1
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
2
|
Wang Y, Xia Z, Wang W, Zhang J, Hu C, Wang F, Zhu F, Fang LS, Wang J, Li X. FoxC1 activates Notch3 signaling to promote the inflammatory phenotype of keloid fibroblasts and aggravates keloid. Exp Cell Res 2025; 444:114402. [PMID: 39753198 DOI: 10.1016/j.yexcr.2024.114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Keloids are disfiguring proliferative scars, and their pathological mechanisms are still unclear. We have previously established that FoxC1 plays a significant role in rheumatoid arthritis and osteoarthritis, but its molecular mechanisms in pathological scar formation remain elusive. In this study, we analyzed keloid tissue characteristics using HE staining and immunohistochemistry, revealing abnormal expression of FoxC1 and Notch3 in keloids. Lentiviral modulation of FoxC1 and Notch3 demonstrated that they promote the expression of α-SMA, fibronectin, collagen I, and Hes-1, enhancing the proliferation, migration, invasion, and cytokine production of keloid fibroblasts (KFs) while inhibiting apoptosis. Co-immunoprecipitation (CO-IP), dual-luciferase reporter assays, and chromatin immunoprecipitation (ChIP) confirmed that FoxC1 can directly bind to the Notch3 promoter and enhance its transcription. Additionally, in vivo, overexpression of FoxC1 and Notch3 promoted keloid formation. In summary, our research highlights the critical regulatory role of FoxC1 in keloid formation through Notch3 activation, potentially offering new therapeutic targets for preventing scar formation.
Collapse
Affiliation(s)
- Yin Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Zhengguo Xia
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Wengting Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Jingsong Zhang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Chao Hu
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Fan Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Fei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China
| | - Lin Sen Fang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China.
| | - Jun Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China.
| | - Xiaojing Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China.
| |
Collapse
|
3
|
Zhou K, Liu Y, Yuan S, Zhou Z, Ji P, Huang Q, Wen F, Li Q. Signalling in pancreatic cancer: from pathways to therapy. J Drug Target 2023; 31:1013-1026. [PMID: 37869884 DOI: 10.1080/1061186x.2023.2274806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Pancreatic cancer (PC) is a common malignant tumour in the digestive system. Due to the lack of sensitive diagnostic markers, strong metastasis ability, and resistance to anti-cancer drugs, the prognosis of PC is inferior. In the past decades, increasing evidence has indicated that the development of PC is closely related to various signalling pathways. With the exploration of RAS-driven, epidermal growth factor receptor, Hedgehog, NF-κB, TGF-β, and NOTCH signalling pathways, breakthroughs have been made to explore the mechanism of pancreatic carcinogenesis, as well as the novel therapies. In this review, we discussed the signalling pathways involved in PC and summarised current targeted agents in the treatment of PC. Furthermore, opportunities and challenges in the exploration of potential therapies targeting signalling pathways were also highlighted.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingping Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Ziyu Zhou
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Pengfei Ji
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Qianhan Huang
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lin YC, Hou YC, Wang HC, Shan YS. New insights into the role of adipocytes in pancreatic cancer progression: paving the way towards novel therapeutic targets. Theranostics 2023; 13:3925-3942. [PMID: 37554282 PMCID: PMC10405844 DOI: 10.7150/thno.82911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies across the world, which is due to delayed diagnosis and resistance to current therapies. The interactions between pancreatic tumor cells and their tumor microenvironment (TME) allow cancer cells to escape from anti-cancer therapies, leading to difficulties in treating PC. With endocrine function and lipid storage capacity, adipose tissue can maintain energy homeostasis. Direct or indirect interaction between adipocytes and PC cells leads to adipocyte dysfunction characterized by morphological change, fat loss, abnormal adipokine secretion, and fibroblast-like transformation. Various adipokines released from dysfunctional adipocytes have been reported to promote proliferation, invasion, metastasis, stemness, and chemoresistance of PC cells via different mechanisms. Additional lipid outflow from adipocytes can be taken into the TME and thus alter the metabolism in PC cells and surrounding stromal cells. Besides, the trans-differentiation potential enables adipocytes to turn into various cell types, which may give rise to an inflammatory response as well as extracellular matrix reorganization to modulate tumor burden. Understanding the molecular basis behind the protumor functions of adipocytes in PC may offer new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Medical Imaging Center, Innovation Headquarter, National Cheng Kung University; Tainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
5
|
Zhao Y, Qin C, Zhao B, Wang Y, Li Z, Li T, Yang X, Wang W. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res 2023; 42:122. [PMID: 37173787 PMCID: PMC10182699 DOI: 10.1186/s13046-023-02693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies worldwide. Increasing evidence suggests that the capacity for self-renewal, proliferation, and differentiation of pancreatic cancer stem cells (PCSCs) contribute to major challenges with current PC therapies, causing metastasis and therapeutic resistance, leading to recurrence and death in patients. The concept that PCSCs are characterized by their high plasticity and self-renewal capacities is central to this review. We focused specifically on the regulation of PCSCs, such as stemness-related signaling pathways, stimuli in tumor cells and the tumor microenvironment (TME), as well as the development of innovative stemness-targeted therapies. Understanding the biological behavior of PCSCs with plasticity and the molecular mechanisms regulating PC stemness will help to identify new treatment strategies to treat this horrible disease.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiaoying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
6
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
7
|
Eptaminitaki GC, Zaravinos A, Stellas D, Panagopoulou M, Karaliota S, Baltsavia I, Iliopoulos I, Chatzaki E, Iliopoulos D, Baritaki S. Genome-Wide Analysis of lncRNA-mRNA Co-Expression Networks in CD133+/CD44+ Stem-like PDAC Cells. Cancers (Basel) 2023; 15:cancers15041053. [PMID: 36831395 PMCID: PMC9954787 DOI: 10.3390/cancers15041053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133-/CD44- cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with "hub" SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Basic and Translational Cancer Research Center (BTCRC), Genomics and Systems Biology Laboratory, Cancer Genetics, Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Sevasti Karaliota
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismini Baltsavia
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Iliopoulos
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | | | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence: ; Tel.: +30-281-039-4727
| |
Collapse
|
8
|
Chung WC, Xu K. Notch signaling pathway in pancreatic tumorigenesis. Adv Cancer Res 2023. [DOI: 10.1016/bs.acr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
9
|
Mayani H, Chávez-González A, Vázquez-Santillan K, Contreras J, Guzman ML. Cancer Stem Cells: Biology and Therapeutic Implications. Arch Med Res 2022; 53:770-784. [PMID: 36462951 DOI: 10.1016/j.arcmed.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
It is well recognized that most cancers derive and progress from transformation and clonal expansion of a single cell that possesses stem cell properties, i.e., self-renewal and multilineage differentiation capacities. Such cancer stem cells (CSCs) are usually present at very low frequencies and possess properties that make them key players in tumor development. Indeed, besides having the ability to initiate tumor growth, CSCs drive tumor progression and metastatic dissemination, are resistant to most cancer drugs, and are responsible for cancer relapse. All of these features make CSCs attractive targets for the development of more effective oncologic treatments. In the present review article, we have summarized recent advances in the biology of CSCs, including their identification through their immunophenotype, and their physiology, both in vivo and in vitro. We have also analyzed some molecular markers that might become targets for developing new therapies aiming at hampering CSCs regeneration and cancer relapse.
