiescent G0/G1 phase and arrested cell cycle in G2/M phase. As a result, cantharidin strengthened DNA damage which was induced by irradiation. Moreover, cantharidin repressed expressions of several genes participating in DNA damage repair, including UBE2T, RPA1, GTF2HH5, LIG1, POLD3, RMI2, XRCC1, PRKDC, FANC1, FAAP100, RAD50, RAD51D, RAD51B and DMC1, through JNK, ERK, PKC, p38 and/or NF-κB pathway dependent manners. Among these genes, worse overall survival for pancreatic cancer patients were associated with high mRNA expressions of POLD3, RMI2, PRKDC, FANC1, RAD50 and RAD51B, all of which could be down-regulated by cantharidin. CONCLUSION Cantharidin can sensitize pancreatic cancer cells to radiotherapy. Multiple mechanisms, including cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair, may be involved.
Collapse
|
8
|
Liu X, Wu J, Shi W, Shi W, Liu H, Wu X. Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells. Med Sci Monit 2018; 24:4295-4304. [PMID: 29933360 PMCID: PMC6045917 DOI: 10.12659/msm.908425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. Material/Methods The TK6 cells were incubated with various concentrations of Pb(Ac)2 for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect γ-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. Results The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. Conclusions Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells.
Collapse
Affiliation(s)
- Xiangquan Liu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jingying Wu
- Department of Preventive Medicine, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Wenyan Shi
- Department of Clinical Nutrition, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Wenhua Shi
- Department of Occupational Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Hekun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiaonan Wu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
9
|
Oxidative imbalance in low/intermediate-1-risk myelodysplastic syndrome patients: The influence of iron overload. Clin Biochem 2017; 50:911-917. [PMID: 28571970 DOI: 10.1016/j.clinbiochem.2017.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To assess the generation of reactive oxygen species (ROS) and the involvement of the main antioxidant pathways in low/intermediate-1-risk myelodysplastic syndromes (MDS) with iron overload (IOL). METHODS We examined the levels of superoxide anion (O2-), hydrogen peroxide (H2O2), antioxidants (glutathione, GSH; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx), mitochondrial membrane potential (ΔΨm), and by-products of oxidative damage (8-isoprostanes and 8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxo-dG) in 42 MDS patients (28 without IOL at diagnosis, and 14 who developed IOL) and 20 healthy subjects. RESULTS Patients with IOL showed higher O2- levels (39.4 MFI) than normal controls (22.7 MFI, p=0.0356) and patients at diagnosis (19.4 MFI, p=0.0049). Antioxidant systems, except SOD activity, exhibited significant changes in IOL patients with respect to controls (CAT: 7.1 vs 2.7nmol/ml/min, p=0.0023; GPx: 50.9 vs 76.4nmol/ml/min, p=0.0291; GSH: 50.2 vs 24.1 MFI, p=0.0060). Furthermore, mitochondrial dysfunction was only detected in IOL cases compared to controls (ΔΨm: 3.6 vs 6.4 MFI, p=0.0225). Finally, increased levels of 8-oxo-dG were detected in both groups of patients. CONCLUSION Oxidative stress is an important but non-static phenomenon in MDS disease, whose status is influenced by, among other factors, the presence of injurious iron.
