1
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025; 44:1213-1229. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ma Y, Dumesny C, Dong L, Ang CS, Nikfarjam M, He H. Knockout of p21-Activated Kinase 4 Stimulates MHC I Expression of Pancreatic Cancer Cells via an Autophagy-Independent Pathway. Cancers (Basel) 2025; 17:511. [PMID: 39941877 PMCID: PMC11817421 DOI: 10.3390/cancers17030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDA) is one of the most malignant solid cancers. KRAS mutation accounts for over 90% of cases. p21-activated kinases (PAKs) act downstream of KRAS and are involved in tumorigenesis. The inhibition of PAK4 suppresses PDA by stimulating the tumor infiltration of cytotoxic T cells. The major histocompatibility complex class I (MHC I) is a key in presenting antigens to cytotoxic T cells. MHC I degradation via autophagy promotes the immune evasion of pancreatic cancer. We investigated the effect of PAK4 inhibition on MHC I expression and autophagy. METHODS In this study, using proteomic analysis, fluorescence-activated cell sorting (FACS), and immunoblotting, we examined the effect of PAK4 knockout (KO) in human PDA cells on the expression of MHC I and autophagy to identify the mechanism involved in the stimulation of cytotoxic T cells by PAK4 inhibition. RESULTS We found that PAK4 KO increased MHC I expression in two human PDA cell lines: MiaPaCa-2 and PANC-1. PAK4 KO also increased cancer cell autophagy. However, the inhibition of autophagy by chloroquine (CQ) did not affect the effect of PAK4 KO on apoptosis and cell death. More importantly, the inhibition of autophagy by CQ did not alter the expression of MHC I stimulated by PAK4 KO, indicating that PAK4 KO stimulated MHC I expression via an autophagy-independent pathway. CONCLUSIONS We identified a role of PAK4 in MHC I expression by PDA cells, which is independent of autophagy.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
- Department of General Surgery, Monash Health, Clayton, VIC 3806, Australia
| | - Chelsea Dumesny
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
| | - Li Dong
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
| | - Ching-Seng Ang
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
- Department of Hepato-Pancreato-Biliary Surgery, Austin Health, Heidelberg, VIC 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
| |
Collapse
|
3
|
Xu D, Han S, Yue X, Xu X, Huang T. METTL14 Suppresses Tumor Stemness and Metastasis of Colon Cancer Cells by Modulating m6A-Modified SCD1. Mol Biotechnol 2024; 66:2095-2105. [PMID: 37592151 DOI: 10.1007/s12033-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Colon cancer (CC) is a malignant disease of the digestive tract, and its rising prevalence poses a grave threat to people's health. N6-methyladenosine (m6A) modification is essential for various crucial life processes through modulating gene expression. Methyltransferase-like 14 (METTL14), the m6A methylation transferase core protein, and its aberrant expression is intimately correlated to tumor development. This study was conducted to probe the impacts and specific mechanisms of METTL14 on the biological process of CC. Bioinformatics data disclosed that METTL14 was significantly attenuated in CC. Functional assays were executed to ascertain how METTL14 affected CC tumorigenicity, and METTL14 overexpression caused a notable decline in viability, migration, invasion, and stemness phenotype of CC cells. Then, in-depth mechanistic studies displayed that stearoyl-CoA desaturase 1 (SCD1) was a downstream target gene of METTL14-mediated m6A modification. METTL14 overexpression substantially augmented the m6A modification of SCD1 mRNA and diminished the SCD1 mRNA level. In addition, we revealed that YTHDF2 was the m6A reader to recognize METTL14 m6A-modified SCD1 mRNA and abolish its stability. Finally, we also validated that METTL14 might impede the tumorigenic process of CC through SCD1 mediated Wnt/β-catenin signaling. Taken together, this study presented that METTL14 performed as a potential therapeutic target in CC with important implications for the prognosis amelioration of CC patients.
Collapse
Affiliation(s)
- Dehua Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Shuguang Han
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiaoguang Yue
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiangyu Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Tieao Huang
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China.
| |
Collapse
|
4
|
Zhang X, Zhou J, Wang Y, Wang X, Zhu B, Xing Q. Elevated CDC45 Expression Predicts Poorer Overall Survival Prognoses and Worse Immune Responses for Kidney Renal Clear Cell Carcinoma via Single-Cell and Bulk RNA-Sequencing. Biochem Genet 2024; 62:1502-1520. [PMID: 37642814 PMCID: PMC11186877 DOI: 10.1007/s10528-023-10500-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
The main objective of this paper is to analyze the prognostic and immunological value of CDC45 in kidney renal clear cell carcinoma (KIRC) using single-cell and bulk RNA-sequencing approaches. The expression of CDC45 in KIRC was evaluated by the HPA database, the TCGA-KIRC dataset and verified by PCR analysis and single-cell RNA-sequencing. The ability of CDC45 to independently predict prognosis in KIRC was confirmed by univariate/multivariate regression analysis. Gene set enrichment analysis (GSEA) was employed to explore CDC45-related pathways in KIRC. In addition, Relationships between CDC45 and immunity were also examined. Elevated CDC45 expression in KIRC was demonstrated at mRNA and protein levels. The results of the correlation analysis showed that as CDC45 expression increased, so did the histological grade, clinical stage, and TNM stage of the patients (p < 0.05). Univariate/multivariate regression analysis suggested CDC45 as an independent prognostic factor for KIRC. Seven pathways related to CDC45 were screened through GSEA. Meanwhile, we found that CDC45 was correlated with tumor mutational burden (TMB) and microsatellite instability (MSI) but not tumor neoantigen burden (TNB). Regarding immunity, CDC45 exhibited correlations with the tumor microenvironment, immune cell infiltration, and immune checkpoints. Besides, low CDC45 expression was shown to be associated with a better response to immunotherapy. Single-cell RNA-sequencing revealed that CDC45 was differently expressed in T cells (p < 0.05). CDC45 showed potential as a prognostic biomarker and therapeutic target for KIRC. Meanwhile, the CDC45 low expression group was more sensitive to immunotherapy.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu Province, China
| | - Jianhua Zhou
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China
| | - Yong Wang
- Department of Urology, Shanghai Jiangqiao Hospital, Shanghai General Hospital Jiading Branch, Jiading District, Shanghai, 201803, China
| | - Xing Wang
- Department of Urology, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212000, Jiangsu Province, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), No. 881 Yonghe Road, Nantong, 226001, Jiangsu Province, China.
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
5
|
Ma Y, Dumesny C, Dong L, Ang CS, Asadi K, Zhan Y, Nikfarjam M, He H. Inhibition of P21-activated kinases 1 and 4 synergistically suppresses the growth of pancreatic cancer by stimulating anti-tumour immunity. Cell Commun Signal 2024; 22:287. [PMID: 38797819 PMCID: PMC11129409 DOI: 10.1186/s12964-024-01670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal types of cancer, and KRAS oncogene occurs in over 90% of cases. P21-activated kinases (PAK), containing six members (PAK1 to 6), function downstream of KRAS. PAK1 and PAK4 play important roles in carcinogenesis, but their combinational effect remains unknown. In this study, we have determined the effect of dual inhibition of PAK1 and PAK4 in PDA progression using knockout (KO) cancer cell lines. METHODS Murine wild-type (WT) and PAK1KO pancreatic cancer cell lines were isolated from PAK1+/+ and PAK1-/- KPC (LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx-1-Cre) mice. KPC PAK4KO and KPC PAK1&4 KO cell lines were generated from KPC WT and KPC PAK1KO cell lines respectively using the CRISPR-CAS9 gene knockout technique. PAK WT and KO cell lines were used in mouse models of pancreatic tumours. Cells and tumour tissue were also used in flow cytometry and proteomic studies. A human PDA tissue microarray was stained by immunohistochemistry. RESULTS Double knock out of PAK1 and PAK4 caused complete regression of tumour in a syngeneic mouse model. PAK4KO inhibited tumour growth by stimulating a rapid increase of cytotoxic CD8+ T cell infiltration. PAK1KO synergistically with PAK4KO increased cytotoxic CD8+ T cell infiltration and stimulated a sustained infiltration of CD8+ T cells at a later phase to overcome the immune evasion in the PAK4KO tumour. The human PDA tissue microarray study showed the important role of PAK1 and PAK4 in intra-tumoral T-cell function. CONCLUSION Our results demonstrated that dual inhibition of PAK1 and PAK4 synergistically suppressed PDA progression by stimulating cytotoxic CD8 + T cell response.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia
- Department of General Surgery, Monash Health, Clayton, VIC, Australia
| | - Chelsea Dumesny
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia
| | - Li Dong
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia
| | - Ching-Seng Ang
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Khashayar Asadi
- Department of Anatomical Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Yifan Zhan
- Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia
- Department of Hepato-Pancreato-Biliary Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia.
