1
|
Rehman A, Wang H, Li C, Fatima I, Noor F, Ding Y, He Z, Dong H, Ni Y, Meng Y, Qasim M, Shi X, Liao M. Targeting mRNA export complex macromolecules THO subunits (Thoc2 and Thoc5) for somatic cell reprograming. Int J Biol Macromol 2025; 307:142072. [PMID: 40107550 DOI: 10.1016/j.ijbiomac.2025.142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Somatic Cell Reprogramming refers to the process of converting differentiated somatic cells back into a pluripotent state, similar to induced pluripotent stem cells (iPSCs), through molecular and cellular manipulation. This process enables biological systems to be reprogrammed for regenerative purposes. Our studies report the identification and structural prediction of the somatic cell macromolecules THO Complex Subunits 2 and 5 (Thoc2 and Thoc5). These macromolecules are integral components of the mRNA export complex and play pivotal roles in maintaining cellular identity by regulating gene expression. Their significance in the cellular reprogramming of somatic cells cannot be underestimated, as they play a crucial role in the transformation process at a molecular level. Given their critical roles, we utilized advanced computational methods to predict their structures, providing new insights into their functions within the cell. Building on this foundation, we integrated machine learning techniques to identify small molecules that could selectively bind to Thoc2 and Thoc5, thereby enhancing the reprogramming efficiency and specificity. These small molecules represent a breakthrough in the field, as they offer a novel, non-genetic approach to improve reprogramming outcomes. Our findings highlight the potential of these compounds to significantly advance regenerative medicine, offering new avenues for cellular reprogramming by directly targeting these essential macromolecules. This study marks a significant step forward in the development of therapeutic strategies aimed at improving the efficiency and precision of somatic cell reprogramming.
Collapse
Affiliation(s)
- Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| | - Haixin Wang
- Cadre Medical Department, The Ist medical Center, Chinese PLA General Hospital, Beijing 100853,China
| | - Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Fatima Noor
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Zhijie He
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Huiyang Dong
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yu Ni
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yuxuan Meng
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Pakistan
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Du J, Li Y, Su Y, Zhi W, Zhang J, Zhang C, Wang J, Deng W, Zhao S. LncRNA Pnky Positively Regulates Neural Stem Cell Migration by Modulating mRNA Splicing and Export of Target Genes. Cell Mol Neurobiol 2023; 43:1199-1218. [PMID: 35748966 PMCID: PMC11414454 DOI: 10.1007/s10571-022-01241-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Directed migration of neural stem cells (NSCs) is critical for embryonic neurogenesis and the healing of neurological injuries. The long noncoding RNA (lncRNA) Pnky has been reported to regulate neuronal differentiation of NSCs by interacting with PTBP1. However, its regulatory effect on NSC migration remains to be determined. Herein, we identified that Pnky is also a key regulator of NSC migration in mice, as underscored by the finding that Pnky silencing suppressed but Pnky overexpression promoted the in vitro migration of both C17.2 and NE4C murine NSCs. Additionally, in vivo cell tracking demonstrated that Pnky depletion attenuated but Pnky overexpression facilitated the migration of NE4C cells in the spinal canal after transplantation via injection into the spinal canal. Mechanistically, Pnky regulated the expression of a core set of critical regulators that direct NSC migration, including MMP2, MMP9, Connexin43, Paxillin, AKT, ERK, and P38MAPK. Using catRAPID, a web server for large-scale prediction of protein-RNA interactions, the splicing factors U2AF1 and U2AF1L4, as well as the mRNA export adaptors SARNP, Aly/Ref, and THOC7, were predicted to interact strongly with Pnky. Further investigations using colocalization and RNA immunoprecipitation (RIP) assays confirmed the direct binding of Pnky to U2AF1, SARNP, Aly/Ref, and THOC7. Transcriptomic profiling revealed that as many as 5319 differential splicing events of 3848 genes, which were highly enriched in focal adhesion, PI3K-Akt and MAPK signaling pathways, were affected by Pnky depletion. The predominant subtype of differential splicing by Pnky depletion is intron retention, followed by alternative 5' and 3' splice sites and mutually exclusive exons. Moreover, Pnky knockdown substantially blocked but Pnky overexpression facilitated the export of MMP2, Paxillin, AKT, p38MAPK, and other mRNAs to the cytosol. Collectively, our data showed that through interacting with U2AF1, SARNP, Aly/Ref, and THOC7, Pnky couples and modulates the splicing and export of target mRNAs, which consequently controlling NSC migration. These findings provide a possible theoretical basis of NSC migration regulation.