Collapse
|
10
|
Chen YF, Liu H, Luo XJ, Zhao Z, Zou ZY, Li J, Lin XJ, Liang Y. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol 2017; 112:21-30. [PMID: 28325262 DOI: 10.1016/j.critrevonc.2017.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/27/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
As a clonal disease of hematopoietic stem cells (HSCs), the etiology and pathogenesis of leukemia is not fully understood. Recent studies suggest that cellular homeostasis plays an essential role in maintaining the function of HSCs because dysregulation of cellular homeostasis is one of the major factors underlying the malignant transformation of HSCs. Reactive oxygen species (ROS) and autophagy, key factors regulating cellular homeostasis, are commonly observed in the human body. Autophagy can be induced by ROS through a variety of signaling pathways, and conversely inhibits ROS-induced damage to cells and tissues. ROS and autophagy coordinate to maintain cellular homeostasis. Previous studies have demonstrated that both of ROS and autophagy play important roles in the development of leukemia and are closely involved in drug resistance in leukemia. Interference with cellular homeostasis by promoting programmed leukemia cell death via ROS and autophagy has been verified to be an efficient technique in the treatment of leukemia. However, the critical roles of ROS and autophagy in the development of leukemia are largely unknown. In this review, we summarize the roles of ROS and autophagy in the pathogenesis of leukemia, which may allow the identification of novel targets and drugs for the treatment of leukemia based on the regulation of HSCs homeostasis through ROS and autophagy.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Hao Liu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xin-Jing Luo
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhiqiang Zhao
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhen-You Zou
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Biochemistry Department of Purdue University, West Lafayette, IN 47906, USA
| | - Jing Li
- Department of Histology and Embryology, North SiChuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiao-Jing Lin
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Yong Liang
- Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
11
|
Sun XZ, Liao Y, Li W, Guo LM. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Neural Regen Res 2017; 12:953-958. [PMID: 28761429 PMCID: PMC5514871 DOI: 10.4103/1673-5374.208590] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.
Collapse
Affiliation(s)
- Xin-Zhi Sun
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ying Liao
- Department of Public Security Technology, Railway Police College, Zhengzhou, Henan Province, China.,Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Wei Li
- Department of Public Security Technology, Railway Police College, Zhengzhou, Henan Province, China
| | - Li-Mei Guo
- Department of Pathology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Kamal AM, El-Hefny NH, Hegab HM, El-Mesallamy HO. Expression of thioredoxin-1 (TXN) and its relation with oxidative DNA damage and treatment outcome in adult AML and ALL: A comparative study. ACTA ACUST UNITED AC 2016; 21:567-575. [PMID: 27158980 DOI: 10.1080/10245332.2016.1173341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Thioredoxin-1 (TXN) is a key element in the elimination of reactive oxygen species as well as activation of tumor suppressor genes and DNA repair enzymes. Several studies showed that TXN was over expressed in solid tumors and this was correlated to poorer prognosis. However, TXN expression has been insufficiently studied, particularly in newly diagnosed adult acute leukemia. METHODS This study was designed to evaluate the gene expression of TXN in acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) adult patients and to investigate its association with oxidative DNA damage. The expression of TXN was analyzed using quantitative reverse transcriptase-polymerase chain reaction while oxidative DNA damage was evaluated by measuring serum 8-hydroxy-2-deoxyguanosine (8-OHdG) by enzyme-linked immunosorbent assay and strand breaks by the comet assay. RESULTS We found that TXN was under expressed in both AML and ALL groups (P < 0.001 for both) as compared to the control group. Also TXN expression level was negatively correlated with serum 8-OHdG and tail moment in both AML (P = 0.042 and 0.047, respectively) and ALL (P < 0.001 and P = 0.02, respectively) while it showed no correlation with treatment outcome in either groups. DISCUSSION This study suggests that TXN expression is hindered in adult acute leukemia which augments oxidative DNA damage and hence mutagenesis. CONCLUSION This study provides a new insight into the pathogenesis of acute leukemia and suggests TXN as a new screening test for the risk for acute leukemia.