| |
Collapse
|
6
|
Zhan H, Lv Y, Shen R, Li C, Li M, Li Y. Bimetallic Gold/Silver and Bioactive Camptothecin Hybrid Nanoparticles for Eradication of Cancer Stem Cells in a Combination Manner. Mol Pharm 2024; 21:1450-1465. [PMID: 38335466 DOI: 10.1021/acs.molpharmaceut.3c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The defeat of cancer is still a challenge due to the existence of cancer stem cells (CSCs) because they resist conventional chemotherapy via multifactor regulated mechanisms. Consequently, one-dimensional action toward CSCs cannot work. Herein, we used rationally designed hybrid nanoparticles as a combined cancer therapy, hoping to form a multidimensional control network. In this paper, gold/silver alloy nanoparticle decorated camptothecin nanocrystals were formulated according to complementary anti-CSC mechanisms from gold, silver, and organic drug. This smart drug formulation could combine chemotherapy and thermotherapy, target different tumor sites, and demonstrate versatile toxicity profiles from each component. Major results indicated that this nanosystem demonstrated indiscriminately effective cytotoxic/proapoptotic/necrotic activity against bulk MCF-7 cells and their CSC subpopulation, in particular under laser ablation. Moreover, this nanosystem displayed enhanced antineoplastic activity against CSC spheroids, resulting in a significant reduction in their number and size, that is, their self-renewal capacity. All the results indicated that CSCs upon treatment of these new hybrid nanoparticles underwent reduced stemness and conversion from the original quiescent state and recovered their sensitivity toward chemotherapy. The relevant anticancer mechanism was ascribed to NIR-pH dual responsive drug release, synergistic/combined thermo-chemotherapy of organic drug and inorganic alloy nanoparticles, enhanced cellular uptake mediated by alloy nanoparticles, and Ag+-induced biomembrane damage. This thermo-chemotherapy platform provides a new combinatorial strategy for inorganic and organic agents in the complete elimination of CSCs.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Yulong Lv
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Ruiyu Shen
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Chaoyue Li
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Miao Li
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Yahong Li
- Research Institute of Photonics, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| |
Collapse
|
7
|
Liu S, Yang P, Wang L, Zou X, Zhang D, Chen W, Hu C, Xiao D, Ren H, Zhang H, Cai S. Targeting PAK4 reverses cisplatin resistance in NSCLC by modulating ER stress. Cell Death Discov 2024; 10:36. [PMID: 38238316 PMCID: PMC10796919 DOI: 10.1038/s41420-024-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Chemoresistance poses a significant impediment to effective treatments for non-small-cell lung cancer (NSCLC). P21-activated kinase 4 (PAK4) has been implicated in NSCLC progression by invasion and migration. However, the involvement of PAK4 in cisplatin resistance is not clear. Here, we presented a comprehensive investigation into the involvement of PAK4 in cisplatin resistance within NSCLC. Our study revealed enhanced PAK4 expression in both cisplatin-resistant NSCLC tumors and cell lines. Notably, PAK4 silencing led to a remarkable enhancement in the chemosensitivity of cisplatin-resistant NSCLC cells. Cisplatin evoked endoplasmic reticulum stress in NSCLC. Furthermore, inhibition of PAK4 demonstrated the potential to sensitize resistant tumor cells through modulating endoplasmic reticulum stress. Mechanistically, we unveiled that the suppression of the MEK1-GRP78 signaling pathway results in the sensitization of NSCLC cells to cisplatin after PAK4 knockdown. Our findings establish PAK4 as a promising therapeutic target for addressing chemoresistance in NSCLC, potentially opening new avenues for enhancing treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Shixin Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Pingshan Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Lu Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Zou
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Dongdong Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Wenyou Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Chuang Hu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Duqing Xiao
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital, Naval Medical University, Shanghai, 200135, China.
- Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, 000465, China.
| | - Hao Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou; The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Songwang Cai
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
8
|
Ansardamavandi A, Nikfarjam M, He H. PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response. Cells 2023; 12:2692. [PMID: 38067120 PMCID: PMC10705971 DOI: 10.3390/cells12232692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Angiogenesis has been associated with numbers of solid tumours. Anti-angiogenesis drugs starve tumours of nutrients and oxygen but also make it difficult for a chemo reagent to distribute into a tumour, leading to aggressive tumour growth. Anti-angiogenesis drugs do not appear to improve the overall survival rate of pancreatic cancer. Vessel normalisation is merging as one of the new approaches for halting tumour progression by facilitating the tumour infiltration of immune cells and the delivery of chemo reagents. Targeting p21-activated kinases (PAKs) in cancer has been shown to inhibit cancer cell growth and improve the efficacy of chemotherapy. Inhibition of PAK enhances anti-tumour immunity and stimulates the efficacy of immune checkpoint blockades. Inhibition of PAK also improves Car-T immunotherapy by reprogramming the vascular microenvironment. This review summarizes current research on PAK's role in tumour vasculature and therapeutical response, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
- Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
| |
Collapse
|
9
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
10
|
Bubin R, Uljanovs R, Strumfa I. Cancer Stem Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087030. [PMID: 37108193 PMCID: PMC10138709 DOI: 10.3390/ijms24087030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The first discovery of cancer stem cells (CSCs) in leukaemia triggered active research on stemness in neoplastic tissues. CSCs represent a subpopulation of malignant cells, defined by unique properties: a dedifferentiated state, self-renewal, pluripotency, an inherent resistance to chemo- and radiotherapy, the presence of certain epigenetic alterations, as well as a higher tumorigenicity in comparison with the general population of cancer cells. A combination of these features highlights CSCs as a high-priority target during cancer treatment. The presence of CSCs has been confirmed in multiple malignancies, including pancreatic ductal adenocarcinoma, an entity that is well known for its dismal prognosis. As the aggressive course of pancreatic carcinoma is partly attributable to treatment resistance, CSCs could contribute to adverse outcomes. The aim of this review is to summarize the current information regarding the markers and molecular features of CSCs in pancreatic ductal adenocarcinoma and the therapeutic options to remove them.
Collapse
Affiliation(s)
- Roman Bubin
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Romans Uljanovs
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
11
|
Li Q, Wang SJ, Wang WJ, Ye YC, Ling YQ, Dai YF. PAK4-relevant proliferation reduced by cell autophagy via p53/mTOR/p-AKT signaling. Transl Cancer Res 2023; 12:461-472. [PMID: 37033362 PMCID: PMC10080326 DOI: 10.21037/tcr-22-2272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023]
Abstract
Background P21-activated kinase 4 (PAK4) involves in cell proliferation in cancer and mutually regulates with p53, a molecule is demonstrated to control cell autophagy by mammalian target of rapamycin (mTOR)/protein kinase B (AKT) signaling. Since the signaling exhibits an association with PAK family members in cell autophagy, it implies that PAK4-relevant proliferation may be impacted by autophagy via p53 with a lack of evidence in cancer cells. Methods In this research, transient and stable PAK4-knockdown human hepatocarcinoma cell lines (HepG2) were constructed by transfection of PAK4-RNA interference (RNAi) plasmid and lentivirus containing PAK4-RNAi plasmid, respectively. We investigated cell proliferation using methyl thiazolyl tetrazolium (MTT) and Cell Counting Kit 8 (CCK8) assays, cell cycle by flow cytometry (FCM) and cell autophagy by monodansylcadaverine (MDC) staining and autophagic biomarker's expression, and detected the expressions of p53, mTOR, phosphorylated-AKT (p-AKT) and AKT by immunofluorescence and western blot to explore the mechanism. Results We successfully constructed transient and stable PAK4-knockdown HepG2 cell lines, and detected dysfunction of the cells' proliferation. An increased expression of p53, as a molecule of cell-cycle-surveillance on G1/S phase, was demonstrated in the cells although the cell cycle blocked at G2/M. And then, we detected increased autophagosome and autophagic biomarker LC3-II, and decreased expressions in p-AKT and mTOR. Conclusions The proliferation is reduced in PAK4-knockdown HepG2 cells, which is relative to not only cell cycle arrest but also cell autophagy, and p53/mTOR/p-AKT signaling involves in the cell progress. The findings provide a new mechanism on PAK4 block in cancer therapy.
Collapse
Affiliation(s)
- Qing Li
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Su-Jie Wang
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wen-Jia Wang
- Clinical Laboratory, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Yu-Cai Ye
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ya-Qin Ling
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Ya-Fei Dai
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Hyperactivation of p21-Activated Kinases in Human Cancer and Therapeutic Sensitivity. Biomedicines 2023; 11:biomedicines11020462. [PMID: 36830998 PMCID: PMC9953343 DOI: 10.3390/biomedicines11020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last three decades, p21-activated kinases (PAKs) have emerged as prominent intracellular nodular signaling molecules in cancer cells with a spectrum of cancer-promoting functions ranging from cell survival to anchorage-independent growth to cellular invasiveness. As PAK family members are widely overexpressed and/or hyperactivated in a variety of human tumors, over the years PAKs have also emerged as therapeutic targets, resulting in the development of clinically relevant PAK inhibitors. Over the last two decades, this has been a promising area of active investigation for several academic and pharmaceutical groups. Similar to other kinases, blocking the activity of one PAK family member leads to compensatory activity on the part of other family members. Because PAKs are also activated by stress-causing anticancer drugs, PAKs are components in the rewiring of survival pathways in the action of several therapeutic agents; in turn, they contribute to the development of therapeutic resistance. This, in turn, creates an opportunity to co-target the PAKs to achieve a superior anticancer cellular effect. Here we discuss the role of PAKs and their effector pathways in the modulation of cellular susceptibility to cancer therapeutic agents and therapeutic resistance.