Collapse
Affiliation(s)
- Hector Mayani
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico.
| | - Antonieta Chávez-González
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico
| | | | - Jorge Contreras
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Monica L Guzman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Yehya AH, Asif M, Abdul Majid AM, Oon CE. Polymolecular botanical drug of Orthosiphon stamineus extract (C5OSEW5050ESA) as a complementary therapy to overcome gemcitabine resistance in pancreatic cancer cells. J Tradit Complement Med 2022; 13:39-50. [PMID: 36685076 PMCID: PMC9845648 DOI: 10.1016/j.jtcme.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background and aim Gemcitabine remains the cornerstone of pancreatic cancer treatment, despite exhibiting a modest effect on patient survival due to the development of drug resistance. Nuvastatic™ polymolecular botanical drug Orthosiphon stamineus (O. stamineus) is a folklore Asian herbal medicine that is used for the treatment of a variety of ailments. However, little is known about the mechanism of actions of the Nuvastatic™ polymolecular botanical drug of O. stamineus as a complementary therapy in resistant pancreatic cancer. It is postulated that the proprietary O. stamineus extract formulation (ID: C5EOSEW5050ESA) in Nuvastatic™ may sensitise resistant pancreatic cancer cells to gemcitabine. This study was conducted to assess the cytotoxic activity and synergistic effects of C5EOSEW5050ESA in gemcitabine-resistant pancreatic cancer cells. Experimental procedure The effects of C5EOSEW5050ESA treatment on cell viability, multidrug-resistant genes, epithelial-mesenchymal transition, cellular senescence, cell death, and Notch signalling pathway were evaluated in gemcitabine-resistant Panc-1 cells. Results and conclusion C5EOSEW5050ESA sensitised gemcitabine resistant cells towards C5EOSEW5050ESA-gemcitabine combination treatment by reducing the expression of multidrug-resistant genes and epithelial-mesenchymal transition markers in gemcitabine-resistant cells compared to the control group, possibly through the inhibition of Notch signalling. This study provides valuable insight into using C5EOSEW5050ESA as a potential complementary treatment for resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ashwaq H.S. Yehya
- Vatche and Tamar Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA,Institute for Research in Molecular Medicine (INFORMM), Unversiti Sains Malaysia, Penang, 11800, Malaysia
| | - Muhammad Asif
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Amin M.S. Abdul Majid
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, 0200, Australia
| | - Chern E. Oon
- Institute for Research in Molecular Medicine (INFORMM), Unversiti Sains Malaysia, Penang, 11800, Malaysia,Corresponding author.
| |
Collapse
|
11
|
Molecular pathogenesis of desmoid tumor and the role of γ-secretase inhibition. NPJ Precis Oncol 2022; 6:62. [PMID: 36068332 PMCID: PMC9448813 DOI: 10.1038/s41698-022-00308-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Desmoid tumor (DT) is a rare, soft tissue neoplasm associated with an unpredictable clinical course. Although lacking metastatic potential, DT is often locally aggressive and invasive, causing significant morbidity. Both sporadic DT and familial adenomatous polyposis (FAP)-associated DT are linked to constitutive activation of the Wnt signaling pathway with mutations in the β-catenin oncogene CTNNB1 or the tumor suppressor gene APC, respectively. Cross-talk between the Notch and Wnt pathways, as well as activation of the Notch pathway resulting from dysregulation of the Wnt pathway, suggest a possible therapeutic target for DT. Due to the role γ-secretase plays in Notch signaling through cleavage of the Notch intracellular domain (with subsequent translocation to the nucleus to activate gene transcription), γ-secretase inhibitors (GSIs) have emerged as a potential treatment for DT. Two GSIs, nirogacestat (PF-03084014) and AL102 are in later-stage clinical development; nirogacestat is being evaluated in a phase 3, randomized, placebo-controlled trial while AL102 is being evaluated in a phase 2/3, dose-finding (part A) and placebo-controlled (part B) trial. This review summarizes current understanding of the molecular pathogenesis of DT focusing on dysregulation of the Wnt signaling pathway, crosstalk with the Notch pathway, and the potential therapeutic role for GSIs in DT.
Collapse
|
12
|
Abedin Y, Gabrilovich S, Alpert E, Rego E, Begum S, Zhao Q, Heller D, Einstein MH, Douglas NC. Gamma Secretase Inhibitors as Potential Therapeutic Targets for Notch Signaling in Uterine Leiomyosarcoma. Int J Mol Sci 2022; 23:ijms23115980. [PMID: 35682660 PMCID: PMC9180633 DOI: 10.3390/ijms23115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Uterine leiomyosarcoma (uLMS) is a rare and aggressive cancer with few effective therapeutics. The Notch signaling pathway is evolutionarily conserved with oncogenic properties, but it has not been well studied in uLMS. The purpose of our study was to determine expression of Notch family genes and proteins and to investigate the therapeutic effect of γ-secretase inhibitors (GSIs), indirect inhibitors of Notch signaling, in uLMS. We determined expression of Notch genes and proteins in benign uterine smooth muscle tissue, fibroids, and uLMS samples by immunostaining and in two uLMS cell lines, SK-UT-1B (uterine primary) and SK-LMS-1 (vulvar metastasis) by RT-PCR, Western blot and immunostaining. We exposed our cell lines to GSIs, DAPT and MK-0752, and measured expression of HES1, a downstream effector of Notch. Notch proteins were differentially expressed in uLMS. Expression of NOTCH3 and NOTCH4 was higher in uLMS samples than in benign uterine smooth muscle and fibroids. Expression of NOTCH4 was higher in SK-LMS-1 compared to SK-UT-1B. Exposure of SK-UT-1B and SK-LMS-1 to DAPT and MK-0752 decreased expression of HES1 and decreased uLMS cell viability in a dose- and time-dependent manner that was unique to each GSI. Our findings suggest that GSIs are potential therapeutics for uLMS, albeit with limited efficacy.
Collapse
Affiliation(s)
- Yasmin Abedin
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
- Correspondence:
| | - Sofia Gabrilovich
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
| | - Emily Alpert
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
| | - Erica Rego
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
| | - Salma Begum
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
| | - Debra Heller
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Mark H. Einstein
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; (S.G.); (E.A.); (E.R.); (S.B.); (Q.Z.); (D.H.); (M.H.E.); (N.C.D.)
| |
Collapse
|
13
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
14
|
Temporal Bone Squamous Cell Carcinoma: Molecular Markers Involved in Carcinogenesis, Behavior, and Prognosis: A Systematic Review. Int J Mol Sci 2022; 23:ijms23094536. [PMID: 35562926 PMCID: PMC9100168 DOI: 10.3390/ijms23094536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
Temporal bone squamous cell carcinoma (TBSCC) is an uncommon malignancy with a poor prognosis in advanced cases. The dismal outcome of advanced TBSSC cases is largely due to the cancer’s local aggressiveness and the complex anatomy of this region, as well as to persistent pitfalls in diagnosis and treatment. Molecular changes occur in malignancies before any morphological changes become visible, and are responsible for the disease’s clinical behavior. The main purpose of this critical systematic review is to assess the level of knowledge on the molecular markers involved in the biology, behavior, and prognosis of TBSCC. A search (updated to March 2022) was run in PubMed, Scopus, and Web of Science electronic databases without publication date limits for studies investigating molecular markers in cohorts of patients with primary TBSCC. The search terms used were: “temporal bone” OR “external auditory canal” OR “ear”, AND “cancer” OR “carcinoma” OR “malignancy”. We preliminarily decided not to consider series with less than five cases. Twenty-four case series of TBSCC were found in which different analytical techniques had been used to study the role of several biomarkers. In conclusion, only very limited information on the prognostic role of molecular markers in TBSCC are currently available; prospective, multi-institutional, international prognostic studies should be planned to identify the molecular markers involved in the clinical behavior and prognosis of TBSCC. A further, more ambitious goal would be to find targets for therapeutic agents able to improve disease-specific survival in patients with advanced TBSCC.
Collapse
|
15
|
Guo L, Li S, Yan X, Shen L, Xia D, Xiong Y, Dou Y, Mi L, Ren Y, Xiang Y, Ren D, Wang J, Liang T. A comprehensive multi-omics analysis reveals molecular features associated with cancer via RNA cross-talks in the Notch signaling pathway. Comput Struct Biotechnol J 2022; 20:3972-3985. [PMID: 35950189 PMCID: PMC9340535 DOI: 10.1016/j.csbj.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022] Open
Abstract
Many Notch genes are identified as cancer-associated genes with an important role in tumorigenesis. Dynamic expression patterns are associated with the Notch activity that are largely regulated by multiple ncRNAs. Cross-talks among diverse RNAs are crucial in cancers via ceRNA network. The Notch pathway shows a robust prognostic ability via integrating multi-omics features as well as their targets. The Notch pathway is also correlated with immune infiltration and maybe available cancer treatment drug targets.
