1
|
Zhou M, Tian M, Li Z, Wang C, Guo Z. Overview of splicing variation in ovarian cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189288. [PMID: 39993511 DOI: 10.1016/j.bbcan.2025.189288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Ovarian cancer remains one of the deadliest gynecological malignancies, with a persistently high mortality rate despite promising advancements in immunotherapy. Aberrant splicing events play a crucial role in cancer heterogeneity and treatment resistance. Many splicing variants, especially those involving key molecular markers such as BRCA1/2, are closely linked to disease progression and treatment outcomes. These variants and related splicing factors hold significant clinical value as diagnostic and prognostic biomarkers and therapeutic targets. This review provides a comprehensive overview of splicing variants in ovarian cancer, emphasizing their role in metastasis and resistance, and offers insights to advance biomarker development and treatment strategies.
Collapse
Affiliation(s)
- Min Zhou
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengdie Tian
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuoer Li
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunli Wang
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiqiang Guo
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Lou N, Gu X, Fu L, Li J, Xue C. Significant roles of RNA 5-methylcytosine methylation in cancer. Cell Signal 2025; 126:111529. [PMID: 39615772 DOI: 10.1016/j.cellsig.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/06/2024]
Abstract
Cancer stands as a leading cause of mortality and poses an escalating threat to global health. Epigenetic dysregulation is pivotal in the onset and advancement of cancer. Recent research on RNA 5-methylcytosine (m5C) methylation has underscored its significant role in cancer. RNA m5C methylation is a key component in gene expression regulation and is intricately linked to cancer development, offering valuable insights for cancer diagnosis, treatment, and prognosis. This review provides an in-depth examination of the three types of regulators associated with RNA m5C methylation and their biological functions. It further investigates the expression and impact of RNA m5C methylation and its regulators in cancer, focusing on their mechanisms in cancer progression and clinical relevance. The current research on inhibitors targeting RNA m5C methylation-related regulators remains underdeveloped, necessitating further exploration and discovery.
Collapse
Affiliation(s)
- Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
3
|
Yu VZ, So SS, Lung BCC, Hou GZ, Wong CWY, Chow LKY, Chung MKY, Wong IYH, Wong CLY, Chan DKK, Chan FSY, Law BTT, Xu K, Tan ZZ, Lam KO, Lo AWI, Lam AKY, Kwong DLW, Ko JMY, Dai W, Law S, Lung ML. ΔNp63-restricted viral mimicry response impedes cancer cell viability and remodels tumor microenvironment in esophageal squamous cell carcinoma. Cancer Lett 2024; 595:216999. [PMID: 38823762 DOI: 10.1016/j.canlet.2024.216999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tumor protein p63 isoform ΔNp63 plays roles in the squamous epithelium and squamous cell carcinomas (SCCs), including esophageal SCC (ESCC). By integrating data from cell lines and our latest patient-derived organoid cultures, derived xenograft models, and clinical sample transcriptomic analyses, we identified a novel and robust oncogenic role of ΔNp63 in ESCC. We showed that ΔNp63 maintains the repression of cancer cell endogenous retrotransposon expression and cellular double-stranded RNA sensing. These subsequently lead to a restricted cancer cell viral mimicry response and suppressed induction of tumor-suppressive type I interferon (IFN-I) signaling through the regulations of Signal transducer and activator of transcription 1, Interferon regulatory factor 1, and cGAS-STING pathway. The cancer cell ΔNp63/IFN-I signaling axis affects both the cancer cell and tumor-infiltrating immune cell (TIIC) compartments. In cancer cells, depletion of ΔNp63 resulted in reduced cell viability. ΔNp63 expression is negatively associated with the anticancer responses to viral mimicry booster treatments targeting cancer cells. In the tumor microenvironment, cancer cell TP63 expression negatively correlates with multiple TIIC signatures in ESCC clinical samples. ΔNp63 depletion leads to increased cancer cell antigen presentation molecule expression and enhanced recruitment and reprogramming of tumor-infiltrating myeloid cells. Similar IFN-I signaling and TIIC signature association with ΔNp63 were also observed in lung SCC. These results support the potential application of ΔNp63 as a therapeutic target and a biomarker to guide candidate anticancer treatments exploring viral mimicry responses.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shan Shan So
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bryan Chee-Chad Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - George Zhaozheng Hou
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Carissa Wing-Yan Wong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael King-Yung Chung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ian Yu-Hong Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Claudia Lai-Yin Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Desmond Kwan-Kit Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Fion Siu-Yin Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Betty Tsz-Ting Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kaiyan Xu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zack Zhen Tan