Collapse
|
13
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
14
|
Mozibullah M, Junaid M. Biological Role of the PAK4 Signaling Pathway: A Prospective Therapeutic Target for Multivarious Cancers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Li X, Li F. p21-Activated Kinase: Role in Gastrointestinal Cancer and Beyond. Cancers (Basel) 2022; 14:cancers14194736. [PMID: 36230657 PMCID: PMC9563254 DOI: 10.3390/cancers14194736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Gastrointestinal tumors are the most common tumors with a high mortality rate worldwide. Numerous protein kinases have been studied in anticipation of finding viable tumor therapeutic targets, including PAK. PAK is a serine/threonine kinase that plays an important role in the malignant phenotype of tumors. The function of PAK in tumors is highlighted in cell proliferation, survival, motility, tumor cell plasticity and the tumor microenvironment, therefore providing a new possible target for clinical tumor therapy. Based on the current research works of PAK, we summarize and analyze the PAK features and signaling pathways in cells, especially the role of PAK in gastrointestinal tumors, thereby hoping to provide a theoretical basis for both the future studies of PAK and potential tumor therapeutic targets. Abstract Gastrointestinal tumors are the most common tumors, and they are leading cause of cancer deaths worldwide, but their mechanisms are still unclear, which need to be clarified to discover therapeutic targets. p21-activating kinase (PAK), a serine/threonine kinase that is downstream of Rho GTPase, plays an important role in cellular signaling networks. According to the structural characteristics and activation mechanisms of them, PAKs are divided into two groups, both of which are involved in the biological processes that are critical to cells, including proliferation, migration, survival, transformation and metabolism. The biological functions of PAKs depend on a large number of interacting proteins and the signaling pathways they participate in. The role of PAKs in tumors is manifested in their abnormality and the consequential changes in the signaling pathways. Once they are overexpressed or overactivated, PAKs lead to tumorigenesis or a malignant phenotype, especially in tumor invasion and metastasis. Recently, the involvement of PAKs in cellular plasticity, stemness and the tumor microenvironment have attracted attention. Here, we summarize the biological characteristics and key signaling pathways of PAKs, and further analyze their mechanisms in gastrointestinal tumors and others, which will reveal new therapeutic targets and a theoretical basis for the clinical treatment of gastrointestinal cancer.
Collapse
|
16
|
Ma Y, Nikfarjam M, He H. The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548:215868. [PMID: 36027997 DOI: 10.1016/j.canlet.2022.215868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is one of the most lethal types of cancer with a dismal prognosis. KRAS mutation is a commonly identified oncogene in PDA tumorigenesis and P21-activated kinases (PAKs) are its downstream mediator. While PAK1 is more well-studied, PAK4 also attracted increasing interest. In PDA, PAK inhibition not only reduces cancer cell viability but also sensitises it to chemotherapy. While PDA remains resistant to existing immunotherapies, PAK inhibition has been shown to increase cancer immunogenicity of melanoma, glioblastoma and PDA. Furthermore, autophagy plays an important role in PDA immune evasion, and accumulating evidence has pointed to a connection between PAK and cancer cell autophagy. In this literature review, we aim to summarize currently available studies that have assessed the potential connection between PAK, autophagy and immune evasion in PDA biology to guide future research.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia; Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
17
|
Cheng F, Li M, Thorne RF, Liu G, Yuwei Z, Wu M, Liu L. P21-activated kinase 4 Pak4 maintains embryonic stem cell pluripotency via Akt activation. Stem Cells 2022; 40:892-905. [PMID: 35896382 PMCID: PMC9585903 DOI: 10.1093/stmcls/sxac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Exploiting the pluripotent properties of embryonic stem cells (ESCs) holds great promise for regenerative medicine. Nevertheless, directing ESC differentiation into specialized cell lineages requires intricate control governed by both intrinsic and extrinsic factors along with the actions of specific signaling networks. Here, we reveal the involvement of the p21-activated kinase 4 (Pak4), a serine/threonine kinase, in sustaining murine ESC (mESC) pluripotency. Pak4 is highly expressed in R1 ESC cells compared with embryonic fibroblast cells and its expression is progressively decreased during differentiation. Manipulations using knockdown and overexpression demonstrated a positive relationship between Pak4 expression and the clonogenic potential of mESCs. Moreover, ectopic Pak4 expression increases reprogramming efficiency of Oct4-Klf4-Sox2-Myc-induced pluripotent stem cells (iPSCs) whereas Pak4-knockdown iPSCs were largely incapable of generating teratomas containing mesodermal, ectodermal and endodermal tissues, indicative of a failure in differentiation. We further establish that Pak4 expression in mESCs is transcriptionally driven by the core pluripotency factor Nanog which recognizes specific binding motifs in the Pak4 proximal promoter region. In turn, the increased levels of Pak4 in mESCs fundamentally act as an upstream activator of the Akt pathway. Pak4 directly binds to and phosphorylates Akt at Ser473 with the resulting Akt activation shown to attenuate downstream GSK3β signaling. Thus, our findings indicate that the Nanog-Pak4-Akt signaling axis is essential for maintaining mESC self-renewal potential with further importance shown during somatic cell reprogramming where Pak4 appears indispensable for multi-lineage specification.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| | - Mingyue Li
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Guangzhi Liu
- Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Zhang Yuwei
- Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Mian Wu
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China.,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Lianxin Liu
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| |
Collapse
|
18
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
19
|
Targeting protein kinases in cancer stem cells. Essays Biochem 2022; 66:399-412. [PMID: 35607921 DOI: 10.1042/ebc20220002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of cancer cells within the tumor bulk that have emerged as an attractive therapeutic target for cancer therapy. Accumulating evidence has shown the critical involvement of protein kinase signaling pathways in driving tumor development, cancer relapse, metastasis, and therapeutic resistance. Given that protein kinases are druggable targets for cancer therapy, tremendous efforts are being made to target CSCs with kinase inhibitors. In this review, we summarize the current knowledge and overview of the roles of protein kinases in various signaling pathways in CSC regulation and drug resistance. Furthermore, we provide an update on the preclinical and clinical studies for the use of kinase inhibitors alone or in combination with current therapies for effective cancer therapy. Despite great premises for the use of kinase inhibitors against CSCs, further investigations are needed to evaluate their efficiencies without any adverse effects on normal stem cells.
Collapse
|
20
|
p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 2022; 36:315-326. [PMID: 34697424 DOI: 10.1038/s41375-021-01451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.
Collapse
|
21
|
Resistin Induces LIN28A-Mediated Let-7a Repression in Breast Cancer Cells Leading to IL-6 and STAT3 Upregulation. Cancers (Basel) 2021; 13:cancers13184498. [PMID: 34572725 PMCID: PMC8470467 DOI: 10.3390/cancers13184498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States and exhibits significant racial disparities in clinical outcomes. Earlier, we reported that the levels of resistin and IL-6 were significantly more elevated in the serum of African American women with breast cancer than in their Caucasian American counterparts. Here, we uncover its mechanistic significance by characterizing a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of breast cancer cells. Abstract Downregulation of the Let-7 family of microRNAs (miRNAs) has been reported in several cancers, including breast malignancy; however, underlying mechanisms are not completely understood. Resistin is an important component of the tumor microenvironment, having a functional impact on the tumor cell phenotypes. Here, we examined the role of resistin in the regulation of Let-7 miRNAs and studied its downstream consequences. We found that resistin treatment led to the reduced expression of Let-7 family miRNAs in breast cancer (BC) cells, with the highest downregulation reported for Let-7a. Furthermore, resistin induced the expression of LIN28A, and its silencing abrogated resistin-mediated Let-7a suppression. Let-7a restoration or LIN28A silencing abolished the resistin-induced growth, clonogenicity, and sphere-forming ability of BC cells. Restoration of Let-7a also suppressed the resistin-induced expression of genes associated with growth, survival, and stemness. Pathway analysis suggested STAT3 as a putative central node associated with Let-7a-mediated gene regulation. In silico analysis identified STAT3 and its upstream modifier, IL-6, as putative Let-7a gene targets, which were later confirmed by 3′UTR-reporter assays. Together, our findings demonstrate a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of BC cells.