The Notch signaling has an important role in multiple cellular processes and is related to carcinogenic process. To understand the potential molecular features of the crucial Notch pathway, a comprehensive multi-omics analysis is performed to explore its contributions in cancer, mainly including analysis of somatic mutation landscape, pan-cancer expression, ncRNA regulation and potential prognostic power. The screened 22 Notch core genes are relative stable in DNA variation. Dynamic expression patterns are associated with the Notch activity, which are mainly regulated by multiple ncRNAs via interactions of ncRNA:mRNA and ceRNA networks. The Notch pathway shows a potential prognostic ability through integrating multi-omics features as well as their targets, and it is correlated with immune infiltration and maybe available drug targets, implying the potential role in individualized treatment. Collectively, all of these findings contribute to exploring crucial role of the key pathway in cancer pathophysiology and gaining mechanistic insights into cross-talks among RNAs and biological pathways, which indicates the possible application of the well-conserved Notch signaling pathway in precision medicine.
Collapse
|
16
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
17
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
18
|
Chen M, Yang S, Wu Y, Zhao Z, Zhai X, Dong D. High temperature requirement A1 in cancer: biomarker and therapeutic target. Cancer Cell Int 2021; 21:513. [PMID: 34563186 PMCID: PMC8466973 DOI: 10.1186/s12935-021-02203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
As the life expectancy of the population increases worldwide, cancer is becoming a substantial public health problem. Considering its recurrence and mortality rates, most cancer cases are difficult to cure. In recent decades, a large number of studies have been carried out on different cancer types; unfortunately, tumor incidence and mortality have not been effectively improved. At present, early diagnostic biomarkers and accurate therapeutic strategies for cancer are lacking. High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease that is also a chymotrypsin-like protease family member originally discovered in bacteria and later discovered in mammalian systems. HtrA1 gene expression is decreased in diverse cancers, and it may play a role as a tumor suppressor for promoting the death of tumor cells. This work aimed to examine the role of HtrA1 as a cell type-specific diagnostic biomarker or as an internal and external regulatory factor of diverse cancers. The findings of this study will facilitate the development of HtrA1 as a therapeutic target.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China
| | - Yu Wu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zirui Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| |
Collapse
|
19
|
Kafita D, Nkhoma P, Zulu M, Sinkala M. Proteogenomic analysis of pancreatic cancer subtypes. PLoS One 2021; 16:e0257084. [PMID: 34506537 PMCID: PMC8432812 DOI: 10.1371/journal.pone.0257084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer remains a significant public health problem with an ever-rising incidence of disease. Cancers of the pancreas are characterised by various molecular aberrations, including changes in the proteomics and genomics landscape of the tumour cells. Therefore, there is a need to identify the proteomic landscape of pancreatic cancer and the specific genomic and molecular alterations associated with disease subtypes. Here, we carry out an integrative bioinformatics analysis of The Cancer Genome Atlas dataset, including proteomics and whole-exome sequencing data collected from pancreatic cancer patients. We apply unsupervised clustering on the proteomics dataset to reveal the two distinct subtypes of pancreatic cancer. Using functional and pathway analysis based on the proteomics data, we demonstrate the different molecular processes and signalling aberrations of the pancreatic cancer subtypes. In addition, we explore the clinical characteristics of these subtypes to show differences in disease outcome. Using datasets of mutations and copy number alterations, we show that various signalling pathways previously associated with pancreatic cancer are altered among both subtypes of pancreatic tumours, including the Wnt pathway, Notch pathway and PI3K-mTOR pathways. Altogether, we reveal the proteogenomic landscape of pancreatic cancer subtypes and the altered molecular processes that can be leveraged to devise more effective treatments.
Collapse
Affiliation(s)
- Doris Kafita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Mildred Zulu
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Musalula Sinkala
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- * E-mail:
| |
Collapse
|
20
|
Notch signaling inhibitor and anti-PD-L1 antibody combination therapies decelerate tumor progression in pancreatic cancer. JOURNAL OF PANCREATOLOGY 2021. [DOI: 10.1097/jp9.0000000000000073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
22
|
Kaur J, Singh P, Enzler T, Sahai V. Emerging antibody therapies for pancreatic adenocarcinoma: a review of recent phase 2 trials. Expert Opin Emerg Drugs 2021; 26:103-129. [PMID: 33734833 DOI: 10.1080/14728214.2021.1905795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Pancreatic adenocarcinoma is now the third-leading cause of cancer-related deaths in the US which can be attributed to rising incidence, diagnosis at advanced stages and early development of metastasis. Systemic therapy remains palliative with early development of resistance possibly related to the constitutive activation of 'undruggable' KRAS, immunosuppressive microenvironment, and intense desmoplasia. The advancements in molecular biology has led to the development and investigation of targeted and immune therapeutics.Areas covered: This study provides a comprehensive review of the literature to further the understanding of molecular targets with their respective antibody-based therapies in clinical development in pancreatic cancer. PubMed was systematically searched for English-language articles discussing antibody-based therapies under phase 2 clinical trial investigation in pancreatic adenocarcinoma.Expert opinion: PDAC remains highly resistant to chemotherapy with no significant improvement in survival for patients with advanced or metastatic cancer. Unfortunately, the majority of the antibody-based targeted and immune therapeutics have failed to meet their primary efficacy endpoints in early phase trials. However, there are a few promising antibody-based drugs with intriguing preliminary data that merit further investigation, while many more continue to be developed and investigated preclinically, and in early phase trials.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Internal Medicine, Saint Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Paramveer Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Thomas Enzler
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
McCaw TR, Inga E, Chen H, Jaskula‐Sztul R, Dudeja V, Bibb JA, Ren B, Rose JB. Gamma Secretase Inhibitors in Cancer: A Current Perspective on Clinical Performance. Oncologist 2021; 26:e608-e621. [PMID: 33284507 PMCID: PMC8018325 DOI: 10.1002/onco.13627] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
Gamma secretase inhibitors (GSIs), initially developed as Alzheimer's therapies, have been repurposed as anticancer agents given their inhibition of Notch receptor cleavage. The success of GSIs in preclinical models has been ascribed to induction of cancer stem-like cell differentiation and apoptosis, while also impairing epithelial-to-mesenchymal transition and sensitizing cells to traditional chemoradiotherapies. The promise of these agents has yet to be realized in the clinic, however, as GSIs have failed to demonstrate clinical benefit in most solid tumors with the notable exceptions of CNS malignancies and desmoid tumors. Disappointing clinical performance to date reflects important questions that remain to be answered. For example, what is the net impact of these agents on antitumor immune responses, and will they require concurrent targeting of tumor-intrinsic compensatory pathways? Addressing these limitations in our current understanding of GSI mechanisms will undoubtedly facilitate their rational incorporation into combinatorial strategies and provide a valuable tool with which to combat Notch-dependent cancers. In the present review, we provide a current understanding of GSI mechanisms, discuss clinical performance to date, and suggest areas for future investigation that might maximize the utility of these agents. IMPLICATIONS FOR PRACTICE: The performance of gamma secretase inhibitors (GSIs) in clinical trials generally has not reflected their encouraging performance in preclinical studies. This review provides a current perspective on the clinical performance of GSIs across various solid tumor types alongside putative mechanisms of antitumor activity. Through exploration of outstanding gaps in knowledge as well as reasons for success in certain cancer types, the authors identify areas for future investigation that will likely enable incorporation of GSIs into rational combinatorial strategies for superior tumor control and patient outcomes.
Collapse
Affiliation(s)
- Tyler R. McCaw
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Evelyn Inga
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Herbert Chen
- Breast & Endocrine Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Renata Jaskula‐Sztul
- Breast & Endocrine Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vikas Dudeja
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James A. Bibb
- Gastrointestinal Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Bin Ren
- Vascular Surgery & Endovascular Therapy, Department of Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - J. Bart Rose
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
24
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
26
|
Unlocking the Secrets of Cancer Stem Cells with γ-Secretase Inhibitors: A Novel Anticancer Strategy. Molecules 2021; 26:molecules26040972. [PMID: 33673088 PMCID: PMC7917912 DOI: 10.3390/molecules26040972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
The dysregulation of Notch signaling is associated with a wide variety of different human cancers. Notch signaling activation mostly relies on the activity of the γ-secretase enzyme that cleaves the Notch receptors and releases the active intracellular domain. It is well-documented that γ-secretase inhibitors (GSIs) block the Notch activity, mainly by inhibiting the oncogenic activity of this pathway. To date, several GSIs have been introduced clinically for the treatment of various diseases, such as Alzheimer's disease and various cancers, and their impacts on Notch inhibition have been found to be promising. Therefore, GSIs are of great interest for cancer therapy. The objective of this review is to provide a systematic review of in vitro and in vivo studies for investigating the effect of GSIs on various cancer stem cells (CSCs), mainly by modulation of the Notch signaling pathway. Various scholarly electronic databases were searched and relevant studies published in the English language were collected up to February 2020. Herein, we conclude that GSIs can be potential candidates for CSC-targeting therapy. The outcome of our study also indicates that GSIs in combination with anticancer drugs have a greater inhibitory effect on CSCs.