Collapse
Affiliation(s)
- Jiannan Du
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuting Su
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Jiale Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| |
Collapse
|
3
|
Polenkowski M, Allister AB, Burbano de Lara S, Pierce A, Geary B, El Bounkari O, Wiehlmann L, Hoffmann A, Whetton AD, Tamura T, Tran DDH. THOC5 complexes with DDX5, DDX17, and CDK12 to regulate R loop structures and transcription elongation rate. iScience 2022; 26:105784. [PMID: 36590164 PMCID: PMC9800341 DOI: 10.1016/j.isci.2022.105784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
THOC5, a member of the THO complex, is essential for the 3'processing of some inducible genes, the export of a subset of mRNAs and stem cell survival. Here we show that THOC5 depletion results in altered 3'cleavage of >50% of mRNAs and changes in RNA polymerase II binding across genes. THOC5 is recruited close to high-density polymerase II sites, suggesting that THOC5 is involved in transcriptional elongation. Indeed, measurement of elongation rates in vivo demonstrated decreased rates in THOC5-depleted cells. Furthermore, THOC5 is preferentially recruited to its target genes in slow polymerase II cells compared with fast polymerase II cells. Importantly chromatin-associated THOC5 interacts with CDK12 (a modulator of transcription elongation) and RNA helicases DDX5, DDX17, and THOC6 only in slow polymerase II cells. The CDK12/THOC5 interaction promotes CDK12 recruitment to R-loops in a THOC6-dependent manner. These data demonstrate a novel function of THOC5 in transcription elongation.
Collapse
Affiliation(s)
- Mareike Polenkowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | - Aldrige Bernardus Allister
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | | | - Andrew Pierce
- Stem Cell and Leukemia Protoemics Laboratory, University of Manchester, Manchester M20 3LJ, UK
| | - Bethany Geary
- Stem Cell and Leukemia Protoemics Laboratory, University of Manchester, Manchester M20 3LJ, UK
| | - Omar El Bounkari
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Lutz Wiehlmann
- Pädiatrische Pneumologie Hannover Medical School, Hannover D-30623, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Hannover Medical School, Hannover D-30623, Germany
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9PL, UK
| | - Teruko Tamura
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | - Doan Duy Hai Tran
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany,Corresponding author
| |
Collapse
|
4
|
Mun SH, Oh B, Lee MJ, Bae S, Yang Y, Park-Min KH. THOC5 regulates human osteoclastogenesis. Eur J Cell Biol 2022; 101:151248. [PMID: 35688054 PMCID: PMC11058851 DOI: 10.1016/j.ejcb.2022.151248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Osteoclasts are bone resorbing cells that are responsible for physiological and pathological bone resorption. Macrophage colony stimulating factor (M-CSF) binds to the M-CSF receptor (c-FMS) and plays a key role in the differentiation and survival of macrophages and osteoclasts. THOC5, a member of the THO complex, has been shown to regulate hematopoiesis and M-CSF-induced macrophage differentiation. However, the role of THOC5 in osteoclasts remains unclear. Here, our study reveals a new role of THOC5 in osteoclast formation. We found that THOC5 shuttles between nucleus and cytoplasm in an M-CSF signaling dependent manner. THOC5 bound to FICD, a proteolytic cleavage product of c-FMS, and THOC5 facilitates the nuclear translocations of FICD. Decreased expression of THOC5 by siRNA-mediated knock down suppressed osteoclast differentiation, in part, by regulating RANK, a key receptor of osteoclasts. Mechanistically, knock down of THOC5 inhibited the expression of RANKL-induced FOS and NFATc1. Our findings highlight THOC5's function as a positive regulator of osteoclasts.