Collapse
|
22
|
Naїja A, Merhi M, Inchakalody V, Fernandes Q, Mestiri S, Prabhu KS, Uddin S, Dermime S. The role of PAK4 in the immune system and its potential implication in cancer immunotherapy. Cell Immunol 2021; 367:104408. [PMID: 34246086 DOI: 10.1016/j.cellimm.2021.104408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023]
Abstract
The p21 activated kinases (PAKs) are known to play a role in the regulation of cell morphology and functions. Among the various members of PAKs family, only the PAK4 protein has been shown to be overexpressed in cancer cells and its upregulation was associated with tumor development. Indeed, several studies have shown that PAK4 overexpression is implicated in carcinogenesis by different mechanisms including promotion of cell proliferation, invasion and migration, protection of cells from apoptosis, stimulation of the tumor-specific anchorage-independent cell growth and regulation of the cytoskeletal organisation and adhesion. Moreover, high PAK4 protein levels have been observed in several solid tumors and have been shown able to enhance cancer cell resistance to many treatments especially chemotherapy. Interestingly, it has been recently demonstrated that PAK4 downregulation can inhibit the PD-1/PD-L1 immune regulatory pathway. Taken together, these findings not only implicate PAK4 in oncogenic transformation and in prediction of tumor response to treatment but also suggest its role as an attractive target for immunotherapy. In the current review we will summarize the different mechanisms of PAK4 implication in tumor development, describe its role as a regulator of the immune response and as a potential novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Azza Naїja
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Sarra Mestiri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic health system, Hamad medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
23
|
Activation of STAT transcription factors by the Rho-family GTPases. Biochem Soc Trans 2021; 48:2213-2227. [PMID: 32915198 PMCID: PMC7609038 DOI: 10.1042/bst20200468] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
The Rho-family of small GTPases are biological molecular switches that are best known for their regulation of the actin cytoskeleton. Through their activation and stimulation of downstream effectors, the Rho-family control pathways involved in cellular morphology, which are commonly activated in cancer cell invasion and metastasis. While this makes them excellent potential therapeutic targets, a deeper understanding of the downstream signalling pathways they influence will be required for successful drug targeting. Signal transducers and activators of transcription (STATs) are a family of transcription factors that are hyper-activated in most cancer types and while STATs are widely understood to be activated by the JAK family of kinases, many additional activators have been discovered. A growing number of examples of Rho-family driven STAT activation, largely of the oncogenic family members, STAT3 and STAT5, are being identified. Cdc42, Rac1, RhoA, RhoC and RhoH have all been implicated in STAT activation, contributing to Rho GTPase-driven changes in cellular morphology that lead to cell proliferation, invasion and metastasis. This highlights the importance and therapeutic potential of the Rho-family as regulators of non-canonical activation of STAT signalling.
Collapse
|
24
|
Kilmister EJ, Hansen L, Davis PF, Hall SRR, Tan ST. Cell Populations Expressing Stemness-Associated Markers in Vascular Anomalies. Front Surg 2021; 7:610758. [PMID: 33634164 PMCID: PMC7900499 DOI: 10.3389/fsurg.2020.610758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment of vascular anomalies (VAs) is mostly empirical and, in many instances unsatisfactory, as the pathogeneses of these heterogeneous conditions remain largely unknown. There is emerging evidence of the presence of cell populations expressing stemness-associated markers within many types of vascular tumors and vascular malformations. The presence of these populations in VAs is supported, in part, by the observed clinical effect of the mTOR inhibitor, sirolimus, that regulates differentiation of embryonic stem cells (ESCs). The discovery of the central role of the renin-angiotensin system (RAS) in regulating stem cells in infantile hemangioma (IH) provides a plausible explanation for its spontaneous and accelerated involution induced by β-blockers and ACE inhibitors. Recent work on targeting IH stem cells by inhibiting the transcription factor SOX18 using the stereoisomer R(+) propranolol, independent of β-adrenergic blockade, opens up exciting opportunities for novel treatment of IH without the β-adrenergic blockade-related side effects. Gene mutations have been identified in several VAs, involving mainly the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways. Existing cancer therapies that target these pathways engenders the exciting possibility of repurposing these agents for challenging VAs, with early results demonstrating clinical efficacy. However, there are several shortcomings with this approach, including the treatment cost, side effects, emergence of treatment resistance and unknown long-term effects in young patients. The presence of populations expressing stemness-associated markers, including transcription factors involved in the generation of induced pluripotent stem cells (iPSCs), in different types of VAs, suggests the possible role of stem cell pathways in their pathogenesis. Components of the RAS are expressed by cell populations expressing stemness-associated markers in different types of VAs. The gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways interact with different components of the RAS, which may influence cell populations expressing stemness-associated markers within VAs. The potential of targeting these populations by manipulating the RAS using repurposed, low-cost and commonly available oral medications, warrants further investigation. This review presents the accumulating evidence demonstrating the presence of stemness-associated markers in VAs, their expression of the RAS, and their interaction with gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways, in the pathogenesis of VAs.
Collapse
Affiliation(s)
| | - Lauren Hansen
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Stoica AF, Chang CH, Pauklin S. Molecular Therapeutics of Pancreatic Ductal Adenocarcinoma: Targeted Pathways and the Role of Cancer Stem Cells. Trends Pharmacol Sci 2020; 41:977-993. [PMID: 33092892 DOI: 10.1016/j.tips.2020.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late detection and highly metastatic characteristics. PDAC cells vary in their tumorigenic capabilities with the presence of a subset of PDAC cells known as pancreatic cancer stem cells (CSCs), which are more resistant to currently used therapeutics. Here, we describe the role of CSCs and tumour stroma in developing therapeutic strategies for PDAC and suggest that developmental plasticity could be considered a hallmark of cancers. We provide an overview of the molecular targets in PDAC treatments, including targeted therapies of cellular processes such as proliferation, evasion of growth suppressors, activating metastasis, and metabolic effects. Since PDAC is an inflammation-driven cancer, we also revisit therapeutic strategies targeting inflammation and immunotherapy. Lastly, we suggest that targeting epigenetic mechanisms opens therapeutic routes for heterogeneous cancer cell populations, including CSCs.
Collapse
Affiliation(s)
- Andrei-Florian Stoica
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
26
|
Chen M, Ye AX, Wei J, Wang R, Poon K. Deoxycholic Acid Upregulates the Reprogramming Factors KFL4 and OCT4 Through the IL-6/STAT3 Pathway in Esophageal Adenocarcinoma Cells. Technol Cancer Res Treat 2020; 19:1533033820945302. [PMID: 32869704 PMCID: PMC7469721 DOI: 10.1177/1533033820945302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells, a special subgroup of cancer cells, have self-renewal capabilities and multidirectional potential, which may be reprogrammed from the dedifferentiation of cancer cells, contributing to the failure of clinical treatments. Esophageal adenocarcinoma grows in an inflammatory environment stimulated by deoxycholic acid, an important component of gastroesophageal reflux content, contributing to the transformation of esophageal squamous epithelium to the precancerous lesions of esophageal adenocarcinoma, that is, Barrett esophagus. In the present study, deoxycholic acid was used to investigate whether it could induce the expression of reprogramming factors Krüppel-like factor, OCT4, and Nanog; the transformation to cancer stem cells in esophageal adenocarcinoma; and the involvement of the interleukin-6/signal transduction and activation of transcription 3 inflammatory signaling pathway. OE33 cells were treated with deoxycholic acid (250 μM) for 0 hour, 3 hours, 6 hours, and 12 hours before evaluating the messenger RNA expression of Krüppel-like factor, OCT4, Nanog, interleukin-6, and Bcl-xL by reverse transcription-quantitative polymerase chain reaction. Interleukin-6 protein was detected by enzyme linked immunosorbent assay, while signal transduction and activation of transcription 3, phosphorylated signal transduction and activation of transcription 3, Krüppel-like factor, and OCT4 were detected by Western blot. Signal transduction and activation of transcription 3 small interfering RNA and human recombinant interleukin-6 were used to treat OE33 cells and to detect their effects on Krüppel-like factor, OCT4, Nanog, CD44, hypoxia-inducible factor 1-α, and Bcl-xL expression. Results showed that deoxycholic acid promotes the expression of reprogramming factors Krüppel-like factor and OCT4, which are regulated by the interleukin-6/signal transduction and activation of transcription 3 signaling pathway. Deoxycholic acid has a malignancy-inducing effect on the transformation of esophageal adenocarcinoma stem cells, improving the antiapoptotic ability of tumors, and increasing the malignancy of esophageal adenocarcinoma. Deactivating the regulatory signaling pathway of interleukin-6/signal transduction and activation of transcription 3 and neutralizing deoxycholic acid may be novel targets for improving the clinical efficacy of esophageal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Mei Chen
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - AXiaojun Ye
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| | - Jingxi Wei
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| | - Ruihua Wang
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - Karen Poon