Collapse
|
27
|
Thakur G, Kumar R, Kim SB, Lee SY, Lee SL, Rho GJ. Therapeutic Status and Available Strategies in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9020178. [PMID: 33670230 PMCID: PMC7916947 DOI: 10.3390/biomedicines9020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India;
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
- Correspondence:
| |
Collapse
|
28
|
Guo Q, Li X, Cui MN, Sun JL, Ji HY, Ni BB, Yan MX. CD13: A Key Player in Multidrug Resistance in Cancer Chemotherapy. Oncol Res 2020; 28:533-540. [PMID: 32532363 PMCID: PMC7751223 DOI: 10.3727/096504020x15919605976853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most serious diseases that are harmful to human health. Systemic chemotherapy is an optimal therapeutic strategy for the treatment of cancer, but great difficulty has been encountered in its administration in the form of multidrug resistance (MDR). As an enzyme on the outer cell surface, CD13 is documented to be involved in the MDR development of tumor cells. In this review, we will focus on the role of CD13 in MDR generation based on the current evidence.
Collapse
Affiliation(s)
- Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Meng-Na Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Jia-Lin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Hong-Yan Ji
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Bei-Bei Ni
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Mei-Xing Yan
- Department of Pharmacy, Qingdao Women and Childrens HospitalQingdao, ShandongP.R. China
| |
Collapse
|
29
|
López-Nieva P, González-Sánchez L, Cobos-Fernández MÁ, Córdoba R, Santos J, Fernández-Piqueras J. More Insights on the Use of γ-Secretase Inhibitors in Cancer Treatment. Oncologist 2020; 26:e298-e305. [PMID: 33191568 PMCID: PMC7873333 DOI: 10.1002/onco.13595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
The NOTCH1 gene encodes a transmembrane receptor protein with activating mutations observed in many T‐cell acute lymphoblastic leukemias (T‐ALLs) and lymphomas, as well as in other tumor types, which has led to interest in inhibiting NOTCH1 signaling as a therapeutic target in cancer. Several classes of Notch inhibitors have been developed, including monoclonal antibodies against NOTCH receptors or ligands, decoys, blocking peptides, and γ‐secretase inhibitors (GSIs). GSIs block a critical proteolytic step in NOTCH activation and are the most widely studied. Current treatments with GSIs have not successfully passed clinical trials because of side effects that limit the maximum tolerable dose. Multiple γ‐secretase–cleavage substrates may be involved in carcinogenesis, indicating that there may be other targets for GSIs. Resistance mechanisms may include PTEN inactivation, mutations involving FBXW7, or constitutive MYC expression conferring independence from NOTCH1 inactivation. Recent studies have suggested that selective targeting γ‐secretase may offer an improved efficacy and toxicity profile over the effects caused by broad‐spectrum GSIs. Understanding the mechanism of GSI‐induced cell death and the ability to accurately identify patients based on the activity of the pathway will improve the response to GSI and support further investigation of such compounds for the rational design of anti‐NOTCH1 therapies for the treatment of T‐ALL. Implications for Practice γ‐secretase has been proposed as a therapeutic target in numerous human conditions, including cancer. A better understanding of the structure and function of the γ‐secretase inhibitor (GSI) would help to develop safe and effective γ‐secretase–based therapies. The ability to accurately identify patients based on the activity of the pathway could improve the response to GSI therapy for the treatment of cancer. Toward these ends, this study focused on γ‐secretase inhibitors as a potential therapeutic target for the design of anti‐NOTCH1 therapies for the treatment of T‐cell acute lymphoblastic leukemias and lymphomas. Understanding the mechanism of γ‐secretase inhibitor (GSI)–induced cell death and the ability to accurately identify patients based on the activity of the pathway could improve the response to GSI therapy for the treatment of cancer. This article focuses on γ‐secretase inhibitors as a potential therapeutic target to treat T‐cell acute lymphoblastic leukemias and lymphomas.
Collapse
Affiliation(s)
- Pilar López-Nieva
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura González-Sánchez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - María Ángeles Cobos-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain
| | | | - Javier Santos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José Fernández-Piqueras
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
30
|
Nisar S, Hashem S, Macha MA, Yadav SK, Muralitharan S, Therachiyil L, Sageena G, Al-Naemi H, Haris M, Bhat AA. Exploring Dysregulated Signaling Pathways in Cancer. Curr Pharm Des 2020; 26:429-445. [PMID: 31939726 DOI: 10.2174/1381612826666200115095937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Cancer cell biology takes advantage of identifying diverse cellular signaling pathways that are disrupted in cancer. Signaling pathways are an important means of communication from the exterior of cell to intracellular mediators, as well as intracellular interactions that govern diverse cellular processes. Oncogenic mutations or abnormal expression of signaling components disrupt the regulatory networks that govern cell function, thus enabling tumor cells to undergo dysregulated mitogenesis, to resist apoptosis, and to promote invasion to neighboring tissues. Unraveling of dysregulated signaling pathways may advance the understanding of tumor pathophysiology and lead to the improvement of targeted tumor therapy. In this review article, different signaling pathways and how their dysregulation contributes to the development of tumors have been discussed.
Collapse
Affiliation(s)
- Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States.,Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Santosh K Yadav
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
31
|
Safa AR. Epithelial-mesenchymal transition: a hallmark in pancreatic cancer stem cell migration, metastasis formation, and drug resistance. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:36. [PMID: 34841087 PMCID: PMC8623975 DOI: 10.20517/2394-4722.2020.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis, tumor progression, and chemoresistance are the major causes of death in patients with pancreatic ductal adenocarcinoma (PDAC). Tumor dissemination is associated with the activation of an epithelial-to-mesenchymal transition (EMT) process, a program by which epithelial cells lose their cell polarity and cell-to-cell adhesion, and acquire migratory and invasive abilities to become mesenchymal stem cells (MSC). These MSCs are multipotent stromal cells capable of differentiating into various cell types and trigger the phenotypic transition from an epithelial to a mesenchymal state. Therefore, EMT promotes migration and survival during cancer metastasis and confers stemness features to particular subsets of cells. Furthermore, a major problem limiting our ability to treat PDAC is the existence of rare populations of pancreatic cancer stem cells (PCSCs) or cancer-initiating cells in pancreatic tumors. PCSCs may represent sub-populations of tumor cells resistant to therapy which are most crucial for driving invasive tumor growth. These cells are capable of regenerating the cellular heterogeneity associated with the primary tumor when xenografted into mice. Therefore, the presence of PCSCs has prognostic relevance and influences the therapeutic response of tumors. PCSCs express markers of cancer stem cells (CSCs) including CD24, CD133, CD44, and epithelial specific antigen as well as the drug transporter ABCG2 grow as spheroids in a defined growth medium. A major difficulty in studying tumor cell dissemination and metastasis has been the identification of markers that distinguish metastatic cancer cells from cells that are normally circulating in the bloodstream or at sites where these cells metastasize. Evidence highlights a linkage between CSC and EMT. In this review, The current understanding of the PCSCs, signaling pathways regulating these cells, PDAC heterogeneity, EMT mechanism, and links between EMT and metastasis in PCSCs are summarised. This information may provide potential therapeutic strategies to prevent EMT and trigger CSC growth inhibition and cell death.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
32
|
Targeting of Lung Cancer Stem Cell Self-Renewal Pathway by a Small Molecule Verrucarin J. Stem Cell Rev Rep 2020; 15:601-611. [PMID: 30835047 DOI: 10.1007/s12015-019-09874-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite considerable advances made in understanding of lung cancer biology, there has been meek improvement in lung cancer treatment outcome with 4% to 5% increase in 5-year survival rates in the last four decades. Underlying problem of lung cancer recurrence and poor prognosis is attributed to the presence of cancer stem cells (CSCs) which possess the potential to differentiate, proliferate and trigger chemo-resistance, tumor progression and metastasis, despite initial elimination of the tumor. To address specific targeting of CSCs, we investigated the effects of a small molecule Verrucarin J (VJ) on lung cancer cell lines A549 and H1793. VJ significantly inhibited cell proliferation of both cell lines, with IC50 values of approximately 10 nM for A549 and 20 nM for H1793 respectively after 48 h of treatment. A549 cell line when treated with VJ, induced cell apoptosis with concomitant down regulation of key CSC specific genes- ALDH1, LGR5, OCT4 and CD133 in a dose-dependent manner. To delineate the molecular mechanism by which VJ targets lung cancer cells and CSCs, we determined the effects of VJ on CSC self-renewal pathways Wnt1/β-catenin and Notch1. Treatment of A549 cell line with VJ inhibited significantly both the signalling pathways, suggesting inhibition of expression of CSC genes by VJ through the inhibition of CSC self-renewal signalling pathways. Taken together, our results suggest that VJ may serve as a potent anticancer drug to target cancer cells and CSCs.