Collapse
Affiliation(s)
- Se Hwan Mun
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Min Joon Lee
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Young Yang
- Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; BCMB allied program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
5
|
Li X, Liu Z, Wei X, Lin J, Yang Q, Xie Y. Comprehensive Analysis of the Expression and Clinical Significance of THO Complex Members in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:2695-2713. [PMID: 35300138 PMCID: PMC8922240 DOI: 10.2147/ijgm.s349925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Xixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xin Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Yingjun Xie, Tel +86 17390069233, Email
| |
Collapse
|
6
|
Polenkowski M, Burbano de Lara S, Allister AB, Nguyen TNQ, Tamura T, Tran DDH. Identification of Novel Micropeptides Derived from Hepatocellular Carcinoma-Specific Long Noncoding RNA. Int J Mol Sci 2021; 23:ijms23010058. [PMID: 35008483 PMCID: PMC8744898 DOI: 10.3390/ijms23010058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of cancer-specific target molecules and biomarkers may be useful in the development of novel treatment and immunotherapeutic strategies. We have recently demonstrated that the expression of long noncoding (lnc) RNAs can be cancer-type specific due to abnormal chromatin remodeling and alternative splicing. Furthermore, we identified and determined that the functional small protein C20orf204-189AA encoded by long intergenic noncoding RNA Linc00176 that is expressed predominantly in hepatocellular carcinoma (HCC), enhances transcription of ribosomal RNAs and supports growth of HCC. In this study we combined RNA-sequencing and polysome profiling to identify novel micropeptides that originate from HCC-specific lncRNAs. We identified nine lncRNAs that are expressed exclusively in HCC cells but not in the liver or other normal tissues. Here, DNase-sequencing data revealed that the altered chromatin structure plays a key role in the HCC-specific expression of lncRNAs. Three out of nine HCC-specific lncRNAs contain at least one open reading frame (ORF) longer than 50 amino acid (aa) and enriched in the polysome fraction, suggesting that they are translated. We generated a peptide specific antibody to characterize one candidate, NONHSAT013026.2/Linc013026. We show that Linc013026 encodes a 68 amino acid micropeptide that is mainly localized at the perinuclear region. Linc013026-68AA is expressed in a subset of HCC cells and plays a role in cell proliferation, suggesting that Linc013026-68AA may be used as a HCC-specific target molecule. Our finding also sheds light on the role of the previously ignored ’dark proteome’, that originates from noncoding regions in the maintenance of cancer.
Collapse
Affiliation(s)
- Mareike Polenkowski
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
| | - Sebastian Burbano de Lara
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
- Systems Biology of Signal Transduction B200, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Aldrige Bernardus Allister
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
| | - Thi Nhu Quynh Nguyen
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
| | - Teruko Tamura
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
| | - Doan Duy Hai Tran
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
- Correspondence: ; Tel.: +49-511-532-2857
| |
Collapse
|
7
|
Barreiro-Alonso A, Lamas-Maceiras M, Lorenzo-Catoira L, Pardo M, Yu L, Choudhary JS, Cerdán ME. HMGB1 Protein Interactions in Prostate and Ovary Cancer Models Reveal Links to RNA Processing and Ribosome Biogenesis through NuRD, THOC and Septin Complexes. Cancers (Basel) 2021; 13:cancers13184686. [PMID: 34572914 PMCID: PMC8466577 DOI: 10.3390/cancers13184686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary HMGB1 over-expression is associated to prostate and ovary cancers: in this work, using a proteomic approach, we aimed to discover new protein interactions that might contribute to understand the oncogenic function of HMGB1 in cancers models. Our findings show that HMGB1 interacts with components of the NuRD, THOC and septin complexes, revealing new connections of HMGB1 functions to RNA processing and ribosome biogenesis. Results might contribute to consider the components of these interactomes as targets for diagnosis and therapy in future studies. Abstract This study reports the HMGB1 interactomes in prostate and ovary cancer cells lines. Affinity purification coupled to mass spectrometry confirmed that the HMGB1 nuclear interactome is involved in HMGB1 known functions such as maintenance of chromatin stability and regulation of transcription, and also in not as yet reported processes such as mRNA and rRNA processing. We have identified an interaction between HMGB1 and the NuRD complex and validated this by yeast-two-hybrid, confirming that the RBBP7 subunit directly interacts with HMGB1. In addition, we describe for the first time an interaction between two HMGB1 interacting complexes, the septin and THOC complexes, as well as an interaction of these two complexes with Rab11. Analysis of Pan-Cancer Atlas public data indicated that several genes encoding HMGB1-interacting proteins identified in this study are dysregulated in tumours from patients diagnosed with ovary and prostate carcinomas. In PC-3 cells, silencing of HMGB1 leads to downregulation of the expression of key regulators of ribosome biogenesis and RNA processing, namely BOP1, RSS1, UBF1, KRR1 and LYAR. Upregulation of these genes in prostate adenocarcinomas is correlated with worse prognosis, reinforcing their functional significance in cancer progression.