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Wang F, Rong L, Zhang Z, Li M, Ma L, Ma Y, Xie X, Tian X, Yang Y. LncRNA H19-Derived miR-675-3p Promotes Epithelial-Mesenchymal Transition and Stemness in Human Pancreatic Cancer Cells by targeting the STAT3 Pathway. J Cancer 2020; 11:4771-4782. [PMID: 32626524 PMCID: PMC7330704 DOI: 10.7150/jca.44833] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: The functional role and mechanism of the long noncoding RNA (lncRNA) H19 in regulating human pancreatic cancer (PC) cell stemness and invasion have not been completely elucidated. This study aimed to evaluate the role of H19 in regulating the stemness, epithelial-mesenchymal transition (EMT), invasion and chemosensitivity of PC cells. Methods: The sphere-forming ability was assessed using serum-free floating-culture systems. Chemosensitivity was evaluated via CCK-8 and flow cytometry assays in vitro. Migration and invasion were evaluated by transwell assays. The expression of stemness and EMT markers was detected by flow cytometry, qRT-PCR and western blot analyses. Xenograft initiation, growth and sensitivity were examined; Ki-67 nuclear staining intensity was evaluated by immunohistochemistry; and in situ apoptosis was evaluated by a TUNEL assay. Results: H19 played an important role in maintaining PC cell stemness. Upregulated H19 expression in CAPAN-1 cells promoted tumor cell migration, invasion, EMT and chemoresistance. In contrast, downregulated H19 expression in PANC-1 cells yielded the opposite results. These effects were mediated by positively modulating the STAT3 pathway. Furthermore, SOCS5, an endogenous inhibitor of the STAT3 pathway, was a direct target of miR-675-3p, which was positively regulated by H19 in PC cells. Conclusions: The H19/miR-675-3p signaling axis plays a critical role in maintaining the EMT process and stemness of PC cells by directly targeting SOCS5 to activate the STAT3 pathway. These data provide new insights into the oncogenic function of H19 in human PC and reveal potential targets for the development of optimal treatment approaches for this disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China.,Department of Endoscopy Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Long Rong
- Department of Endoscopy Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhengkui Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Mingzhe Li
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Ling Ma
- Department of Surgical Oncology, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing 100038, People's Republic of China
| | - Yongsu Ma
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xuehai Xie
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| |
Collapse
|
28
|
Bi S, Wang Y, Feng H, Li Q. Long noncoding RNA LINC00657 enhances the malignancy of pancreatic ductal adenocarcinoma by acting as a competing endogenous RNA on microRNA-433 to increase PAK4 expression. Cell Cycle 2020; 19:801-816. [PMID: 32116086 DOI: 10.1080/15384101.2020.1731645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A long noncoding RNAs (lncRNA) called LINC00657 is dysregulated and contributes to tumor progression in a number of human cancer types. However, there is limited information on the expression profile and functions of LINC00657 in pancreatic ductal adenocarcinoma (PDAC). The expression profile of LINC00657 in PDAC was estimated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). The effects of LINC00657 upregulation on PDAC cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo were explored using CCK-8, flow cytometry, Transwell migration and invasion assays, and a xenograft tumor formation experiment, respectively. The results revealed that LINC00657 was evidently upregulated in the PDAC tumors and cell lines. High LINC00657 expression significantly correlated with the pathological T stage, lymph node metastasis, and shorter overall survival. Functional analysis demonstrated that LINC00657 knockdown inhibited the proliferation, migration, and invasion while promoted the apoptosis of PDAC cells. In addition, LINC00657 knockdown markedly suppressed tumor growth of these cells in vivo. In terms of the mechanism, LINC00657 could directly interact with microRNA-433 (miR-433) and effectively worked as an miR-433 sponge, thus decreasing the competitive binding of miR-433 to PAK4 mRNA and ultimately increasing PAK4 expression. The actions of LINC00657 knockdown on malignant phenotype of PDAC cells were strongly attenuated by miR-433 inhibition and PAK4 restoration. These results indicate that LINC00657 promotes PDAC progression by increasing the output of the miR-433-PAK4 regulatory loop, thus highlighting the importance of the LINC00657-miR-433-PAK4 network in PDAC pathogenesis.
Collapse
Affiliation(s)
- Shasha Bi
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China
| | - Yan Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, P.R.China
| | - Hu Feng
- Department of General Oncotherapy, WeiHai Municipal Hospital, Shandong, P.R.China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, P.R.China
| |
Collapse
|
29
|
Zhang J, Hu H, Xu S, Jiang H, Zhu J, Qin E, He Z, Chen E. The Functional Effects of Key Driver KRAS Mutations on Gene Expression in Lung Cancer. Front Genet 2020; 11:17. [PMID: 32117436 PMCID: PMC7010953 DOI: 10.3389/fgene.2020.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a common malignant cancer. Kirsten rat sarcoma oncogene (KRAS) mutations have been considered as a key driver for lung cancers. KRAS p.G12C mutations were most predominant in NSCLC which was comprised about 11–16% of lung adenocarcinomas (p.G12C accounts for 45–50% of mutant KRAS). But it is still not clear how the KRAS mutation triggers lung cancers. To study the molecular mechanisms of KRAS mutation in lung cancer. We analyzed the gene expression profiles of 156 KRAS mutation samples and other negative samples with two stage feature selection approach: (1) minimal Redundancy Maximal Relevance (mRMR) and (2) Incremental Feature Selection (IFS). At last, 41 predictive genes for KRAS mutation were identified and a KRAS mutation predictor was constructed. Its leave one out cross validation MCC was 0.879. Our results were helpful for understanding the roles of KRAS mutation in lung cancer.
Collapse
Affiliation(s)
- Jisong Zhang
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Huihui Hu
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Shan Xu
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Hanliang Jiang
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Jihong Zhu
- Department of Anesthesiology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - E Qin
- Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Enguo Chen
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Khan HY, Ge J, Nagasaka M, Aboukameel A, Mpilla G, Muqbil I, Szlaczky M, Chaker M, Baloglu E, Landesman Y, Mohammad RM, Azmi AS, Sukari A. Targeting XPO1 and PAK4 in 8505C Anaplastic Thyroid Cancer Cells: Putative Implications for Overcoming Lenvatinib Therapy Resistance. Int J Mol Sci 2019; 21:E237. [PMID: 31905765 PMCID: PMC6982268 DOI: 10.3390/ijms21010237] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022] Open
Abstract
Lenvatinib is a multitargeted tyrosine kinase inhibitor (TKI) that shows improved median progression-free survival (PFS) in patients with thyroid carcinomas. However, virtually all patients ultimately progress, indicating the need for a better understanding of the mechanisms of resistance. Here, we examined the molecular profile of anaplastic thyroid cancer cells (8505C) exposed to lenvatinib and found that long-term exposure to lenvatinib caused phenotypic changes. Consistent with change toward mesenchymal morphology, activation of pro-survival signaling, nuclear exporter protein exportin 1 (XPO1) and Rho GTPase effector p21 activated kinases (PAK) was also observed. RNA-seq analysis showed that prolonged lenvatinib treatment caused alterations in numerous cellular pathways and several oncogenes such as CEACAM (carcinoembryonic antigen-related cell adhesion molecule) and NUPR1 (Nuclear protein 1) were also upregulated. Further, we evaluated the impact of XPO1 and PAK4 inhibition in the presence or absence of lenvatinib. Targeted inhibition of XPO1 and PAK4 could sensitize the 8505C cells to lenvatinib. Both XPO1 and PAK4 inhibitors, when combined with lenvatinib, showed superior anti-tumor activity in 8505C sub-cutaneous xenograft. These studies bring forward novel drug combinations to complement lenvatinib for treating anaplastic thyroid cancer. Such combinations may possibly reduce the chances of lenvatinib resistance in thyroid cancer patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Therapy, Combination
- GTPase-Activating Proteins/metabolism
- Humans
- Karyopherins/antagonists & inhibitors
- Karyopherins/metabolism
- Mice, Inbred ICR
- Mice, SCID
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Thyroid Carcinoma, Anaplastic/drug therapy
- Thyroid Carcinoma, Anaplastic/metabolism
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/metabolism
- Transcriptome/drug effects
- Transcriptome/genetics
- Xenograft Model Antitumor Assays
- p21-Activated Kinases/antagonists & inhibitors
- p21-Activated Kinases/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Husain Yar Khan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | - James Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | - Misako Nagasaka
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | - Gabriel Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | - Irfana Muqbil
- Department of Chemistry and Biochemistry, University of Detroit Mercy, Detroit, MI 48221, USA;
| | - Mark Szlaczky
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | - Mahmoud Chaker
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | | | | | - Ramzi M. Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | - Asfar S. Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (J.G.); (M.N.); (A.A.); (G.M.); (M.S.); (M.C.); (R.M.M.); (A.S.A.)
| |
Collapse
|
31
|
Wang M, Gao Q, Chen Y, Li Z, Yue L, Cao Y. PAK4, a target of miR-9-5p, promotes cell proliferation and inhibits apoptosis in colorectal cancer. Cell Mol Biol Lett 2019; 24:58. [PMID: 31728150 PMCID: PMC6842216 DOI: 10.1186/s11658-019-0182-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. P21-activated kinase 4 (PAK4) and miR-9-5p have emerged as attractive therapeutic targets in several tumor types, but in CRC, the regulation of their biological function and their target association remain unclear. METHODS The expression of PAK4 in CRC tissues was determined using quantitative real-time PCR and immunohistochemistry analyses. The targeted regulation between miR-9-5p and PAK4 was predicted and confirmed with bioinformatics analysis and the dual-luciferase reporter assay. Functional experiments, including the MTT assay and flow cytometry, were performed to investigate the impact of PAK4 knockdown and miR-9-5p overexpression on cell proliferation and apoptosis in CRC cells. RESULTS We found that the expression of PAK4 was upregulated in CRC tissues. PAK4 knockdown significantly suppressed cell proliferation and promoted apoptosis in cells of the CRC cell lines HCT116 and SW1116. We also found that miR-9-5p directly targeted the 3'-UTR of PAK4 mRNA and negatively regulated its expression. The degree of downregulation of miR-9-5p inversely correlated with PAK4 expression. Intriguingly, enforced expression of miR-9-5p suppressed cell proliferation and promoted apoptosis. This could be partially reversed by PAK4 overexpression. CONCLUSION These results suggest that miR-9-5p targeting of PAK4 could have therapeutic potential for CRC treatment.