Collapse
Affiliation(s)
- Amany M Kamal
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Nadia H El-Hefny
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Hany M Hegab
- b Department of Clinical Hematology, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Hala O El-Mesallamy
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
13
|
Rozovski U, Hazan-Halevy I, Barzilai M, Keating MJ, Estrov Z. Metabolism pathways in chronic lymphocytic leukemia. Leuk Lymphoma 2015; 57:758-65. [PMID: 26643954 DOI: 10.3109/10428194.2015.1106533] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alterations in chronic lymphocytic leukemia (CLL) cell metabolism have been studied by several investigators. Unlike normal B lymphocytes or other leukemia cells, CLL cells, like adipocytes, store lipids and utilize free fatty acids (FFA) to produce chemical energy. None of the recently identified mutations in CLL directly affects metabolic pathways, suggesting that genetic alterations do not directly contribute to CLL cells' metabolic reprogramming. Conversely, recent data suggest that activation of STAT3 or downregulation of microRNA-125 levels plays a crucial role in the utilization of FFA to meet the CLL cells' metabolic needs. STAT3, known to be constitutively activated in CLL, increases the levels of lipoprotein lipase (LPL) that mediates lipoprotein uptake and shifts the CLL cells' metabolism towards utilization of FFA. Herein, we review the evidence for altered lipid metabolism, increased mitochondrial activity and formation of reactive oxygen species (ROS) in CLL cells, and discuss the possible therapeutic strategies to inhibit lipid metabolism pathways in patient with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- a Division of Hematology , Davidoff Cancer Center, Rabin Medical Center , Petach Tikva , Israel ;,b The Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Inbal Hazan-Halevy
- c Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, The Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv , Israel
| | - Merav Barzilai
- b The Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel ;,d Department of Hematology and Bone Marrow Transplantation , Tel-Aviv Sourasky Medical Center , Tel Aviv , Israel
| | - Michael J Keating
- e Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Zeev Estrov
- e Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
14
|
Agathanggelou A, Weston VJ, Perry T, Davies NJ, Skowronska A, Payne DT, Fossey JS, Oldreive CE, Wei W, Pratt G, Parry H, Oscier D, Coles SJ, Hole PS, Darley RL, McMahon M, Hayes JD, Moss P, Stewart GS, Taylor AMR, Stankovic T. Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica 2015; 100:1076-85. [PMID: 25840602 PMCID: PMC5004424 DOI: 10.3324/haematol.2014.115170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
Abstract
Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumors with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia.
Collapse
Affiliation(s)
| | | | - Tracey Perry
- School of Cancer Sciences, University of Birmingham
| | | | | | | | | | | | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham
| | - Guy Pratt
- School of Cancer Sciences, University of Birmingham Haematology Department, Birmingham Heartlands Hospital
| | - Helen Parry
- Haematology Department, Birmingham Heartlands Hospital
| | - David Oscier
- Haematology Department, Royal Bournemouth Hospital, Dorset
| | - Steve J Coles
- Department of Haematology, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff
| | - Paul S Hole
- Department of Haematology, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff
| | - Richard L Darley
- Department of Haematology, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff
| | | | - John D Hayes
- Medical Research Institute, University of Dundee, UK
| | - Paul Moss
- School of Cancer Sciences, University of Birmingham
| | | | | | | |
Collapse
|
15
|
Camargo CDQ, Borges DDS, de Oliveira PF, Chagas TR, Del Moral JAG, Durigon GS, Dias BV, Vieira AG, Gaspareto P, Trindade EBSDM, Nunes EA. Individuals with hematological malignancies before undergoing chemotherapy present oxidative stress parameters and acute phase proteins correlated with nutritional status. Nutr Cancer 2015; 67:463-71. [PMID: 25710080 DOI: 10.1080/01635581.2015.1004732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hematological malignancies present abnormal blood cells that may have altered functions. This study aimed to evaluate nutritional status, acute phase proteins, parameters of cell's functionality, and oxidative stress of patients with hematological malignancies, providing a representation of these variables at diagnosis, comparisons between leukemias and lymphomas and establishing correlations. Nutritional status, C-reactive protein (CRP), albumin, phagocytic capacity and superoxide anion production of mononuclear cells, lipid peroxidation and catalase activity in plasma were evaluated in 16 untreated subjects. Main diagnosis was acute leukemia (n = 9) and median body mass index (BMI) indicated overweight (25.6 kg/m(2)). Median albumin was below (3.2 g/dL) and CRP above (37.45 mg/L) the reference values. Albumin was inversely correlated with BMI (r = -0.53). Most patients were overweight before the beginning of treatment and had a high CRP/albumin ratio, which may indicate a nutrition inflammatory risk. BMI values correlated positively with lipid peroxidation and catalase activity. A strong correlation between catalase activity and lipid peroxidation was found (r = 0.75). Besides the elevated BMI, these patients also have elevated CRP values and unexpected relations between nutritional status and albumin, reinforcing the need for nutritional counseling during the course of chemotherapy, especially considering the correlations between oxidative stress parameters and nutritional status evidenced here.
