1
|
Xiao K, Ullah I, Yang F, Wang J, Hou C, Liu Y, Li X. Comprehensive bioinformatics analysis of FXR1 across pan-cancer: Unraveling its diagnostic, prognostic, and immunological significance. Medicine (Baltimore) 2023; 102:e36456. [PMID: 38050239 PMCID: PMC10695598 DOI: 10.1097/md.0000000000036456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Fragile X-related protein 1 (FXR1) is an RNA-binding protein that belongs to the fragile X-related (FXR) family. Studies have shown that FXR1 plays an important role in cancer cell proliferation, invasion and migration and is differentially expressed in cancers. This study aimed to gain a comprehensive and systematic understanding of the analysis of FXR1's role in cancers. This would lead to a better understanding of how it contributes to the development and progression of various malignancies. this study conducted through The Cancer Genome Atlas (TCGA), GTEx, cBioPortal, TISIDB, GEPIA2 and HPA databases to investigated FXR1's role in cancers. For data analysis, various software platforms and web platforms were used, such as R, Cytoscape, hiplot plateform. A significant difference in FXR1 expression was observed across molecular and immune subtypes and across types of cancer. FXR1 expression correlates with disease-specific survival (DSS), and overall survival (OS) in several cancer pathways, further in progression-free interval (PFI) in most cancers. Additionally, FXR1 showed a correlation with genetic markers of immunomodulators in different cancer types. Our study provides insights into the role of FXR1 in promoting, inhibiting, and treating diverse cancers. FXR1 has the potential to serve as a diagnostic and prognostic biomarker for cancer, with therapeutic value in immune-based, targeted, or cytotoxic treatments. Further clinical validation and exploration of FXR1 in cancer treatment is necessary.
Collapse
Affiliation(s)
- Keyuan Xiao
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Ihsan Ullah
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Yang
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jiao Wang
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Chunxia Hou
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yuqiang Liu
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinghua Li
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
2
|
Weng J, Zhang Y, Liang W, Xie Y, Wang K, Xu Q, Ding Y, Li Y. Downregulation of CEMIP enhances radiosensitivity by promoting DNA damage and apoptosis in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:73. [PMID: 36607478 DOI: 10.1007/s12032-022-01940-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is the third leading malignancy worldwide in both new cases and deaths. Neoadjuvant radiotherapy is the standard preoperative regimens for locally advanced patients. However, approximately 50% of patients develop recurrence and metastasis after radiotherapy, which is largely due to the radiation resistance properties of the tumor, and the internal mechanism has not been elucidated. Here we found that CEMIP expression is up-regulated in a variety of tumor types, particularly in CRC. Public databases and clinical samples revealed that CEMIP expression is significantly higher in tumor tissues than in adjacent normal tissues in patients with locally advanced CRC who received neoadjuvant chemoradiotherapy, and it is closely related to the poor prognosis. Functional characterization uncovered that downregulation of CEMIP expression can enhance the radiosensitivity of CRC cells, which is confirmed to be achieved by promoting DNA damage and apoptosis. In vivo studies further verified that CEMIP knockdown can significantly improve the radiosensitivity of subcutaneously implanted colorectal tumors in mice, suggesting that CEMIP may be a radiation-resistant gene in CRC. Mechanistically, EGFR/PI3K/Akt signaling pathway is hypothesized to play a key role in CEMIP mediating radiation resistance. These results provide a potential new strategy targeting CEMIP gene for the comprehensive treatment of locally advanced CRC patients.