Collapse
Affiliation(s)
- Meihua Wang
- Department of Pathology, Changzhou Tumor Hospital Affiliated to Soochow University, 68 Honghe Road Changzhou, Changzhou, 213032 Jiangsu China
| | - Qianqian Gao
- Department of Pathology, Changzhou Tumor Hospital Affiliated to Soochow University, 68 Honghe Road Changzhou, Changzhou, 213032 Jiangsu China
| | - Yufang Chen
- Department of Pathology, Changzhou Tumor Hospital Affiliated to Soochow University, 68 Honghe Road Changzhou, Changzhou, 213032 Jiangsu China
| | - Ziyan Li
- Department of Pathology, Changzhou Tumor Hospital Affiliated to Soochow University, 68 Honghe Road Changzhou, Changzhou, 213032 Jiangsu China
| | - Lingping Yue
- Department of Pathology, Changzhou Tumor Hospital Affiliated to Soochow University, 68 Honghe Road Changzhou, Changzhou, 213032 Jiangsu China
| | - Yun Cao
- Department of Pathology, Changzhou Tumor Hospital Affiliated to Soochow University, 68 Honghe Road Changzhou, Changzhou, 213032 Jiangsu China
| |
Collapse
|
32
|
Kim JH, Choi HS, Kim SL, Lee DS. The PAK1-Stat3 Signaling Pathway Activates IL-6 Gene Transcription and Human Breast Cancer Stem Cell Formation. Cancers (Basel) 2019; 11:cancers11101527. [PMID: 31658701 PMCID: PMC6826853 DOI: 10.3390/cancers11101527] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) have unique properties, including self-renewal, differentiation, and chemoresistance. In this study, we found that p21-activated kinase (PAK1) inhibitor (Group I, PAK inhibitor, IPA-3) and inactivator (ivermectin) treatments inhibit cell proliferation and that tumor growth of PAK1-knockout cells in a mouse model is significantly reduced. IPA-3 and ivermectin inhibit CSC formation. PAK1 physically interacts with Janus Kinase 2 (JAK2), and JAK2 inhibitor (TG101209) treatment inhibits mammosphere formation and reduces the nuclear PAK1 protein level. PAK1 interacts with signal transducer and activator of transcription 3 (Stat3), and PAK1 and Stat3 colocalize in the nucleus. We show through electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and reporter assays that the PAK1/Stat3 complex binds to the IL-6 promoter and regulates the transcription of the IL-6 gene. Inhibition of PAK1 and JAK2 in mammospheres reduces the nuclear pStat3 and extracellular IL-6 levels. PAK1 inactivation inhibits CSC formation by decreasing pStat3 and extracellular IL-6 levels. Our results reveal that JAK2/PAK1 dysregulation inhibits the Stat3 signaling pathway and CSC formation, the PAK1/Stat3 complex regulates IL-6 gene expression, PAK1/Stat3 signaling regulates CSC formation, and PAK1 may be an important target for treating breast cancer.
Collapse
Affiliation(s)
- Ji-Hyang Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
| | - Hack Sun Choi
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Su-Lim Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
33
|
Han X, Kuang T, Ren Y, Lu Z, Liao Q, Chen W. Haspin knockdown can inhibit progression and development of pancreatic cancer in vitro and vivo. Exp Cell Res 2019; 385:111605. [PMID: 31493385 DOI: 10.1016/j.yexcr.2019.111605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive and lethal malignancies and it is the eighth most common cause of death from cancer worldwide. The purpose of this study was to investigate the role of GSG2 (HASPIN) in the development and progression of pancreatic cancer. MATERIAL AND METHODS GSG2 expression was detected by immunohistochemistry in tumor tissue samples, and by qRT-PCR and Western blot assay in human pancreatic cancer cell lines. Cell proliferation was evaluated by MTT assay. Giemsa staining was used for analyzing colony formation. Cell cycle and cell apoptosis were determined using Fluorescence activated Cells Sorting. Wound healing assay and transwell assay were applied for examining cell migration. The molecular mechanism was investigated by human apoptosis antibody array. Tumor-bearing animal model was constructed to verify the effects of GSG2 on pancreatic cancer in vivo. RESULTS GSG2 expression was upregulated in pancreatic cancer tissues and human pancreatic cancer cell lines: PANC-1 and SW1990. Higher expression of GSG2 in tumor samples was associated with poorer prognosis. GSG2 knockdown suppressed cell proliferation, colony formation, metastasis and promoted cell apoptosis, which was also verified in vivo. In addition, GSG2 knockdown blocked the cell cycle in G2. It was also found that downregulation of GSG2 inhibited Bcl-2, Bcl-w, cIAP, HSP60 and Livin expression as well as promoted IGFBP-6 expression. CONCLUSION This study revealed that GSG2 upregulation was associated with pancreatic cancer progression. GSG2 knockdown inhibited cell proliferation, colony formation and migration, blocked cell cycle at G2 phase, and induced cell apoptosis. Therefore, GSG2 might serve as a potential therapeutic target for pancreatic cancer therapy and a market for prognosis.
Collapse
Affiliation(s)
- Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yun Ren
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhufeng Lu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qingwu Liao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei Chen
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Department of Anesthesia, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 Gongyuan East Road, Shanghai, 201700, China.
| |
Collapse
|
34
|
Shamloo B, Usluer S. p21 in Cancer Research. Cancers (Basel) 2019; 11:cancers11081178. [PMID: 31416295 PMCID: PMC6721478 DOI: 10.3390/cancers11081178] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
p21 functions as a cell cycle inhibitor and anti-proliferative effector in normal cells, and is dysregulated in some cancers. Earlier observations on p21 knockout models emphasized the role of this protein in cell cycle arrest under the p53 transcription factor activity. Although tumor-suppressor function of p21 is the most studied aspect of this protein in cancer, the role of p21 in phenotypic plasticity and its oncogenic/anti-apoptotic function, depending on p21 subcellular localization and p53 status, have been under scrutiny recently. Basic science and translational studies use precision gene editing to manipulate p21 itself, and proteins that interact with it; these studies have led to regulatory/functional/drug sensitivity discoveries as well as therapeutic approaches in cancer field. In this review, we will focus on targeting p21 in cancer research and its potential in providing novel therapies.
Collapse
Affiliation(s)
- Bahar Shamloo
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Sinem Usluer
- Department of Molecular Biology & Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
35
|
Santiago-Gómez A, Kedward T, Simões BM, Dragoni I, NicAmhlaoibh R, Trivier E, Sabin V, Gee JM, Sims AH, Howell SJ, Clarke RB. PAK4 regulates stemness and progression in endocrine resistant ER-positive metastatic breast cancer. Cancer Lett 2019; 458:66-75. [DOI: 10.1016/j.canlet.2019.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
|
36
|
Wang K, Baldwin GS, Nikfarjam M, He H. Antitumor effects of all-trans retinoic acid and its synergism with gemcitabine are associated with downregulation of p21-activated kinases in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2019; 316:G632-G640. [PMID: 30844294 DOI: 10.1152/ajpgi.00344.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignancies worldwide. All-trans retinoic acid (ATRA) has been used as an antistromal agent in PDA, and its antitumor effect has also been reported in various kinds of cancer, including PDA. Inhibition of p21-activated kinases (PAKs) is associated with decreased tumor growth and increased gemcitabine sensitivity. The aim of this study was to evaluate the inhibitory effects of ATRA alone and in combination with gemcitabine on cell growth and migration of wild-type and gemcitabine-resistant PDA cells and the potential mechanism(s) involved. Human (MiaPaCa-2) and murine (TB33117) PDA cell lines were incubated in increasing concentrations of gemcitabine to establish resistant clones. Cell growth, clonogenicity, and migration/invasion were determined using a sulforhodamine B assay, a colony formation assay, and a Boyden chamber assay, respectively. Protein expression was measured by Western blotting. ATRA reduced cell proliferation, colony formation, and migration/invasion in both wild-type and gemcitabine-resistant cell lines. PAK1 expression was significantly increased in resistant cells. Cells treated with ATRA showed decreased expression of PAK1, PAK2, PAK4, and α-smooth muscle actin. The combination of ATRA and gemcitabine synergistically reduced cell growth in both wild-type and gemcitabine-resistant cell lines. Depletion of PAK1 enhanced ATRA sensitivity in MiaPaCa-2 cells. In conclusion, the antitumor effects of ATRA and its synergism with gemcitabine are associated with downregulation of PAKs. NEW & NOTEWORTHY The inhibitory effect of all-trans retinoic acid (ATRA) on cell proliferation, colony formation, and migration/invasion was associated with downregulation of p21-activated kinases (PAKs), and depletion of PAK1 enhanced ATRA sensitivity in MiaPaCa-2 cells. The combination of ATRA and gemcitabine synergistically reduced cell growth in both wild-type and gemcitabine-resistant pancreatic ductal adenocarcinoma cells. As an important prognostic marker, α-smooth muscle actin also can be downregulated by ATRA in pancreatic ductal adenocarcinoma cells.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria , Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria , Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria , Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria , Australia