Collapse
|
33
|
Wang L, Zi H, Luo Y, Liu T, Zheng H, Xie C, Wang X, Huang X. Inhibition of Notch pathway enhances the anti-tumor effect of docetaxel in prostate cancer stem-like cells. Stem Cell Res Ther 2020; 11:258. [PMID: 32586404 PMCID: PMC7318403 DOI: 10.1186/s13287-020-01773-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Prostate cancer stem-like cells (PCSCs) likely participate in tumor progression and recurrence and demonstrate resistance to chemotherapy. The Notch pathway plays a role in the maintenance of the stemness in PCSCs. This study aimed to investigate the efficacy of Notch signaling inhibition as an adjuvant to docetaxel (DOX) in PCSCs. Methods PCSCs derived from the PC-3 cell line were examined for Notch-1 expression. The effect of Notch inhibition on response to DOX was evaluated in PCSCs in vitro and in murine models using a γ-secretase inhibitor (GSI), PF-03084014. Impacts on cell proliferation, apoptosis, cell cycle, and sphere formation were evaluated. Results PC-3 PCSCs expressed elevated Notch-1 mRNA compared with PC-3 parental cells. The combination of GSI with DOX promoted DOX-induced cell growth inhibition, apoptosis, cell cycle arrest, and sphere formation in PCSCs. In nude mice bearing PC-3 PCSC-derived tumors, the combination of GSI and DOX reduced the tumor growth, which was associated with the decreased Notch-1 expression in tumor tissues. Conclusions These results reveal that inhibition of the Notch pathway enhances the anti-tumor effect of DOX in PC-3 PCSCs, and suggest that Notch inhibition may have clinical benefits in targeting PCSCs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Hao Zi
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yi Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hang Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Xinghuan Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xing Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
34
|
Yang Y, Li X, Wang T, Guo Q, Xi T, Zheng L. Emerging agents that target signaling pathways in cancer stem cells. J Hematol Oncol 2020; 13:60. [PMID: 32456660 PMCID: PMC7249421 DOI: 10.1186/s13045-020-00901-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to the initiation, recurrence, and metastasis of cancer; however, there are still no drugs targeting CSCs in clinical application. There are several signaling pathways playing critical roles in CSC progression, such as the Wnt, Hedgehog, Notch, Hippo, and autophagy signaling pathways. Additionally, targeting the ferroptosis signaling pathway was recently shown to specifically kill CSCs. Therefore, targeting these pathways may suppress CSC progression. The structure of small-molecule drugs shows a good spatial dispersion, and its chemical properties determine its good druggability and pharmacokinetic properties. These characteristics make small-molecule drugs show a great advantage in drug development, which is increasingly popular in the market. Thus, in this review, we will summarize the current researches on the small-molecule compounds suppressing CSC progression, including inhibitors of Wnt, Notch, Hedgehog, and autophagy pathways, and activators of Hippo and ferroptosis pathways. These small-molecule compounds emphasize CSC importance in tumor progression and propose a new strategy to treat cancer in clinic via targeting CSCs.
Collapse
Affiliation(s)
- Yue Yang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ting Wang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450003, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
35
|
Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res 2020; 155:104740. [PMID: 32135247 DOI: 10.1016/j.phrs.2020.104740] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a fatal disease. The five-year survival for patients with all stages of this tumor type is less than 10%, with a majority of patients dying from drug resistant, metastatic disease. Gemcitabine has been a standard of care for the treatment of pancreatic cancer for over 20 years, but as a single agent gemcitabine is not curative. Since the only therapeutic option for the over 80 percent of pancreatic cancer patients ineligible for surgical resection is chemotherapy with or without radiation, the last few decades have seen a significant effort to develop effective therapy for this disease. This review addresses preclinical and clinical efforts to identify agents that target molecular characteristics common to pancreatic tumors and to develop mechanism-based combination approaches to therapy. Some of the most promising combinations include agents that inhibit transcription dependent on BET proteins (BET bromodomain inhibitors) or that inhibit DNA repair mediated by PARP (PARP inhibitors).
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA.
| |
Collapse
|
36
|
Feng F, Shan L, Deng JX, Luo LL, Huang QS. Role of the Notch Signaling Pathway in Fibrosis of Denervated Skeletal Muscle. Curr Med Sci 2019; 39:419-425. [PMID: 31209813 DOI: 10.1007/s11596-019-2053-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2019] [Indexed: 02/01/2023]
Abstract
In order to investigate the role of the Notch signaling pathway in skeletal muscle fibrosis after nerve injury, 60 Sprague-Dawley rats were selected and divided randomly into a control and two experimental groups. Group A served as controls without any treatment. Rats in groups B were injected intraperitoneally with 0.2 mL PBS and those in group C were injected intraperitoneally with 0.2 mL PBS+100 μmol/L, 0.2 mL N-[N-(3,5-difluorophenacetyl)-l-alanyl]- S-phenylglycine t-butyl ester (DAPT, a gamma-secretase inhibitor that suppresses Notch signaling) respectively, on postoperative days 1, 3, 7, 10, and 14 in a model of denervation-induced skeletal muscle fibrosis by right sciatic nerve transection. Five rats from each group were euthanized on postoperative days 1, 7, 14, and 28 to collect the right gastrocnemii, and hematoxylin and eosin (HE) staining, immunohistochemistry test, real-time PCR, and Western blotting were performed to assess connective tissue hyperplasia and fibroblast density as well as expression of Notch 1, Jagged 1, and Notch downstream molecules Hes 1 and collagen I (COL I) on day 28. There was no significant difference in HE-stained fibroblast density between group B and C on postoperative day 1. However, fibroblast density was significantly higher in group B than in group C on postoperative days 7, 14, and 28. Notch 1, Jagged 1, Hes 1, and COL I proteins in the gastrocnemius were expressed at very low levels in group A but at high levels in group B. Expression levels of these proteins were significantly lower in group C than in group B (P<0.05), but they were higher in group C than in group A (P<0.05) on postoperative day 28. We are led to conclude that locking the Notch signaling pathway inhibits fibrosis progression of denervated skeletal muscle. Thus, it may be a new approach for treatment of fibrosis of denervated skeletal muscle.
Collapse
Affiliation(s)
- Fei Feng
- Department of Orthopaedics, Central Hospital, Huanggang, 438000, China
| | - Lu Shan
- Department of Orthopaedics, Suizhou Hospital, Hubei University of Medicine, Suizhou, 430072, China
| | | | - Ling-Li Luo
- Department of Orthopaedics, Central Hospital, Huanggang, 438000, China
| | - Qi-Shun Huang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
37
|
Akbarzadeh M, Majidinia M, Fekri Aval S, Mahbub S, Zarghami N. Molecular Targeting of Notch Signaling Pathway by DAPT in Human Ovarian Cancer: Possible Anti Metastatic Effects. Asian Pac J Cancer Prev 2018; 19:3473-3477. [PMID: 30583672 PMCID: PMC6428525 DOI: 10.31557/apjcp.2018.19.12.3473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Ovarian cancer is one of the most important gynecological malignancies, causing significant mortality.