Collapse
Affiliation(s)
- Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
- Correspondence: (A.B.-A.); (M.E.C.)
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - Lu Yu
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - Jyoti S. Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - M. Esperanza Cerdán
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
- Correspondence: (A.B.-A.); (M.E.C.)
| |
Collapse
|
8
|
Bao J, Zhang Y, Zhang L, Wang X. Effects of maternal exposure to PFOA on testes of male offspring mice. CHEMOSPHERE 2021; 272:129585. [PMID: 33465609 DOI: 10.1016/j.chemosphere.2021.129585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This study was conducted to explore the effects of maternal exposure to perfluorooctanoic acid (PFOA) on testicular development of male offspring mice. 20 pregnant Kunming mice were randomly divided into control group and PFOA exposure group with 10 mice of each. In PFOA exposure group, pregnant mice were given 5 mg/kg BW PFOA daily by gavage during gestation. Male offspring mice were killed to separate serum and collect testis at postpartum day 21, then tested the experimental indicators. The results showed that compared with control group, the content of PFOA in the serum of PFOA-exposed mice increased significantly and testosterone content is significantly reduced. Histological observations revealed architectural damages in testis in PFOA exposed groups and the apoptosis was increased. Transcriptome sequencing results showed that the U4/U6 snRNA coding genes snu13 and prp19 complex coding genes HSP73 were up-regulated and the U5 snRNA coding genes Brr2, Prp8 and EJC/TREX coding THOC genes were down-regulated after PFOA exposure Real-time PCR confirmed this result. These results indicate that the exposure of pregnant mice to perfluorooctanoic acid will have a damaging effect on the development of testes in male offspring mice, which may be due to blocked activation of the shear body, changes in structural functions, and inability to perform shear functions.
Collapse
Affiliation(s)
- Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
9
|
A Genetic Screen for Human Genes Suppressing FUS Induced Toxicity in Yeast. G3-GENES GENOMES GENETICS 2020; 10:1843-1852. [PMID: 32276960 PMCID: PMC7263679 DOI: 10.1534/g3.120.401164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FUS is a nucleic acid binding protein that, when mutated, cause a subset of familial amyotrophic lateral sclerosis (ALS). Expression of FUS in yeast recapitulates several pathological features of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, formation of cytoplasmic inclusions, and cytotoxicity. Genetic screens using the yeast model of FUS have identified yeast genes and their corresponding human homologs suppressing FUS induced toxicity in yeast, neurons and animal models. To expand the search for human suppressor genes of FUS induced toxicity, we carried out a genome-scale genetic screen using a newly constructed library containing 13570 human genes cloned in an inducible yeast-expression vector. Through multiple rounds of verification, we found 37 human genes that, when overexpressed, suppress FUS induced toxicity in yeast. Human genes with DNA or RNA binding functions are overrepresented among the identified suppressor genes, supporting that perturbations of RNA metabolism is a key underlying mechanism of FUS toxicity.