Collapse
|
16
|
Collado R, Ivars D, Oliver I, Tormos C, Egea M, Miguel A, Sáez GT, Carbonell F. Increased oxidative damage associated with unfavorable cytogenetic subgroups in chronic lymphocytic leukemia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:686392. [PMID: 25054143 PMCID: PMC4099055 DOI: 10.1155/2014/686392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 12/12/2022]
Abstract
Oxidative stress contributes to genomic instability in chronic lymphocytic leukemia (CLL), but its relationship with the acquisition of specific chromosomal abnormalities is unknown. We recruited 55 untreated CLL patients and assessed 8-oxo-2'-deoxyguanosine (8-oxo-dG), glutathione, and malondialdehyde (MDA) levels, and we compared them among the cytogenetic subgroups established using fluorescence in situ hybridization (FISH). Significant increases in 8-oxo-dG and/or MDA were observed in patients with unfavorable cytogenetic aberrations (17p and 11q deletions) compared to the 13q deletion group. TP53 deletion patients exhibited a diminished DNA repair efficiency. Finally, cases with normal FISH also showed enhanced 8-oxo-dG, which could result in adverse outcomes.
Collapse
Affiliation(s)
- Rosa Collado
- Service of Hematology, CDB-University General Hospital of Valencia, Avenida Tres Cruces 2, 46014 Valencia, Spain
| | - David Ivars
- Department of Medicine, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Isabel Oliver
- Department of Medicine, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Carmen Tormos
- CIBERobn, Biomedical Network Research Centre in Physiopathology of Obesity and Nutrition, Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Mercedes Egea
- Service of Hematology, CDB-University General Hospital of Valencia, Avenida Tres Cruces 2, 46014 Valencia, Spain
| | - Amparo Miguel
- Service of Hematology, CDB-University General Hospital of Valencia, Avenida Tres Cruces 2, 46014 Valencia, Spain
| | - Guillermo T. Sáez
- CIBERobn, Biomedical Network Research Centre in Physiopathology of Obesity and Nutrition, Choupana s/n, 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez 13, 46010 Valencia, Spain
- Service of Clinical Analyses, CDB-University General Hospital of Valencia, Avenida Tres Cruces 2, 46014 Valencia, Spain
| | - Félix Carbonell
- Service of Hematology, CDB-University General Hospital of Valencia, Avenida Tres Cruces 2, 46014 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez 13, 46010 Valencia, Spain
| |
Collapse
|
17
|
Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood 2014; 123:2663-72. [DOI: 10.1182/blood-2013-10-532200] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Key Points
Increased mitochondrial ROS production, adaptation to intrinsic oxidative stress, and mitochondrial biogenesis are interconnected in CLL. Targeting the respiratory chain and promoting mitochondrial ROS lead to selective cytotoxicity in CLL cells.
Collapse
|
18
|
Bagan J, Sáez GT, Tormos MC, Gavalda-Esteve C, Bagan L, Leopoldo-Rodado M, Calvo J, Camps C. Oxidative stress in bisphosphonate-related osteonecrosis of the jaws. J Oral Pathol Med 2014; 43:371-7. [PMID: 24450511 DOI: 10.1111/jop.12151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To analyze whether oxidative stress (OS) changes are present in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ) versus controls. MATERIALS AND METHODS Oxidative stress was analyzed in serum and unstimulated saliva of three groups: Group 1 consisted of 24 patients who had been treated with intravenous bisphosphonates (ivBPs) and developed BRONJ, group 2 consisted of 20 patients who had received ivBPs and did not develop BRONJ, and group 3 comprised 17 control subjects. Reduced glutathione (GSH), malondialdehyde (MDA), oxidized glutathione (GSSG), and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxo-dG) levels, as well as the GSSG/GSH ratio, were measured. RESULTS Mean serum and saliva levels of MDA, GSSG, and 8-oxo-dG and the GSSG/GSH ratio were significantly higher in patients with BRONJ than in controls. We found no significant difference in OS according to BRONJ stage, sex, or location in the jaws. Logistic regression analysis revealed that the GSSG/GSH ratio was a significant factor predicting the development of BRONJ (P = 0.01). CONCLUSIONS Oxidative stress was detected in patients with BRONJ, and the GSSG/GSH ratio was the most significant OS variable found; it was a significant factor predicting the development of BRONJ.