| |
Collapse
|
37
|
BRM transcriptionally regulates miR-302a-3p to target SOCS5/STAT3 signaling axis to potentiate pancreatic cancer metastasis. Cancer Lett 2019; 449:215-225. [DOI: 10.1016/j.canlet.2019.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
38
|
P21 activated kinase signaling in cancer. Semin Cancer Biol 2019; 54:40-49. [DOI: 10.1016/j.semcancer.2018.01.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
|
39
|
Wang K, Baldwin GS, Nikfarjam M, He H. p21-activated kinase signalling in pancreatic cancer: New insights into tumour biology and immune modulation. World J Gastroenterol 2018; 24:3709-3723. [PMID: 30197477 PMCID: PMC6127653 DOI: 10.3748/wjg.v24.i33.3709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and lethal malignancies worldwide, with a very poor prognosis and a five-year survival rate less than 8%. This dismal outcome is largely due to delayed diagnosis, early distant dissemination and resistance to conventional chemo-therapies. Kras mutation is a well-defined hallmark of pancreatic cancer, with over 95% of cases harbouring Kras mutations that give rise to constitutively active forms of Kras. As important down-stream effectors of Kras, p21-activated kinases (PAKs) are involved in regulating cell proliferation, apoptosis, invasion/migration and chemo-resistance. Immunotherapy is now emerging as a promising treatment modality in the era of personalized anti-cancer therapeutics. In this review, basic knowledge of PAK structure and regulation is briefly summarised and the pivotal role of PAKs in Kras-driven pancreatic cancer is highlighted in terms of tumour biology and chemo-resistance. Finally, the involvement of PAKs in immune modulation in the tumour microenvironment is discussed and the potential advantages of targeting PAKs are explored.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| |
Collapse
|
40
|
He W, Wu J, Shi J, Huo YM, Dai W, Geng J, Lu P, Yang MW, Fang Y, Wang W, Zhang ZG, Habtezion A, Sun YW, Xue J. IL22RA1/STAT3 Signaling Promotes Stemness and Tumorigenicity in Pancreatic Cancer. Cancer Res 2018; 78:3293-3305. [PMID: 29572224 DOI: 10.1158/0008-5472.can-17-3131] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/13/2017] [Accepted: 03/19/2018] [Indexed: 11/16/2022]
Abstract
Chronic inflammation is a feature of pancreatic cancer, but little is known about how immune cells or immune cell-related signals affect pancreatic cancer stemness and development. Our previous work showed that IL22/IL22RA1 plays a vital role in acute and chronic pancreatitis progression by mediating cross-talk between immune cells and acinar cells or stellate cells, respectively. Here, we find IL22RA1 is highly but heterogeneously expressed in pancreatic cancer cells, with high expression associated with poor prognosis of patients with pancreatic cancer. The IL22RA1hi population from pancreatic cancer harbored higher stemness potential and tumorigenicity. Notably, IL22 promoted pancreatic cancer stemness via IL22RA1/STAT3 signaling, establishing the mechanism of regulation of cancer stemness by microenvironmental factors. Moreover, STAT3 was indispensable for the maintenance of IL22RA1hi cells. Overall, these findings provide a therapeutic strategy for patients with PDAC with high expression of IL22RA1.Significance: IL22RA1/STAT3 signaling enhances stemness and tumorigenicity in pancreatic cancer. Cancer Res; 78(12); 3293-305. ©2018 AACR.
Collapse
Affiliation(s)
- Weizhi He
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghua Wu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Jing Geng
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Department of General Surgery & Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Department of General Surgery & Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California.
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
41
|
Abstract
Research on stem cells is one of the fastest growing areas of regenerative medicine that paves the way for a comprehensive solution to cell therapy. Today, stem cells are precious assets for generating different types of cells derived from either natural embryonic stem (ES) cells or induced pluripotent stem (iPS) cells. The iPS technology can revolutionize the future of clinics by offering personalized medicine, which will provide the future treatment for curing untreatable diseases. Although iPS cell therapy is now at its infancy, promising research has motivated scientists to pursue this therapeutic approach. In this article, we provide information regarding similarities and differences between ES and iPS cells, and focus on the non-integrating methods of iPS generation via RNA molecules, especially microRNAs with an emphasis on the elucidation of their role and importance in pluripotency.
Collapse
Affiliation(s)
- Abbas Beh-Pajooh
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
42
|
Callegari E, D'Abundo L, Guerriero P, Simioni C, Elamin BK, Russo M, Cani A, Bassi C, Zagatti B, Giacomelli L, Blandamura S, Moshiri F, Ultimo S, Frassoldati A, Altavilla G, Gramantieri L, Neri LM, Sabbioni S, Negrini M. miR-199a-3p Modulates MTOR and PAK4 Pathways and Inhibits Tumor Growth in a Hepatocellular Carcinoma Transgenic Mouse Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:485-493. [PMID: 29858083 PMCID: PMC5992479 DOI: 10.1016/j.omtn.2018.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Prognosis is poor, and therapeutic options are limited. MicroRNAs (miRNAs) have emerged as potential therapeutic molecules against cancer. Here, we investigated the therapeutic efficacy of miR-199a-3p, an miRNA highly expressed in normal liver and downregulated in virtually all HCCs. The therapeutic value of miR-199a-3p mimic molecules was assayed in the TG221 mouse, a transgenic model highly predisposed to the development of liver cancer. Administration of miR-199a-3p mimics in the TG221 transgenic mouse showing liver cancer led to a significant reduction of number and size of tumor nodules compared to control animals. In vivo delivery confirmed protein downregulation of the miR-199a-3p direct targets, mechanistic target of rapamycin (MTOR) and p21 activated kinase 4 (PAK4), ultimately leading to the repression of FOXM1. Remarkably, the anti-tumor activity of miR-199a-3p mimics was comparable to that obtained with sorafenib. These results suggested that miR-199a-3p may be considered a promising HCC therapeutic option.
Collapse
Affiliation(s)
- Elisa Callegari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Lucilla D'Abundo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Bahaeldin K Elamin
- Department of Basic Sciences, College of Medicine, University of Bisha, 61922 Bisha, Saudi Arabia; Microbiology Department, Faculty of Medical Laboratory Sciences, University of Khartoum, 11115 Khartoum, Sudan
| | - Marta Russo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alice Cani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Barbara Zagatti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | | - Stella Blandamura
- Department of Medicine DIMED, University of Padova, 35128 Padova, Italy
| | - Farzaneh Moshiri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 11369 Tehran, Iran
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Antonio Frassoldati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | | - Laura Gramantieri
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Luca Maria Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
43
|
Xie X, Shi X, Guan H, Guo Q, Fan C, Dong W, Wang G, Li F, Shan Z, Cao L, Teng W. P21-activated kinase 4 involves TSH induced papillary thyroid cancer cell proliferation. Oncotarget 2018; 8:24882-24891. [PMID: 28178642 PMCID: PMC5421896 DOI: 10.18632/oncotarget.15079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
Papillary thyroid cancer is a common endocrine malignancy. Although p21-activated kinase 4 (PAK4) is involved in the development of different types of tumor, its function has not been investigated in papillary thyroid cancer. Here, we identified a role for PAK4 in papillary thyroid cancer progression. Levels of PAK4 and PAK4 phosphorylated at serine 474 correlated significantly with tumor size and TNM stage. Furthermore, stable knockdown of PAK4 retarded cellular proliferation, migration, and invasion. Moreover, thyroid stimulating hormone-induced cellular proliferation in papillary thyroid cancer was found to be dependent on TSHR/cAMP/PKA/PAK4 signaling, with levels of phosphorylated PAK4 correlating positively with serum thyroid stimulating hormone and PKA Cα levels in patients with papillary thyroid cancer. These findings revealed a novel function of PAK4 in thyroid stimulating hormone-induced papillary thyroid cancer progression and suggest that PAK4 may become a promising diagnostic and therapeutic target for this disease.