Recently, there has been extensive attention to the involvement of signaling cascades in its initiation/progression. In this
study, we focused on the possible role of Notch signal transduction in proliferation and metalloproteinase 2 and 9 function
in human ovarian cancer OVCAR-3 cells. Methods: MTT proliferation assays were used to evaluate effects of a DAPT
inhibitor on cell proliferation. For measurement of Hes-1 mRNA levels, quantitative reverse transcription polymerase
chain reaction (qRT-PCR) was applied following 48 h incubation with the inhibitor. In addition, metalloproteinase
(MMPs) activity was assessed by zymography. Results: Inhibition of Notch signaling resulted in a significant reduction
in OVCAR-3 cell proliferation. Additionally, DAPT treatment of cells significantly decreased Hes-1 mRNA levels
(p < 0.05) as well as activity of MMP-2 and -9 (p < 0.05). Conclusion: Our results suggested that suppression of Notch
signaling by a specific inhibitor can effectively decrease proliferation and the potential for metastasis of OVCAR-3 cells
via a reduction in the activity of metalloproteinases 2 and 9. Thus, pharmacological targeting of the Notch signaling
pathway could be a promising future treatment for ovarian cancer.
Collapse
Affiliation(s)
- Maryam Akbarzadeh
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | | | | | | | | |
Collapse
|
38
|
Ye J, Wen J, Ning Y, Li Y. Higher notch expression implies poor survival in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Pancreatology 2018; 18:954-961. [PMID: 30297095 DOI: 10.1016/j.pan.2018.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND At present, pancreatic ductal adenocarcinoma (PDAC) is a fetal disease lack of effective prognostic and therapeutic methods resulting in high mortality. The Notch signaling has been demonstrated being up- or down-regulated in many cancers, but the effects in pancreatic ductal adenocarcinoma are still controversial. Moreover, the available cases in an individual study are of small samples. Therefore, it is essential to define the effect of Notch signaling in pancreatic ductal adenocarcinoma with larger samples. METHODS Conducted from 6 eligible studies and 463 pancreatic ductal adenocarcinoma patients, this was the first meta-analysis to analyze the correlation between the Notch signal pathway and pancreatic ductal adenocarcinoma. All data were sourced from The National Center for Biotechnology Information, Web of Science and Cochrane. The articles which matched the inclusion criteria were included. All included data were analyzed and performed by Review Manager 5.3. RESULTS The results indicated that high expression of Notch signaling proteins was associated with poor overall survival of pancreatic ductal adenocarcinoma patients (pooled hazard ratio>2.00; P < 0.001). Moreover, poor survival was related to high expression of Notch3 (pooled hazard ratio: 2.05; confidence interval: 1.49-2.82; P < 0.001) and DLL4 (pooled hazard ratio: 2.13; confidence interval: 1.37-3.32; P < 0.001). CONCLUSIONS This meta-analysis supports that Notch signaling proteins may be available as prognostic factors for pancreatic ductal adenocarcinoma progression and patient survival. Higher expression of Notch signaling proteins indicated poor survival of pancreatic ductal adenocarcinoma patients. Targeting Notch signaling components, especially Notch3 protein, would be beneficial for therapies.
Collapse
Affiliation(s)
- Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
39
|
Cheng H, Zhu H, Cao M, Lu C, Bao S, Pan Y. HtrA1 suppresses the growth of pancreatic cancer cells by modulating Notch-1 expression. Braz J Med Biol Res 2018; 52:e7718. [PMID: 30484491 PMCID: PMC6262754 DOI: 10.1590/1414-431x20187718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/05/2018] [Indexed: 01/09/2023] Open
Abstract
Pancreatic cancer is well known to be the most deadly malignancy with the worst survival rate of all cancers. High temperature requirement factor A1 (HtrA1) plays an important role in cancer cell proliferation, migration, apoptosis, and differentiation. This study aimed to explore the function of HtrA1 in pancreatic cancer cell growth and its underlying mechanism. We found that the expression of HtrA1 was lower in pancreatic cancer tissue compared to the adjacent normal tissue. Consistently, HtrA1 levels were also decreased in two human pancreatic cancer cell lines, PANC-1 and BXPC-3. Moreover, enforced expression of HtrA1 inhibited cell viability and colony formation of PANC-1 and BXPC-3 cells. Overexpression of HtrA1 promoted apoptosis and suppressed migratory ability of tumor cells. On the contrary, siRNA-mediated knockdown of HtrA1 promoted the growth potential of pancreatic cancer cells. In addition, we found that up-regulation of HtrA1 reduced the expression of Notch-1 in pancreatic cancer cells. On the contrary, knockdown of HtrA1 increased the expression levels of Notch-1. Furthermore, overexpression of Notch-1 abolished the anti-proliferative effect of HtrA1 on pancreatic cancer cells. Taken together, our findings demonstrated that HtrA1 could inhibit pancreatic cancer cell growth via regulating Notch-1 expression, which implied that HtrA1 might be developed as a novel molecular target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of General Surgery, The Afflicted Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Zhu
- Department of Gastroenterology, The Afflicted Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Meng Cao
- Department of General Surgery, The Afflicted Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenglin Lu
- Department of General Surgery, The Afflicted Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shanhua Bao
- Department of General Surgery, The Afflicted Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yiming Pan
- Department of General Surgery, The Afflicted Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
40
|
Kurtanich T, Roos N, Wang G, Yang J, Wang A, Chung EJ. Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. SLAS Technol 2018; 24:151-160. [PMID: 30395768 DOI: 10.1177/2472630318811108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is one of the most lethal forms of cancer and has proven to be difficult to treat through conventional methods, including surgery and chemotherapy. Gene therapy serves as a potential novel treatment to interfere with genes that make this cancer so aggressive, but free nucleic acids have low cell uptake due to their negative charge and are unstable in circulation. Nanoparticles can serve as an effective carrier for a wide variety of gene therapies for pancreatic cancer as they can improve the circulation time, decrease the recognition by the immune system, and be functionalized to target specific surface proteins. In this review, we focus on therapeutic strategies using nanoparticles as carriers of small interfering RNA (siRNA), microRNA (miRNA), and gene augmentation (DNA) therapies in the context of pancreatic cancer. Lastly, we discuss the future outlook of nanoparticle-based therapies, including challenges in the clinical setting.
Collapse
Affiliation(s)
- Trevin Kurtanich
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Nicole Roos
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Guanmeng Wang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Jesse Yang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Alan Wang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.,2 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USC.,3 Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,4 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,5 Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.,6 Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Bisht S, Feldmann G. Novel Targets in Pancreatic Cancer Therapy - Current Status and Ongoing Translational Efforts. Oncol Res Treat 2018; 41:596-602. [PMID: 30269126 DOI: 10.1159/000493437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC, pancreatic cancer) carries one of the poorest overall prognoses of all human malignancies known to date. Despite the introduction of novel therapeutic regimens, the outcome has not markedly improved over the past decades, the incidence rates are almost identical to the mortality rates, and PDAC is projected to soon become the second most common cause of cancer-related mortality in Western countries. Despite this clear medical need to develop novel therapeutic strategies against this dire malady, this need has so far not been addressed with sufficient institutional attention and support in terms of research funding and strategical programs. Given the still growing life expectancy and projected demographic changes with a growing proportion of senior citizens in many European societies, this discrepancy is likely to become even more pressing in the future. This article provides a brief overview of ongoing preclinical efforts to identify novel targets and, based on this, to develop novel strategies to treat advanced pancreatic cancer and improve survival and the quality of life of patients suffering from this malignancy.