Collapse
|
10
|
Loja-Chango R, Salazar-Pousada D, Escobar-Valdivieso GS, Ramírez-Morán C, Espinoza-Caicedo J, Pérez-López FR, Gavilanes AWD, Chedraui P. Polymorphism of the THOC5 of the transcription/export multiprotein complex and its correlation with the lipid and metabolic profile in middle-aged women. Gynecol Endocrinol 2020; 36:243-246. [PMID: 31402763 DOI: 10.1080/09513590.2019.1649387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The transcription/export complex (TREX) is formed by a core called THO. These are necessary for the transcription and packaging of messenger RNA and its subsequent nuclear exportation. Studies have correlated THO-specific polymorphisms with abnormalities of HDL-C metabolism. To correlate lipid and metabolic parameters with the genetic variants of the rs8135828 polymorphism of the THOC5 gene in middle-aged women. DNA was extracted from the whole blood of 183 women aged 40-65 and tested for the rs8135828 polymorphism of the THOC5 gene using real-time PCR. HDL-C, LDL-C, triglyceride, and total cholesterol levels, as well as other metabolic parameters, were correlated with the polymorphism genotypes: GG, AG, and AA. Mean age of women was 50.6 ± 6.3 years, 54.6% were postmenopausal and 16.4% had the metabolic syndrome. GG was the most frequently determined genotype (62.3%). There were no differences in lipid levels according to genotypes; although there was a trend for lower HDL-C levels for the AA and AG + AA genotypes. Those with the AG and AG + AA genotypes displayed significantly higher glucose levels (p = .02 and p = .002, respectively); with a trend toward a higher metabolic syndrome prevalence and increased abdominal perimeters in both variants (AG and AG + AA). The AG genotype was related to higher glucose levels but not with abnormal lipid parameters. There is a need for more research in this regard.
Collapse
Affiliation(s)
- Rita Loja-Chango
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Danny Salazar-Pousada
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Gustavo S Escobar-Valdivieso
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Cecibel Ramírez-Morán
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Jasson Espinoza-Caicedo
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Faustino R Pérez-López
- Department of Obstetrics and Gynecology, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio W D Gavilanes
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Peter Chedraui
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
- Facultad de Ciencias de la Salud, Universidad Católica "Nuestra Señora de la Asunción", Asunción, Paraguay
| |
Collapse
|
11
|
Minocha R, Popova V, Kopytova D, Misiak D, Hüttelmaier S, Georgieva S, Sträßer K. Mud2 functions in transcription by recruiting the Prp19 and TREX complexes to transcribed genes. Nucleic Acids Res 2019; 46:9749-9763. [PMID: 30053068 PMCID: PMC6182176 DOI: 10.1093/nar/gky640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 07/20/2018] [Indexed: 01/31/2023] Open
Abstract
The different steps of gene expression are intimately linked to coordinate and regulate this complex process. During transcription, numerous RNA-binding proteins are already loaded onto the nascent mRNA and package the mRNA into a messenger ribonucleoprotein particle (mRNP). These RNA-binding proteins are often also involved in other steps of gene expression than mRNA packaging. For example, TREX functions in transcription, mRNP packaging and nuclear mRNA export. Previously, we showed that the Prp19 splicing complex (Prp19C) is needed for efficient transcription as well as TREX occupancy at transcribed genes. Here, we show that the splicing factor Mud2 interacts with Prp19C and is needed for Prp19C occupancy at transcribed genes in Saccharomyces cerevisiae. Interestingly, Mud2 is not only recruited to intron-containing but also to intronless genes indicating a role in transcription. Indeed, we show for the first time that Mud2 functions in transcription. Furthermore, these functions of Mud2 are likely evolutionarily conserved as Mud2 is also recruited to an intronless gene and interacts with Prp19C in Drosophila melanogaster. Taken together, we classify Mud2 as a novel transcription factor that is necessary for the recruitment of mRNA-binding proteins to the transcription machinery. Thus, Mud2 is a multifunctional protein important for transcription, splicing and most likely also mRNP packaging.
Collapse
Affiliation(s)
- Rashmi Minocha
- Institute of Biochemistry, Justus Liebig University, Giessen 35392, Germany
| | - Varvara Popova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Danny Misiak
- Institute of Molecular Medicine, Martin-Luther-University Halle Wittenberg, Halle 06120, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin-Luther-University Halle Wittenberg, Halle 06120, Germany
| | - Sofia Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
12
|
Palazzo AF, Truong M. Single particle imaging of mRNAs crossing the nuclear pore: Surfing on the edge. Bioessays 2016; 38:744-50. [DOI: 10.1002/bies.201600038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Mathew Truong
- Department of Biochemistry; University of Toronto; Toronto ON Canada
| |
Collapse
|