Collapse
Affiliation(s)
- Xiaochen Xie
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, P.R. China
| | - Xiaoguang Shi
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, P.R. China
| | - Qiqiang Guo
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang, P.R. China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, P.R. China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Guiling Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, P.R. China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang, P.R. China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, P.R. China
| |
Collapse
|
44
|
Im CN, Yun HH, Song B, Youn DY, Cui MN, Kim HS, Park GS, Lee JH. BIS-mediated STAT3 stabilization regulates glioblastoma stem cell-like phenotypes. Oncotarget 2018; 7:35056-70. [PMID: 27145367 PMCID: PMC5085209 DOI: 10.18632/oncotarget.9039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/16/2016] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma stem cells (GSCs) are a subpopulation of highly tumorigenic and stem-like cells that are responsible for resistance to conventional therapy. Bcl-2-intreacting cell death suppressor (BIS; also known as BAG3) is an anti-apoptotic protein that is highly expressed in human cancers with various origins, including glioblastoma. In the present study, to investigate the role of BIS in GSC subpopulation, we examined the expression profile of BIS in A172 and U87-MG glioblastoma cell lines under specific in vitro culture conditions that enrich GSC-like cells in spheres. Both BIS mRNA and protein levels significantly increased under the sphere-forming condition as compared with standard culture conditions. BIS depletion resulted in notable decreases in sphere-forming activity and was accompanied with decreases in SOX-2 expression. The expression of STAT3, a master regulator of stemness, also decreased following BIS depletion concomitant with decreases in the nuclear levels of active phosphorylated STAT3, while ectopic STAT3 overexpression resulted in recovery of sphere-forming activity in BIS-knockdown glioblastoma cells. Additionally, immunoprecipitation and confocal microscopy revealed that BIS physically interacts with STAT3. Furthermore, BIS depletion increased STAT3 ubiquitination, suggesting that BIS is necessary for STAT3 stabilization in GSC-like cells. BIS depletion also affected epithelial-to-mesenchymal transition-related genes as evidenced by decrease in SNAIL and MMP-2 expression and increase in E-cadherin expression in GSC-like cells. Our findings suggest that high levels of BIS expression might confer stem-cell-like properties on cancer cells through STAT3 stabilization, indicating that BIS is a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byunghoo Song
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Ye Youn
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mei Nu Cui
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Sug Kim
- NGS Clinical Department, Macrogen Inc., Seoul, Korea
| | - Gyeong Sin Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
45
|
Tyagi N, Deshmukh SK, Srivastava SK, Azim S, Ahmad A, Al-Ghadhban A, Singh AP, Carter JE, Wang B, Singh S. ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1. Mol Cancer Res 2017; 16:187-196. [PMID: 29117940 DOI: 10.1158/1541-7786.mcr-17-0219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022]
Abstract
The ETS family transcription factor ETV4 is aberrantly expressed in a variety of human tumors and plays an important role in carcinogenesis through upregulation of relevant target gene expression. Here, it is demonstrated that ETV4 is overexpressed in pancreatic cancer tissues as compared with the normal pancreas, and is associated with enhanced growth and rapid cell-cycle progression of pancreatic cancer cells. ETV4 expression was silenced through stable expression of a specific short hairpin RNA (shRNA) in two pancreatic cancer cell lines (ASPC1 and Colo357), while it was ectopically expressed in BXPC3 cells. Silencing of ETV4 in ASPC1 and Colo357 cells reduced the growth by 55.3% and 38.9%, respectively, while forced expression of ETV4 in BXPC3 cells increased the growth by 46.8% in comparison with respective control cells. Furthermore, ETV4-induced cell growth was facilitated by rapid transition of cells from G1- to S-phase of the cell cycle. Mechanistic studies revealed that ETV4 directly regulates the expression of Cyclin D1 CCND1, a protein crucial for cell-cycle progression from G1- to S-phase. These effects on the growth and cell cycle were reversed by the forced expression of Cyclin D1 in ETV4-silenced pancreatic cancer cells. Altogether, these data provide the first experimental evidence for a functional role of ETV4 in pancreatic cancer growth and cell-cycle progression.Implications: The functional and mechanistic data presented here regarding ETV4 in pancreatic cancer growth and cell-cycle progression suggest that ETV4 could serve as a potential biomarker and novel target for pancreatic cancer therapy. Mol Cancer Res; 16(2); 187-96. ©2017 AACR.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sachin K Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Division of Cell Biology and Genetics, Tatva Biosciences, Coastal Innovation Hub, Mobile, Alabama
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ahmed Al-Ghadhban
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
46
|
Wang K, Huynh N, Wang X, Baldwin G, Nikfarjam M, He H. Inhibition of p21 activated kinase enhances tumour immune response and sensitizes pancreatic cancer to gemcitabine. Int J Oncol 2017; 52:261-269. [PMID: 29115428 DOI: 10.3892/ijo.2017.4193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the major types of cancer that exhibit high mortality worldwide because of the late diagnosis and the lack of effective treatment. Immunotherapy appears to be ineffective in PDA treatment due to the existence of a unique immune-suppressive microenvironment in PDA. Gemcitabine-based therapy is still the most commonly used chemotherapy to treat PDA patients with only marginal increased survival rates. This prompted us to continue the search for more effective therapy for PDA treatment. The effects of p21 activated kinases (PAKs) on tumour immune response and gemcitabine response were examined in PDA. An orthotopic murine PDA model, in which pancreatic cancer cells were injected to the tail of pancreas, was used. The mice were treated with PAK inhibitor, PF‑3758309, plus or minus gemcitabine. Tumour growth was measured by volume and weight. Tumour immune response was determined by flow cytometry analysis of splenic cells and immunohistochemical staining of intratumoural lymphocytes. Inhibition of PAKs by PF‑3758309, not only suppressed tumour growth, but also stimulated tumour immune response by increasing the numbers of splenic and intratumoural T lymphocytes. Furthermore, inhibition of PAKs decreased PDA cell growth synergistically with gemcitabine in vitro and in vivo. The dual effects of inhibition of PAKs make PAK-targeted therapy more potent for the treatment of PDA. The combination of PAK inhibitors with gemcitabine may be a more effective therapeutic approach in PDA treatment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria 3048, Australia
| | - Nhi Huynh
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria 3048, Australia
| | - Xiao Wang
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria 3048, Australia
| | - Graham Baldwin
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria 3048, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria 3048, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria 3048, Australia
| |
Collapse
|
47
|
Amani H, Ajami M, Nasseri Maleki S, Pazoki-Toroudi H, Daglia M, Tsetegho Sokeng AJ, Di Lorenzo A, Nabavi SF, Devi KP, Nabavi SM. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie 2017; 142:63-79. [DOI: 10.1016/j.biochi.2017.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
|
48
|
Li Z, Li X, Xu L, Tao Y, Yang C, Chen X, Fang F, Wu Y, Ding X, Zhao H, Li M, Qian G, Xu Y, Ren J, Du W, Wang J, Lu J, Hu S, Pan J. Inhibition of neuroblastoma proliferation by PF-3758309, a small-molecule inhibitor that targets p21-activated kinase 4. Oncol Rep 2017; 38:2705-2716. [PMID: 29048629 PMCID: PMC5780023 DOI: 10.3892/or.2017.5989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid childhood tumor. Despite the availability of advanced multimodal therapy, high-risk patients still have low survival rates. p21-activated kinase 4 (PAK4) has been shown to regulate many cellular processes in cancer cells, including migration, polarization and proliferation. However, the role of PAK4 in neuroblastoma remains unclear. In the present study, we demonstrated that PAK4 was overexpressed in neuroblastoma tissues and was correlated with tumor malignance and prognosis. To investigate the function of PAK4 in neuroblastoma, we used a small-molecule inhibitor that targets PAK4, that is, PF-3758309. Our results showed that PF-3758309 significantly induced cell cycle arrest at the G1 phase and apoptosis in neuroblastoma cell lines. Meanwhile, the inhibition of PAK4 by PF-3758309 increased the expression of CDKN1A, BAD and BAK1 and decreased the expression of Bcl-2 and Bax. In addition, we screened the target genes of PAK4 by PCR array and found that 23 genes were upregulated (including TP53I3, TBX3, EEF1A2, CDKN1A, IFNB1 and MAPK8IP2) and 20 genes were downregulated (including TNFSF8, Bcl2-A1, Bcl2L1, SOCS3, BIRC3 and NFKB1) after PAK4 inhibition by PF-3758309. Moreover, PAK4 was found to regulate the cell cycle and apoptosis via the ERK signaling pathway. In conclusion, the present study demonstrated, for the first time, the expression and function of PAK4 in neuroblastomas and the inhibitory effect of PF-3758309, which deserves further investigation as an alternative strategy for neuroblastoma treatment.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xiaolu Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Lixiao Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yanfang Tao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Chun Yang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xiaolan Chen
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Fang Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yi Wu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xin Ding
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - He Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Mei Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Guanghui Qian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yunyun Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Junli Ren
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Weiwei Du
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jian Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
49
|
Zhang Z, Zhou J, Zhang J, Duan R, Pu P, Han L. Downregulation of lncRNA-HOXA11-AS modulates proliferation and stemness in Glioma cells. Chin Neurosurg J 2017. [DOI: 10.1186/s41016-017-0091-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Pdx1-Cre-driven conditional gene depletion suggests PAK4 as dispensable for mouse pancreas development. Sci Rep 2017; 7:7031. [PMID: 28765528 PMCID: PMC5539201 DOI: 10.1038/s41598-017-07322-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/21/2017] [Indexed: 12/01/2022] Open
Abstract
Constitutive depletion of p21-activated kinase 4 (PAK4) in the mouse causes embryonic lethality associated with heart and brain defects. Given that conventional gene depletion of PAK1 or PAK3 caused functional deficits in the mouse pancreas, while gene depletion of PAK5 or PAK6 did not, we asked if PAK4 might have a functional role in pancreas development. We therefore introduced conditional, Pdx1-Cre-mediated, pancreatic PAK4 gene depletion in the mouse, verified by loss of PAK4 protein expression in the pancreas. PAK4 knock-out (KO) mice were born at Mendelian ratios in both genders. Further, morphological and immunohistochemical examinations and quantifications indicated that exocrine, endocrine and ductal compartments retained the normal proportions and distributions upon PAK4 gene depletion. In addition, body weight records and a glucose tolerance test revealed no differences between WT and PAK4 KO mice. Together, this suggests that PAK4 is dispensable for mouse pancreas development. This will facilitate future use of our Pdx1-Cre-driven conditional PAK4 KO mouse model for testing in vivo potential functions of PAK4 in pancreatic disease models such as for pancreatitis and different pancreatic cancer forms.
Collapse
|