Collapse
Affiliation(s)
- Jiawen Weng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuqin Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weijie Liang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Xu
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Mapanao AK, Che PP, Sarogni P, Sminia P, Giovannetti E, Voliani V. Tumor grafted - chick chorioallantoic membrane as an alternative model for biological cancer research and conventional/nanomaterial-based theranostics evaluation. Expert Opin Drug Metab Toxicol 2021; 17:947-968. [PMID: 33565346 DOI: 10.1080/17425255.2021.1879047] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 02/09/2023]
Abstract
Introduction: Advancements in cancer management and treatment are associated with strong preclinical research data, in which reliable cancer models are demanded. Indeed, inconsistent preclinical findings and stringent regulations following the 3Rs principle of reduction, refinement, and replacement of conventional animal models currently pose challenges in the development and translation of efficient technologies. The chick embryo chorioallantoic membrane (CAM) is a system for the evaluation of treatment effects on the vasculature, therefore suitable for studies on angiogenesis. Apart from vascular effects, the model is now increasingly employed as a preclinical cancer model following tumor-grafting procedures.Areas covered: The broad application of CAM tumor model is highlighted along with the methods for analyzing the neoplasm and vascular system. The presented and cited investigations focus on cancer biology and treatment, encompassing both conventional and emerging nanomaterial-based modalities.Expert opinion: The CAM tumor model finds increased significance given the influences of angiogenesis and the tumor microenvironment in cancer behavior, then providing a qualified miniature system for oncological research. Ultimately, the establishment and increased employment of such a model may resolve some of the limitations present in the standard preclinical tumor models, thereby redefining the preclinical research workflow.
Collapse
Affiliation(s)
- Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy
- NEST-Scuola Normale Superiore, Pisa, Italy
| | - Pei Pei Che
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, The Netherlands
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy
| | - Peter Sminia
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy
| |
Collapse
|
4
|
Liu X, Lan T, Mo F, Yang J, Wei Y, Wei X. Antitumor and Radiosensitization Effects of a CXCR2 Inhibitor in Nasopharyngeal Carcinoma. Front Cell Dev Biol 2021; 9:689613. [PMID: 34124076 PMCID: PMC8188356 DOI: 10.3389/fcell.2021.689613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
CXCR2, a member of the G-protein-coupled cell surface chemokine receptor family, is commonly found on leukocytes, endothelial cells and tumor cells including nasopharyngeal carcinoma cells. However, how the activity of CXCR2 and its ligand CXCL8 affects the development of nasopharyngeal carcinoma (NPC) remains unknown. Here, we found that CXCR2 and CXCL8 were both predicted poor prognosis in NPC patients. Furthermore, we identified that treatment with CXCR2 antagonist SB225002 of nasopharyngeal carcinoma cell lines resulted tumorigenesis inhibition in vitro and in vivo. In addition, we found that SB225002 could enhance NPC cells radiosensitivity through regulating cell circle distribution and interfering with cellular DNA damage repair. SB225002 also exhibited an efficient radiosensitization effect in C666-1 and HONE-1 bearing mice. Functionally, we showed that SB225002 reduced microvessel density and proliferation and induced tumor apoptosis. Furthermore, changes in the tumor microenvironment were also observed in this study. We observed that SB225002 reduced tumor-associated neutrophils (TANs) in the tumors tissue which were recruited especially after irradiation. Taken together, our results suggested that targeting the CXCL8-CXCR2 pathway is a promising therapeutic strategy for comprehensive NPC treatment.
Collapse
Affiliation(s)
- Xiaobei Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Kähler J, Hafner S, Popp T, Hermann C, Rump A, Port M, Steinestel K, Eder S. Heterogeneous nuclear ribonucleoprotein K is overexpressed and contributes to radioresistance irrespective of HPV status in head and neck squamous cell carcinoma. Int J Mol Med 2020; 46:1733-1742. [PMID: 32901844 PMCID: PMC7521550 DOI: 10.3892/ijmm.2020.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is a major treatment option for head and neck squamous cell carcinoma (HNSCC). However, the success of radiotherapy is limited by tumor cell resistance to ionizing radiation (IR). Clinical studies have demonstrated an overall improved prognosis and higher susceptibility to radiotherapy of high‑risk human papillomavirus (HPV)‑associated HNSCC compared with classic HNSCC, as well as worse overall survival for male HNSCC patients. Overexpression of heterogeneous nuclear ribonucleoprotein (hnRNP) K has been associated with resistance to radiotherapy in melanoma and colorectal carcinoma. The aim of the present study was to analyze the impact of hnRNP K expression on the aggressiveness and radioresistance of HNSCC with respect to patient sex and HPV status. Immunohistochemical staining of HNSCC tissue specimens revealed elevated hnRNP K levels compared with those in the non‑neoplastic epithelium. Cytoplasmic hnRNP K accumulation was associated with advanced tumor stage and male sex. Exposure of HNSCC cells to IR was followed by rapid upregulation of hnRNP K at the protein level, along with re‑localization from the tumor cell nucleus to the cytoplasm. siRNA‑based knockdown of hnRNP K induced apoptosis and abolished tumor formation after xenotransplantation of HNSCC cells onto the chick egg chorioallantoic membrane (CAM). The observed effects were independent of the respective HPV status of the cell lines. These results indicated a tumorigenic and anti‑apoptotic role of hnRNP K in HNSCC, which appeared to be enhanced in male patients and contributed to the radioresistance of these tumors. However, the radioprotective effects of hnRNP K were found to be independent of the tumor's HPV status.