Collapse
|
42
|
Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep 2018; 38:BSR20171615. [PMID: 29769415 PMCID: PMC6117618 DOI: 10.1042/bsr20171615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common histological form of primary bone cancer. It is most prevalent in teenagers and young adults. The present study aims at exploring the regulatory effect of microRNA-340 (miR-340) on OS cell proliferation, invasion, migration, and apoptosis via regulating the Notch signaling pathway by targeting β-catenin (cadherin-associated protein) 1 (CTNNB1). OS tissues belonging to 45 patients and normal femoral head tissues of 45 amputees were selected. Cells were allocated to different groups. In situ hybridization was performed to determine the positive rate of miR-340 expression while immunohistochemistry was used to determine that of CTNNB1 and B-cell lymphoma 2 (Bcl-2). We used a series of experiments to measure the expressions of related factors and assess rates of cell proliferation, migration, invasion, cycle, and apoptosis respectively. Our results show that miR-340 was expressed a higher level in normal tissue than OS tissue. Expression of Notch, CTNNB1, hairy and enhancer of split 1 (Hes1), Bcl-2, Runt-related transcription factor 2 (Runx2), and osteocalcin increased and that of miR-340, Bcl-2 interacting mediator of cell death (BIM), and Bcl-2 associated protein X (Bax) decreased in OS tissues. U-2OS cell line had the highest miR-340 expression. We also found that the up-regulation of miR-340 had increased expression of miR-340, BIM, and Bax but decreased expression of Notch, CTNNB1, Hes1, Bcl-2, Runx2, and osteocalcin. Up-regulation of miR-340p lead to increased cell apoptosis, suppressed cell proliferation, migration, and invasion. Our study demonstrates that overexpression of miR-340 could suppress OS cell proliferation, migration, and invasion as well as promoting OS cell apoptosis by inactivating the Notch signaling pathway via down-regulating CTNNB1. Functional miR-340 overexpression might be a future therapeutic strategy for OS.
Collapse
|
43
|
Sosa Iglesias V, Giuranno L, Dubois LJ, Theys J, Vooijs M. Drug Resistance in Non-Small Cell Lung Cancer: A Potential for NOTCH Targeting? Front Oncol 2018; 8:267. [PMID: 30087852 PMCID: PMC6066509 DOI: 10.3389/fonc.2018.00267] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Drug resistance is a major cause for therapeutic failure in non-small cell lung cancer (NSCLC) leading to tumor recurrence and disease progression. Cell intrinsic mechanisms of resistance include changes in the expression of drug transporters, activation of pro-survival, and anti-apoptotic pathways, as well as non-intrinsic influences of the tumor microenvironment. It has become evident that tumors are composed of a heterogeneous population of cells with different genetic, epigenetic, and phenotypic characteristics that result in diverse responses to therapy, and underlies the emergence of resistant clones. This tumor heterogeneity is driven by subpopulations of tumor cells termed cancer stem cells (CSCs) that have tumor-initiating capabilities, are highly self-renewing, and retain the ability for multi-lineage differentiation. CSCs have been identified in NSCLC and have been associated with chemo- and radiotherapy resistance. Stem cell pathways are frequently deregulated in cancer and are implicated in recurrence after treatment. Here, we focus on the NOTCH signaling pathway, which has a role in stem cell maintenance in non-squamous non-small lung cancer, and we critically assess the potential for targeting the NOTCH pathway to overcome resistance to chemotherapeutic and targeted agents using both preclinical and clinical evidence.
Collapse
Affiliation(s)
- Venus Sosa Iglesias
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Lorena Giuranno
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Jan Theys
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| |
Collapse
|
44
|
Harbuzariu A, Oprea-Ilies GM, Gonzalez-Perez RR. The Role of Notch Signaling and Leptin-Notch Crosstalk in Pancreatic Cancer. MEDICINES (BASEL, SWITZERLAND) 2018; 5:medicines5030068. [PMID: 30004402 PMCID: PMC6164868 DOI: 10.3390/medicines5030068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
There is accumulating evidence that deregulated Notch signaling affects cancer development, and specifically pancreatic cancer (PC) progression. Notch canonical and non-canonical signaling has diverse impact on PC. Moreover, the actions of RBP-Jk (nuclear partner of activated Notch) independent of Notch signaling pathway seem to affect differently cancer progression. Recent data show that in PC and other cancer types the adipokine leptin can modulate Notch/RBP-Jk signaling, thereby, linking the pandemic obesity with cancer and chemoresistance. The potential pivotal role of leptin on PC, and its connection with Notch signaling and chemoresistance are still not completely understood. In this review, we will describe the most important aspects of Notch-RBP-Jk signaling in PC. Further, we will discuss on studies related to RBP-Jk-independent Notch and Notch-independent RPB-Jk signaling. We will also discuss on the novel crosstalk between leptin and Notch in PC and its implications in chemoresistance. The effects of leptin-Notch/RBP-Jk signaling on cancer cell proliferation, apoptosis, and drug resistance require more investigation. Data from these investigations could help to open unexplored ways to improve PC treatment success that has shown little progress for many years.
Collapse
Affiliation(s)
- Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | - Ruben R Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
45
|
Molins EAG, Jusko WJ. Assessment of Three-Drug Combination Pharmacodynamic Interactions in Pancreatic Cancer Cells. AAPS JOURNAL 2018; 20:80. [PMID: 29951754 DOI: 10.1208/s12248-018-0235-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
The pharmacodynamic interactions among trifluoperazine (TFP), gemcitabine (GEM), and paclitaxel (PTX) were assessed in pancreatic cancer cells (PANC-1). The phenothiazine TFP was chosen for its potential activity on cancer stem cells, while GEM and PTX cause apoptosis. Effects of each drug alone and in various combinations on cell growth inhibition of PANC-1 cells were studied in vitro to determine the drug-specific parameters and assess the nature of drug interactions. Joint inhibition (JI) and competitive inhibition (CI) equations were applied with a ψ interaction term. TFP fully inhibited growth of cells (Imax = 1) with an IC50 = 9887 nM. Near-maximum inhibition was achieved for GEM (Imax = 0.825) and PTX (Imax= 0.844) with an IC50 = 17.4 nM for GEM and IC50 = 7.08 nM for PTX. Estimates of an interaction term ψ revealed that the combination of TFP-GEM was apparently synergistic; close to additivity, the combination TFP-PTX was antagonistic. The interaction of GEM-PTX was additive, and TFP-GEM-PTX was synergistic but close to additive. The combination of TFP IC60-GEM IC60-PTX IC60 seemed optimal in producing inhibition of PANC-1 cells with an inhibitory effect of 82.1-90.2%. The addition of ψ terms to traditional interaction equations allows assessment of the degree of perturbation of assumed mechanisms.
Collapse
Affiliation(s)
- Emilie A G Molins
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214, USA.,Ciblage Thérapeutique en Oncologie, Faculté de médecine Lyon-sud, Université Lyon 1, 69921, Oullins, France
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214, USA.
| |
Collapse
|
46
|
Du Z, Li L, Sun W, Wang X, Zhang Y, Chen Z, Yuan M, Quan Z, Liu N, Hao Y, Li T, Wang J, Luo C, Wu X. HepaCAM inhibits the malignant behavior of castration-resistant prostate cancer cells by downregulating Notch signaling and PF-3084014 (a γ-secretase inhibitor) partly reverses the resistance of refractory prostate cancer to docetaxel and enzalutamide in vitro. Int J Oncol 2018; 53:99-112. [PMID: 29658567 PMCID: PMC5958706 DOI: 10.3892/ijo.2018.4370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 01/25/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) continues to be a major challenge in the treatment of prostate cancer (PCa). The expression of hepatocyte cell adhesion molecule (HepaCAM), a novel tumor suppressor, is frequently downregulated or lost in PCa. Overactivated Notch signaling is involved in the development and progression of PCa, including CRPC. In this study, we found that the activities of Notch signaling were elevated, while HepaCAM expression was decreased in CRPC tissues compared with matched primary prostate cancer (PPC) tissues. In addition, HepaCAM negativity was found to be associated with a worse progression-free survival (PFS). Furthermore, the overexpression of HepaCAM induced by transfection with a HepaCAM overexpression vector (Ad-HepaCAM) exerted antitumor effects by decreasing the proliferation, and suppressing the invasion and migration of bicalutamide-resistant (Bica-R) cells and enzalutamide-resistant (Enza-R) cells. Importantly, we found that the antitumor effects of HepaCAM on the resistant cells were associated with the downregulation of Notch signaling. Moreover, we revealed that PF-3084014 (a γ-secretase inhibitor) re-sensitized Enza-R cells to enzalutamide, and sequential dual-resistant (E+D-R) cells to docetaxel. Additionally, the findings of this study demonstrated that the use of PF-3084014 alone exerted potent antitumor effect on the resistant cells in vitro. On the whole, this study indicates that HepaCAM potentially represents a therapeutic target and PF-3084014 may prove to a promising agent for use in the treatment of refractory PCa.