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka-On Lam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anthony Wing-Ip Lo
- Division of Anatomical Pathology, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alfred King-Yin Lam
- Divsion of Cancer Molecular Pathology, School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
4
|
Liu L, Chen Y, Zhang T, Cui G, Wang W, Zhang G, Li J, Zhang Y, Wang Y, Zou Y, Ren Z, Xue W, Sun R. [Not Available]. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302379. [PMID: 38566431 PMCID: PMC11132058 DOI: 10.1002/advs.202302379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The modification and recognition of 5-methylcytosine (m5C) are involved in the initiation and progression of various tumor types. However, the precise role and potential mechanism of Y-box-binding protein 1 (YBX1) in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, it is found that YBX1 is frequently upregulated in ESCC compared with matched nontumor tissues. Gain- and loss-of-function assays show that YBX1 promoted the proliferation and metastasis of ESCC cells both in vitro and in vivo. Functional studies revealed that NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a critical RNA methyltransferase that facilitates YBX1-mediated ESCC progression. Mechanistically, integrated analysis based on RNA immunoprecipitation sequencing (RIP-seq) and m5C methylated RNA immunoprecipitation and sequencing (MeRIP-seq) assays identified spermine oxidase (SMOX) as a target gene containing an m5C site in its coding sequence (CDS) region, which coincided well with the binding site of YBX1. Overexpression of SMOX-WT but not SMOX-Mut partially restored the proliferation and invasion ability of ESCC cells curbed by YBX1 knockdown. Moreover, YBX1 activated the mTORC1 signaling pathway by stabilizing SMOX mRNA. The study reveals that YBX1 promotes ESCC development by stabilizing SMOX mRNA in an m5C-dependent manner, thus providing a valuable therapeutic target for ESCC.
Collapse
Affiliation(s)
- Liwen Liu
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Academy of Medical SciencesZhengzhou UniversityZhengzhouHenan450052China
| | - Yu Chen
- Academy of Medical SciencesZhengzhou UniversityZhengzhouHenan450052China
| | - Tao Zhang
- Department of OncologyThe First Hospital of Lanzhou UniversityLanzhouGansu730000China
| | - Guangying Cui
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Weiwei Wang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Guizhen Zhang
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
- Academy of Medical SciencesZhengzhou UniversityZhengzhouHenan450052China
| | - Jianhao Li
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Yize Zhang
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Yun Wang
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Yawen Zou
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Zhigang Ren
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Wenhua Xue
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Ranran Sun
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| |
Collapse
|
5
|
Wu LX, Zhao MY, Yan N, Zhou YL, Cao LM, Qin YZ, Jiang Q, Xu LP, Zhang XH, Huang XJ, Jiang H, Ruan GR. Extracellular matrix protein 1 (ECM1) is a potential biomarker in B cell acute lymphoblastic leukemia. Clin Exp Med 2024; 24:56. [PMID: 38546916 PMCID: PMC10978711 DOI: 10.1007/s10238-023-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/18/2023] [Indexed: 04/01/2024]
Abstract
B cell acute lymphoblastic leukemia (ALL) is characterized by the highly heterogeneity of pathogenic genetic background, and there are still approximately 30-40% of patients without clear molecular markers. To identify the dysregulated genes in B cell ALL, we screened 30 newly diagnosed B cell ALL patients and 10 donors by gene expression profiling chip. We found that ECM1 transcription level was abnormally elevated in newly diagnosed B cell ALL and further verified in another 267 cases compared with donors (median, 124.57% vs. 7.14%, P < 0.001). ROC analysis showed that the area under the curve of ECM1 transcription level at diagnosis was 0.89 (P < 0.001). Patients with BCR::ABL1 and IKZF1 deletion show highest transcription level (210.78%) compared with KMT2A rearrangement (39.48%) and TCF3::PBX1 rearrangement ones (30.02%) (all P < 0.05). Also, the transcription level of ECM1 was highly correlated with the clinical course, as 20 consecutive follow-up cases indicated. The 5-year OS of patients (non-KMT2A and non-TCF3::PBX1 rearrangement) with high ECM1 transcription level was significantly worse than the lower ones (18.7% vs. 72.9%, P < 0.001) and high ECM1 transcription level was an independent risk factor for OS (HR = 5.77 [1.75-19.06], P = 0.004). After considering transplantation, high ECM1 transcription level was not an independent risk factor, although OS was still poor (low vs. high, 71.1% vs. 56.8%, P = 0.038). Our findings suggested that ECM1 may be a potential molecular marker for diagnosis, minimal residual disease (MRD) monitoring, and prognosis prediction of B cell ALL.Trial registration Trial Registration Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTR-OPC-14005546]; http://www.chictr.org.cn .