Collapse
Affiliation(s)
- Justus Kähler
- Bundeswehr Institute of Radiobiology, D‑80937 Munich, Germany
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, D‑89081 Ulm, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, D‑80937 Munich, Germany
| | | | - Alexis Rump
- Bundeswehr Institute of Radiobiology, D‑80937 Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, D‑80937 Munich, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, D‑89081 Ulm, Germany
| | - Stefan Eder
- Bundeswehr Institute of Radiobiology, D‑80937 Munich, Germany
| |
Collapse
|
6
|
Peng WZ, Liu JX, Li CF, Ma R, Jie JZ. hnRNPK promotes gastric tumorigenesis through regulating CD44E alternative splicing. Cancer Cell Int 2019; 19:335. [PMID: 31857793 PMCID: PMC6909542 DOI: 10.1186/s12935-019-1020-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background The high prevalence of alternative splicing among genes implies the importance of genomic complexity in regulating normal physiological processes and diseases such as gastric cancer (GC). The standard form of stem cell marker CD44 (CD44S) and its alternatives with additional exons are reported to play important roles in multiple types of tumors, but the regulation mechanism of CD44 alternative splicing is not fully understood. Methods Here the expression of hnRNPK was analyzed among the Cancer Genome Atlas (TCGA) cohort of GC. The function of hnRNPK in GC cells was analyzed and its downstream targeted gene was identified by chromatin immunoprecipitation and dual luciferase report assay. Finally, effect of hnRNPK and its downstream splicing regulator on CD44 alternative splicing was investigated. Results The expression of hnRNPK was significantly increased in GC and its upregulation was associated with tumor stage and metastasis. Loss-of-function studies found that hnRNPK could promote GC cell proliferation, migration, and invasion. The upregulation of hnRNPK activates the expression of the splicing regulator SRSF1 by binding to the first motif upstream the start codon (- 65 to - 77 site), thereby increasing splicing activity and expression of an oncogenic CD44 isoform, CD44E (has additional variant exons 8 to 10, CD44v8-v10). Conclusion These findings revealed the importance of the hnRNPK-SRSF1-CD44E axis in promoting gastric tumorigenesis.
Collapse
Affiliation(s)
- Wei-Zhao Peng
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Ji-Xi Liu
- 2Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Chao-Feng Li
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Ren Ma
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Jian-Zheng Jie
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| |
Collapse
|
7
|
Dünker N, Jendrossek V. Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research. Cancers (Basel) 2019; 11:cancers11101499. [PMID: 31591362 PMCID: PMC6826367 DOI: 10.3390/cancers11101499] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is part of standard cancer treatment. Innovations in treatment planning and increased precision in dose delivery have significantly improved the therapeutic gain of radiotherapy but are reaching their limits due to biologic constraints. Thus, a better understanding of the complex local and systemic responses to RT and of the biological mechanisms causing treatment success or failure is required if we aim to define novel targets for biological therapy optimization. Moreover, optimal treatment schedules and prognostic biomarkers have to be defined for assigning patients to the best treatment option. The complexity of the tumor environment and of the radiation response requires extensive in vivo experiments for the validation of such treatments. So far in vivo investigations have mostly been performed in time- and cost-intensive murine models. Here we propose the implementation of the chick chorioallantoic membrane (CAM) model as a fast, cost-efficient model for semi high-throughput preclinical in vivo screening of the modulation of the radiation effects by molecularly targeted drugs. This review provides a comprehensive overview on the application spectrum, advantages and limitations of the CAM assay and summarizes current knowledge of its applicability for cancer research with special focus on research in radiation biology and experimental radiation oncology.