Collapse
Affiliation(s)
- Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Luo Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhixiong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nanjing Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanni Hao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinhua Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
47
|
Cook N, Basu B, Smith DM, Gopinathan A, Evans J, Steward WP, Palmer D, Propper D, Venugopal B, Hategan M, Anthoney DA, Hampson LV, Nebozhyn M, Tuveson D, Farmer-Hall H, Turner H, McLeod R, Halford S, Jodrell D. A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br J Cancer 2018; 118:793-801. [PMID: 29438372 PMCID: PMC5877439 DOI: 10.1038/bjc.2017.495] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The Notch pathway is frequently activated in cancer. Pathway inhibition by γ-secretase inhibitors has been shown to be effective in pre-clinical models of pancreatic cancer, in combination with gemcitabine. METHODS A multi-centre, non-randomised Bayesian adaptive design study of MK-0752, administered per os weekly, in combination with gemcitabine administered intravenously on days 1, 8 and 15 (28 day cycle) at 800 or 1000 mg m-2, was performed to determine the safety of combination treatment and the recommended phase 2 dose (RP2D). Secondary and tertiary objectives included tumour response, plasma and tumour MK-0752 concentration, and inhibition of the Notch pathway in hair follicles and tumour. RESULTS Overall, 44 eligible patients (performance status 0 or 1 with adequate organ function) received gemcitabine and MK-0752 as first or second line treatment for pancreatic cancer. RP2Ds of MK-0752 and gemcitabine as single agents could be combined safely. The Bayesian algorithm allowed further dose escalation, but pharmacokinetic analysis showed no increase in MK-0752 AUC (area under the curve) beyond 1800 mg once weekly. Tumour response evaluation was available in 19 patients; 13 achieved stable disease and 1 patient achieved a confirmed partial response. CONCLUSIONS Gemcitabine and a γ-secretase inhibitor (MK-0752) can be combined at their full, single-agent RP2Ds.
Collapse
Affiliation(s)
- Natalie Cook
- Cancer Research UK, Cambridge Research Institute, University of Cambridge Robinson Way, Cambridge CB2 0RE, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0RE, UK
| | - Bristi Basu
- Cancer Research UK, Cambridge Research Institute, University of Cambridge Robinson Way, Cambridge CB2 0RE, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0RE, UK
| | - Donna-Michelle Smith
- Cancer Research UK, Cambridge Research Institute, University of Cambridge Robinson Way, Cambridge CB2 0RE, UK
| | - Aarthi Gopinathan
- Cancer Research UK, Cambridge Research Institute, University of Cambridge Robinson Way, Cambridge CB2 0RE, UK
| | - Jeffry Evans
- Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow G12 0YN, United Kingdom
| | - William P Steward
- Department of Oncology, University of Leicester, Leicester LE2 7LX, UK
| | - Daniel Palmer
- Clatterbridge Cancer Centre, Clatterbridge Road, Bebington, Wirral CH63 4JY, UK
| | - David Propper
- Bart’s Cancer Institute, Queen Mary University of London EC1M 6BQ, London, UK
| | - Balaji Venugopal
- Cancer Research UK, Centre for Drug Development, Angel Building, 407 St. John Street, London EC1V 4AD, UK
| | - Mirela Hategan
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0RE, UK
| | - D Alan Anthoney
- St James Institute of Oncology, University of Leeds & Leeds Teaching Hospitals Trust, Leeds LS9 7TF, UK
| | - Lisa V Hampson
- Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster LA1 4YF, UK
| | | | - David Tuveson
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Hayley Farmer-Hall
- Cancer Research UK, Centre for Drug Development, Angel Building, 407 St. John Street, London EC1V 4AD, UK
| | - Helen Turner
- Cancer Research UK, Centre for Drug Development, Angel Building, 407 St. John Street, London EC1V 4AD, UK
| | - Robert McLeod
- Cancer Research UK, Centre for Drug Development, Angel Building, 407 St. John Street, London EC1V 4AD, UK
| | - Sarah Halford
- Cancer Research UK, Centre for Drug Development, Angel Building, 407 St. John Street, London EC1V 4AD, UK
| | - Duncan Jodrell
- Cancer Research UK, Cambridge Research Institute, University of Cambridge Robinson Way, Cambridge CB2 0RE, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0RE, UK
| |
Collapse
|
48
|
|
49
|
Venkatesh V, Nataraj R, Thangaraj GS, Karthikeyan M, Gnanasekaran A, Kaginelli SB, Kuppanna G, Kallappa CG, Basalingappa KM. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig 2018; 5:5. [PMID: 29682512 DOI: 10.21037/sci.2018.02.02] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.
Collapse
Affiliation(s)
- Vandana Venkatesh
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Raghu Nataraj
- Division of Molecular Biology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Gopenath S Thangaraj
- Division of Biotechnology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Murugesan Karthikeyan
- Senior Lecturer, Department of Microbiology, Faculty of Medicine, Quest International University Perak, Malaysia
| | - Ashok Gnanasekaran
- Senior Lecturer, Department of Microbiology, Faculty of Medicine, Quest International University Perak, Malaysia
| | - Shanmukhappa B Kaginelli
- Division of Medical Physics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Gobianand Kuppanna
- Department of Microbiology, Vivekanandha College of Arts and Sciences for Women, Elayampalayam, Tiruchengode. Tamil Nadu, India
| | | | - Kanthesh M Basalingappa
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| |
Collapse
|
50
|
Harbuzariu A, Rampoldi A, Daley-Brown DS, Candelaria P, Harmon TL, Lipsey CC, Beech DJ, Quarshie A, Ilies GO, Gonzalez-Perez RR. Leptin-Notch signaling axis is involved in pancreatic cancer progression. Oncotarget 2018; 8:7740-7752. [PMID: 27999190 PMCID: PMC5352357 DOI: 10.18632/oncotarget.13946] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) shows a high death rate. PC incidence and prognosis are affected by obesity, a pandemic characterized by high levels of leptin. Notch is upregulated by leptin in breast cancer. Thus, leptin and Notch crosstalk could influence PC progression. Here we investigated in PC cell lines (BxPC-3, MiaPaCa-2, Panc-1, AsPC-1), derived tumorspheres and xenografts whether a functional leptin-Notch axis affects PC progression and expansion of pancreatic cancer stem cells (PCSC). PC cells and tumorspheres were treated with leptin and inhibitors of Notch (gamma-secretase inhibitor, DAPT) and leptin (iron oxide nanoparticle-leptin peptide receptor antagonist 2, IONP-LPrA2). Leptin treatment increased cell cycle progression and proliferation, and the expression of Notch receptors, ligands and targeted molecules (Notch1-4, DLL4, JAG1, Survivin and Hey2), PCSC markers (CD24/CD44/ESA, ALDH, CD133, Oct-4), ABCB1 protein, as well as tumorsphere formation. Leptin-induced effects on PC and tumorspheres were decreased by IONP-LPrA2 and DAPT. PC cells secreted leptin and expressed the leptin receptor, OB-R, which indicates a leptin autocrine/paracrine signaling loop could also affect tumor progression. IONP-LPrA2 treatment delayed the onset of MiaPaCa-2 xenografts, and decreased tumor growth and the expression of proliferation and PCSC markers. Present data suggest that leptin-Notch axis is involved in PC. PC has no targeted therapy and is mainly treated with chemotherapy, whose efficiency could be decreased by leptin and Notch activities. Thus, the leptin-Notch axis could be a novel therapeutic target, particularly for obese PC patients.
Collapse
Affiliation(s)
- Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310 USA
| | - Antonio Rampoldi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310 USA
| | - Danielle S Daley-Brown
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310 USA
| | - Pierre Candelaria
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310 USA
| | - Tia L Harmon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310 USA
| | - Crystal C Lipsey
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310 USA
| | - Derrick J Beech
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, 30310 USA
| | - Alexander Quarshie
- Biomedical Informatics Program and Master of Science in Clinical Research Program, Clinical Research Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Gabriela Oprea Ilies
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Grady Memorial Hospital, Atlanta, GA, 30303 USA
| | - Ruben R Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310 USA
| |
Collapse
|