Collapse
Affiliation(s)
- Jose Bagan
- Department of Oral Medicine, Valencia University, Valencia, Spain; Service of Stomatology and Maxillofacial Surgery, University General Hospital, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bagan J, Saez G, Tormos C, Gavalda C, Sanchis JM, Bagan L, Scully C. Oxidative stress and recurrent aphthous stomatitis. Clin Oral Investig 2014; 18:1919-23. [DOI: 10.1007/s00784-013-1181-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 12/26/2013] [Indexed: 01/20/2023]
|
20
|
Oxidative Stress and DNA Damage in Obesity-Related Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:5-17. [DOI: 10.1007/978-3-319-07320-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Is the oxidative DNA damage level of human lymphocyte correlated with the antioxidant capacity of serum or the base excision repair activity of lymphocyte? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:237583. [PMID: 24349611 PMCID: PMC3848254 DOI: 10.1155/2013/237583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 10/29/2013] [Indexed: 11/26/2022]
Abstract
A random screening of human blood samples from 24 individuals of nonsmoker was conducted to examine the correlation between the oxidative DNA damage level of lymphocytes and the antioxidant capacity of serum or the base excision repair (BER) activity of lymphocytes. The oxidative DNA damage level was measured with comet assay containing Fpg/Endo III cleavage, and the BER activity was estimated with a modified comet assay including nuclear extract of lymphocytes for enzymatic cleavage. Antioxidant capacity was determined with trolox equivalent antioxidant capacity assay. We found that though the endogenous DNA oxidation levels varied among the individuals, each individual level appeared to be steady for at least 1 month. Our results indicate that the oxidative DNA damage level is insignificantly or weakly correlated with antioxidant capacity or BER activity, respectively. However, lymphocytes from carriers of Helicobacter pylori (HP) or Hepatitis B virus (HBV) tend to give higher levels of oxidative DNA damage (P < 0.05). Though sera of this group of individuals show no particular tendency with reduced antioxidant capacity, the respective BER activities of lymphocytes are lower in average (P < 0.05). Thus, reduction of repair activity may be associated with the genotoxic effect of HP or HBV infection.
Collapse
|
22
|
Oxidative Stress and DNA Damage in Human Gastric Carcinoma: 8-Oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a Possible Tumor Marker. Int J Mol Sci 2013; 14:3467-86. [PMID: 23389043 PMCID: PMC3588053 DOI: 10.3390/ijms14023467] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/22/2022] Open
Abstract
We characterized the oxidative stress (OS) status by the levels of reduced/oxidized glutathione (GSH/GSSG), malondialdehyde (MDA) and the mutagenic base 8-oxo-7′8-dihydro-2′-deoxyguanosine (8-oxo-dG) in human gastric carcinoma (HGC) samples and compared the results with normal tissue from the same patients. We also analyzed 8-oxo-dG in peripheral mononuclear cells (PMNC) and urine from healthy control subjects and in affected patients in the basal state and one, three, six, nine and twelve months after tumor resection. The levels of DNA repair enzyme mRNA expression (hOGG1, RAD51, MUYTH and MTH1) were determined in tumor specimens and compared with normal mucosa. Tumor specimens exhibited increased levels of MDA and 8-oxo-dG compared with normal gastric tissue. GSH levels were also increased, while GSSG levels remained stable. DNA repair enzyme mRNA expression was induced in the tumor tissues. Levels of 8-oxo-dG were significantly elevated in both urine and PMNC of gastric cancer patients compared with healthy controls. After gastrectomy, the levels of the damaged base in urine and PMNC decreased progressively to values close to those found in the healthy population. The high levels of 8-oxo-dG in urine may be related to the increased induction of DNA repair activity in tumor tissue, and the changes observed after tumor resection support its potential use as a tumor marker.
Collapse
|
23
|
Mattick JS, Yang Q, Orman MA, Ierapetritou MG, Berthiaume F, Androulakis IP. Long-term gene expression profile dynamics following cecal ligation and puncture in the rat. J Surg Res 2012; 178:431-42. [DOI: 10.1016/j.jss.2012.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|