Collapse
Affiliation(s)
- Nicole Dünker
- Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Medicine Essen, 45122 Essen, Germany.
| |
Collapse
|
8
|
Hu J, Zhang Z, Zhao L, Li L, Zuo W, Han L. High expression of RAD51 promotes DNA damage repair and survival in KRAS-mutant lung cancer cells. BMB Rep 2019. [PMID: 30638176 PMCID: PMC6443323 DOI: 10.5483/bmbrep.2019.52.2.213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAD51 recombinase plays a critical role in homologous recombination and DNA damage repair. Here we showed that expression of RAD51 is frequently upregulated in lung cancer tumors compared with normal tissues and is associated with poor survival (hazard ratio (HR) = 2, P = 0.0009). Systematic investigation of lung cancer cell lines revealed higher expression of RAD51 in KRAS mutant (MT) cells compared to wildtype (WT) cells. We further showed that MT KRAS, but not WT KRAS, played a critical role in RAD51 overexpression via MYC. Moreover, our results revealed that KRAS MT cells are highly dependent on RAD51 for survival and depletion of RAD51 resulted in enhanced DNA double strand breaks, defective colony formation and cell death. Together, our results suggest that mutant KRAS promotes RAD51 expression to enhance DNA damage repair and lung cancer cell survival, suggesting that RAD51 may be an effective therapeutic target to overcome chemo/radioresistance in KRAS mutant cancers.
Collapse
Affiliation(s)
- Jinfang Hu
- Department of pharmacy, First Affiliated Hospital of Nanchang University, Nanchang 330039, China
| | - Zhiguo Zhang
- Department of Oncology, Beijing Daxing District People's Hospital, Capital Medical University, Beijing 102600, China
| | - Lei Zhao
- Cancer center, Beijing Friendship Hospital, Capital Medical University, Beijing 10050, China
| | - Li Li
- Cancer center, Beijing Friendship Hospital, Capital Medical University, Beijing 10050, China
| | - Wei Zuo
- Department of respiration, First Affiliated Hospital of Nanchang University, Nanchang 330039, China
| | - Lei Han
- Department of Oncology, Beijing Daxing District People's Hospital, Capital Medical University, Beijing 102600, China
| |
Collapse
|
9
|
Wang X, Ghareeb WM, Lu X, Huang Y, Huang S, Chi P. Coexpression network analysis linked H2AFJ to chemoradiation resistance in colorectal cancer. J Cell Biochem 2019; 120:10351-10362. [PMID: 30565747 DOI: 10.1002/jcb.28319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/28/2018] [Indexed: 12/27/2022]
Abstract
Neoadjuvant chemoradiotherapy (CRT) resistance is a complex phenomenon and it remains a major problem for patients with a priori resistant tumor. Therefore, there is a strong need to investigate molecular biomarkers which may guide for treatment decision-making. In our study, weighted gene coexpression network analysis was applied to identify CRT-resistance hub modules in 12 colorectal cancer (CRC) cell lines with different CRT sensitivities from GSE20298 data set. The green module and purple module had the highest correlations with CRT resistance. Gene ontology enrichment analysis indicated that the function of these two modules focused on interferon-mediated signaling pathway, immune response, chromatin modulation, Rho GTPases activities, and regulation of apoptotic process. Then, 15 hub genes in both the coexpression and protein-protein interaction networks were selected. Among these hub genes, higher H2A histone family member J (H2AFJ) expression was independently validated in patient cohorts from two testing data sets of GSE46862 and GSE68204 to be related to CRT resistance. The receiver operating characteristic curve showed that H2AFJ could efficiently distinguish CRT-resistance cases from CRT-sensitive cases in another two testing data sets. Furthermore, meta-analysis of 12 Gene Expression Omnibus-sourced data sets showed that H2AFJ messenger RNA levels were significantly higher in CRC tissues than in normal colon tissues. High H2AFJ expression was correlated with a significant worse event- and relapse-free survival by analyzing the data from the R2: Genomics Analysis and Visualization Platform. Gene set enrichment analysis determined that the mechanism of H2AFJ-mediated CRT resistance might involve the ERK5 (MAPK7), human immunodeficiency virus Nef (HIV Nef), and inflammatory pathways. This study is the first, to the best of our knowledge, to implicate and verify H2AFJ as an effective new marker for CRT response prediction.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Waleed M Ghareeb
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Department of General and Gastrointestinal Surgery, Suez Canal University, Ismailia, Egypt
| | - Xingrong Lu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ying Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Shenghui Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
10
|
Guo Y, Zhang Y, Zhang SJ, Ma YN, He Y. Comprehensive analysis of key genes and microRNAs in radioresistant nasopharyngeal carcinoma. BMC Med Genomics 2019; 12:73. [PMID: 31138194 PMCID: PMC6537399 DOI: 10.1186/s12920-019-0507-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background Radioresistance is one of the main obstacle limiting the therapeutic efficacy and prognosis of patients, the molecular mechanisms of radioresistance is still unclear. The purpose of this study was to identify the key genes and miRNAs and to explore their potential molecular mechanisms in radioresistant nasopharyngeal carcinoma. Methods In this study, we analysis the differentially expressed genes and microRNA based on the database of GSE48501 and GSE48502, and then employed bioinformatics to analyze the pathways and GO terms in which DEGs and DEMS target genes are involved. Moreover, Construction of protein-protein interaction network and identification of hub genes. Finally, analyzed the biological networks for validated target gene of hub miRNAs. Results A total of 373 differentially expressed genes (DEGs) and 14 differentially expressed microRNAs (DEMs) were screened out. The up-regulated gene JUN was overlap both in DEGs and publicly available studies, which was potentially targeted by three miRNAs, including hsa-miR-203, hsa-miR-24 and hsa-miR-31. Moreover, Pathway analysis showed that both up-regulated gene and DEMs target genes were enriched in TGF-beta signaling pathway, Hepatitis B, Pathways in cancer and p53 signaling pathway. Finally, we further constructed protein-protein interaction network (PPI) of DEGs and analyzed the biological networks for above mentioned common miRNAs, the result indicated that JUN was a core hub gene in PPI network, hsa-miR-24 and its target gene were significantly enriched in P53 signaling pathway. Conclusions These results might provide new clues to improve the radiosensitivity of Nasopharyngeal Carcinoma. Electronic supplementary material The online version of this article (10.1186/s12920-019-0507-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya Guo
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiao Tong University, 157 xi wu road, Xi'an, 710004, People's Republic of China.
| | - Yang Zhang
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiao Tong University, 157 xi wu road, Xi'an, 710004, People's Republic of China
| | - Shu Juan Zhang
- Department of Oncology, Kashi No.2 peoples' Hospital of Xin Jiang, Kashi, 844000, Xin jiang, China
| | - Yi Nan Ma
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiao Tong University, 157 xi wu road, Xi'an, 710004, People's Republic of China
| | - Yun He
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiao Tong University, 157 xi wu road, Xi'an, 710004, People's Republic of China
| |
Collapse
|
11
|
Bai Y, Wang J, Gao Z, Dai E. Identification and Verification of Two Novel Differentially Expressed Proteins from Non-neoplastic Mucosa and Colorectal Carcinoma Via iTRAQ Combined with Liquid Chromatography-Mass Spectrometry. Pathol Oncol Res 2019; 26:967-976. [PMID: 30927204 DOI: 10.1007/s12253-019-00651-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Recurrence or metastasis of colorectal cancer (CRC) is common following surgery and/or adjuvant therapy, particularly in patients with an advanced stage of the cancer. Identifying key molecular markers of CRC is beneficial for early diagnosis and early treatment, which may eventually improve the prognosis of patients with CRC. Isobaric mass tags for relative and absolute quantification (iTRAQ) in combination with multidimensional liquid chromatography and tandem mass spectrometry (LC-MS/MS) were used to identify differentially expressed proteins between CRC tissues and paired adjacent normal mucosa. Among the 105 patients, adenocarcinoma was the most common CRC subtype, stage III was the most common Tumor-Node-Metastasis stage and high levels of Ki-67 indicated the rapid proliferation of tumor cells in the samples. The LC-MS/MS-based iTRAQ technology identified 271 differentially expressed proteins, with 130 upregulated proteins and 141 downregulated proteins. Bioinformatics analysis revealed that golgin subfamily A member 2 (GOLGA2) and heterogeneous nuclear ribonucleoprotein D0 (hnRNPD) were located in the center of the upregulated protein network, and were closely associated with the development of CRC. The upregulation of GOLGA2 and hnRNPD was further verified in human tissues using western blotting and immunohistochemistry. GOLGA2 and hnRNPD were identified as two novels differentially expressed proteins in human CRC. Furthermore, the LC-MS/MS-based iTRAQ proteomic approach is a useful tool for searching and identifying differentially expressed proteins, and may be used to provide a comprehensive understanding of the processes that mediate the development of CRC.
Collapse
Affiliation(s)
- Yuru Bai
- Department of Military Medical and Health Care, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China.,Department of Oncology, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 211100, People's Republic of China
| | - Jiabao Wang
- Department of Military Medical and Health Care, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China
| | - Zhihua Gao
- Department of Military Medical and Health Care, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China
| | - Erqing Dai
- Department of Military Medical and Health Care, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China.
| |
Collapse
|
12
|
Shin CH, Kim HH. Functional roles of heterogeneous nuclear ribonucleoprotein K in post-transcriptional gene regulation. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
13
|
Daskalaki W, Wardelmann E, Port M, Stock K, Steinestel J, Huss S, Sperveslage J, Steinestel K, Eder S. Expression levels of hnRNP K and p21WAF1/CIP1 are associated with resistance to radiochemotherapy independent of p53 pathway activation in rectal adenocarcinoma. Int J Mol Med 2018; 42:3269-3277. [PMID: 30272263 PMCID: PMC6202084 DOI: 10.3892/ijmm.2018.3898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR) is frequently applied in the treatment of rectal adenocarcinoma, however, there is marked variance in the response to radiochemotherapy between individual tumors. In our previous investigations, it was shown that the overexpression of heterogeneous nuclear ribonucleoprotein K (hnRNP K) confers radioresistance to malignant melanoma and colorectal carcinoma (CRC) in vitro, however, the underlying mechanism remains to be elucidated. As hnRNP K, a p53 binding partner and cofactor for the transcriptional activation of p53 target genes, is overexpressed in CRC, the present study investigated the possible radioprotective effect of the hnRNP K/p53-induced upregulation of p21 (also known as WAF1/CIP1) in rectal adenocarcinoma. Immunohistochemistry was performed for hnRNP K, p53 and p21 in a series of 68 consecutive cases of rectal adenocarcinoma with full molecular characterization following radiochemo-therapy and 14 corresponding pre-therapeutic biopsies, and the results were correlated with clinicopathological characteristics and the percentage of vital tumor cells following therapy. In addition, pathway analyses, protein immunoprecipitation, western immunoblotting and immunofluorescence microscopy were performed to identify dysregulated kinase signaling and hnRNP K targets upon exposure of CRC cells to IR. Although the fraction of vital tumor cells upon neoadjuvant therapy was significantly higher in hnRNP K/p21-positive tumors (P=0.0047 and P=0.0223, Students’ t-test), no significant association was found between the protein expression levels of hnRNP K, p53 and p21 (P>0.05, χ2 test). Irradiation enhanced apoptotic pathway activation via p53/CHK2 phosphorylation and poly (ADP-ribose) polymerase cleavage, and induced the overexpression and interaction of hnRNP K and p53. However, p53 Ser15-phosphorylation was independent of the presence of hnRNP K, and there was no measurable effect of hnRNP K on the expression of p21 in vitro. Taken together, the results of the present study support a radioprotective role for hnRNP K, which may be mediated through an interaction with p53, however, this effect appears to be independent of the hnRNP K/p53-induced upregulation of p21 in rectal adenocarcinoma.
Collapse
Affiliation(s)
- Wassiliki Daskalaki
- Gerhard‑Domagk‑Institute of Pathology, University Hospital Münster, D‑48149 Münster, Germany
| | - Eva Wardelmann
- Gerhard‑Domagk‑Institute of Pathology, University Hospital Münster, D‑48149 Münster, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to The University of Ulm, D‑80937 Munich, Germany
| | - Katharina Stock
- Gerhard‑Domagk‑Institute of Pathology, University Hospital Münster, D‑48149 Münster, Germany
| | - Julie Steinestel
- Department of Urology, University Hospital Münster, D‑48149 Münster, Germany
| | - Sebastian Huss
- Gerhard‑Domagk‑Institute of Pathology, University Hospital Münster, D‑48149 Münster, Germany
| | - Jan Sperveslage
- Gerhard‑Domagk‑Institute of Pathology, University Hospital Münster, D‑48149 Münster, Germany
| | - Konrad Steinestel
- Gerhard‑Domagk‑Institute of Pathology, University Hospital Münster, D‑48149 Münster, Germany
| | - Stefan Eder
- Bundeswehr Institute of Radiobiology Affiliated to The University of Ulm, D‑80937 Munich, Germany
| |
Collapse
|
14
|
Guo J, Jia R. Splicing factor poly(rC)-binding protein 1 is a novel and distinctive tumor suppressor. J Cell Physiol 2018; 234:33-41. [PMID: 30132844 DOI: 10.1002/jcp.26873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
A lot of evidence has been found on the link between tumorigenesis and the aberrant expression of splicing factors. A number of splicing factors have been reported to be either oncogenic or overexpressed in cancer cells. However, splicing factors can also play negative roles in tumorigenesis. In the current review, we focus on splicing factor poly(rC)-binding protein 1 (PCBP1), a novel tumor suppressor that is characterized by downregulation in many cancer types and shows inhibition of tumor formation and metastasis. Notably, the messenger RNA levels of PCBP1 are not significantly decreased in most cancer types. In fact, PCBP1 protein is often degraded or shows a loss-of-function through phosphorylation in cancer cells. PCBP1 is highly homologous to its family member, PCBP2. Interestingly, PCBP2 appears to be an oncogenic splicing factor. A growing body of evidence has shown that PCBP1 regulates alternative splicing, translation, and RNA stability of many cancer-related genes. Taking together, PCBP1 has distinctive tumor suppressive functions, and increasing PCBP1 expression may represent a new approach for cancer treatment.
Collapse
Affiliation(s)
- Jihua Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Yu D, Li Y, Ming Z, Wang H, Dong Z, Qiu L, Wang T. Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs. PeerJ 2018; 6:e5011. [PMID: 29922514 PMCID: PMC6005163 DOI: 10.7717/peerj.5011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022] Open
Abstract
Background Cervical cancer is one of the most common cancers in women worldwide. Malignant tumors develop resistance mechanisms and are less sensitive to or do not respond to irradiation. With the development of high-throughput sequencing technologies, circular RNA (circRNA) has been identified in an increasing number of diseases, especially cancers. It has been reported that circRNA can compete with microRNAs (miRNAs) to change the stability or translation of target RNAs, thus regulating gene expression at the transcriptional level. However, the role of circRNAs in cervical cancer and the radioresistance mechanisms of HeLa cells are unknown. The objective of this study is to investigate the role of circRNAs in radioresistance in HeLa cells. Methods High-throughput sequencing and bioinformatics analysis of irradiated and sham-irradiated HeLa cells. The reliability of high-throughput RNA sequencing was validated using quantitative real-time polymerase chain reaction. The most significant circRNA functions and pathways were selected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A circRNA–miRNA–target gene interaction network was used to find circRNAs associated with radioresistance. Moreover, a protein–protein interaction network was constructed to identify radioresistance-related hub proteins. Results High-throughput sequencing allowed the identification of 16,893 circRNAs involved in the response of HeLa cells to radiation. Compared with the control group, there were 153 differentially expressed circRNAs, of which 76 were up-regulated and 77 were down-regulated. GO covered three domains: biological process (BP), cellular component (CC) and molecular function (MF). The terms assigned to the BP domain were peptidyl-tyrosine dephosphorylation and regulation of cell migration. The identified CC terms were cell–cell adherens junction, nucleoplasm and cytosol, and the identified MF terms were protein binding and protein tyrosine phosphatase activity. The top five KEGG pathways were MAPK signaling pathway, endocytosis, axon guidance, neurotrophin signaling pathway, and SNARE interactions in vesicular transport. The protein–protein interaction analysis indicated that 19 proteins might be hub proteins. Conclusions CircRNAs may play a major role in the response to radiation. These findings may improve our understanding of the role of circRNAs in radioresistance in HeLa cells and allow the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Duo Yu
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Yunfeng Li
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Zhihui Ming
- Stomatology Department, 1st Hospital Affiliated to Jilin University, Changchun, China
| | - Hongyong Wang
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Zhuo Dong
- College of Public Medicine, Key Laboratory of Radiobiology, Ministry of Health, Jilin University, Changchun, China
| | - Ling Qiu
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Tiejun Wang
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| |
Collapse
|
16
|
Sun H, Liu T, Zhu D, Dong X, Liu F, Liang X, Chen C, Shao B, Wang M, Wang Y. HnRNPM and CD44s expression affects tumor aggressiveness and predicts poor prognosis in breast cancer with axillary lymph node metastases. Genes Chromosomes Cancer 2017; 56:598-607. [PMID: 28393427 DOI: 10.1002/gcc.22463] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
HnRNPM is an essential splicing factor and its expression is closely correlated with invasion and metastasis of tumor cells. The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and CD44 splice variants have been implicated in specific oncogenic signaling pathways. To investigate the clinical significance and biological function of hnRNPM, immunohistochemistry, quantitative, and semiquantitative polymerase chain reaction, lentiviral transfection system and transwell invasion assays were performed. We found that hnRNPM expression was significantly upregulated in breast cancer tissues compared with benign breast lesions. Although there was no significant correlation between hnRNPM and total CD44 protein or mRNA level, there was a negative correlation between hnRNPM and CD44v6. HnRNPM and CD44s expression showed positive correlation and in particular, they were dually expressed in breast cancer tissues. Interestingly, cancer stem cells marker, ALDH1+ phenotype was positively associated with overexpression of CD44s or hnRNPM and negatively related to CD44v6. Patients with high hnRNPM tended to have higher levels of CD44s, shorter overall survival (OS) and higher rates of lymph node metastases (LNM). Remarkably, Kaplan-Meier and Cox regression analyses displayed that hnRNPM+ or CD44shigh was a poor prognostic factor for OS of patients with LNM. Upregulation of hnRNPM in MCF-7 cells caused a significant increase in cell invasion, and this effect may occur through the regulation of CD44s expression. In conclusion, overexpression of hnRNPM promotes breast cancer aggressiveness by regulating the level of CD44s, indicates a poor prognosis for patients with LNM, and has potential as therapeutic targets.
Collapse
Affiliation(s)
- Huizhi Sun
- Department of Pathology, Tianjin Medical University, 300070, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, 300052, China
| | - Dongwang Zhu
- Stomatology Hospital of Tianjin Medical University, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, 300052, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, 300052, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, 300052, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, 300070, China
| | - Bing Shao
- Department of Pathology, Tianjin Medical University, 300070, China
| | - Meili Wang
- Department of Pathology, Tianjin Medical University, 300070, China
| | - Yi Wang
- Department of Pathology, Tianjin Medical University, 300070, China
| |
Collapse
|