Collapse
Affiliation(s)
- Li-Xin Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Ming-Yue Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Nan Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ya-Lan Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lei-Ming Cao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| | - Guo-Rui Ruan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| |
Collapse
|
6
|
Xia Y, Jin Z, Zhang C, Ouyang L, Dong Y, Li J, Guo L, Jing B, Shi Y, Miao S, Xi R. TAGET: a toolkit for analyzing full-length transcripts from long-read sequencing. Nat Commun 2023; 14:5935. [PMID: 37741817 PMCID: PMC10518008 DOI: 10.1038/s41467-023-41649-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
Single-molecule Real-time Isoform Sequencing (Iso-seq) of transcriptomes by PacBio can generate very long and accurate reads, thus providing an ideal platform for full-length transcriptome analysis. We present an integrated computational toolkit named TAGET for Iso-seq full-length transcript data analyses, including transcript alignment, annotation, gene fusion detection, and quantification analyses such as differential expression gene analysis and differential isoform usage analysis. We evaluate the performance of TAGET using a public Iso-seq dataset and newly sequenced Iso-seq datasets from tumor patients. TAGET gives significantly more precise novel splice site prediction and enables more accurate novel isoform and gene fusion discoveries, as validated by experimental validations and comparisons with RNA-seq data. We identify and experimentally validate a differential isoform usage gene ECM1, and further show that its isoform ECM1b may be a tumor-suppressor in laryngocarcinoma. Our results demonstrate that TAGET provides a valuable computational toolkit and can be applied to many full-length transcriptome studies.
Collapse
Affiliation(s)
- Yuchao Xia
- College of Science, Beijing Information Science and Technology University, 100192, Beijing, China
- Beijing GeneX Health Co.,Ltd, 100195, Beijing, China
| | - Zijie Jin
- Peking University International Cancer Institute, Health Science Center, Peking University, 100191, Beijing, China
- School of Mathematical Sciences, Peking University, 100871, Beijing, China
| | | | - Linkun Ouyang
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Yuhao Dong
- Beijing GeneX Health Co.,Ltd, 100195, Beijing, China
| | - Juan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China
| | - Lvze Guo
- Beijing GeneX Health Co.,Ltd, 100195, Beijing, China
| | - Biyang Jing
- Beijing GeneX Health Co.,Ltd, 100195, Beijing, China
| | - Yang Shi
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, 150081, Harbin, China.
| | - Ruibin Xi
- School of Mathematical Sciences, Peking University, 100871, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
- Center for Statistical Science, Peking University, 100871, Beijing, China.
| |
Collapse
|
7
|
Wang J, Chen Y, Luo Z, Huang Q, Zhang Y, Ning H, Liu S, Wang J, Han X. Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. herb pair suppresses breast cancer liver metastasis by targeting ECM1-mediated cholesterol biosynthesis pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154896. [PMID: 37247588 DOI: 10.1016/j.phymed.2023.154896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Liver metastasis is a frequent event in breast cancer that causes low survival rate and poor prognosis. Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. (CR), a traditional Chinese herb pair, is used for the treatment of breast cancer liver metastasis or cholesterol gallstone disease in clinics. PURPOSE This study attempted to investigate the potential therapeutic target and mechanism of CR herb pair on breast cancer liver metastasis. METHODS The anti-metastatic and cholesterol-lowering activities of CR extract were evaluated in triple-negative breast cancer (TNBC) cell lines and an experimental liver metastasis model. The role of extracellular matrix protein 1 (ECM1) in the cholesterol biosynthesis pathway was determined by the knockdown and overexpression of ECM1 gene of TNBC cells. Changes in the gene and protein expression levels of ECM1 and the cholesterol biosynthesis pathway after CR treatment were detected in vitro and in vivo by real-time PCR and Western blot. RESULTS The invasive and metastatic potentials and hypercholesterol levels of TNBC cells were positively associated with ECM1 expression. ECM1 knockdown reduced tumor cholesterol levels via downregulating cholesterol biosynthesis genes, including ACAT2, HMGCS1, HMGCR, MVK, and MVD, whereas ECM1 overexpression elicited the opposite effects. CR herb pair exerts the potential therapeutic effects on TNBC liver metastasis, which is partially mediated by disrupting ECM1-activated cholesterol biosynthesis process in TNBC cells. CONCLUSION This study reveals that ECM1 is a novel target for the activation of cholesterol biosynthesis to promote TNBC liver metastasis occurrence. CR herb pair, an ECM1 inhibitor, maybe be considered to serve as an adjuvant therapeutic drug for liver metastasis in clinical practice.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiang Chen
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhanyang Luo
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianyi Wang
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
H3K27me3 Inactivates SFRP1 to Promote Cell Proliferation via Wnt/β-Catenin Signaling Pathway in Esophageal Squamous Cell Carcinoma. Dig Dis Sci 2023; 68:2463-2473. [PMID: 36933113 DOI: 10.1007/s10620-023-07892-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Histone methylations are generally considered to play an important role in multiple cancers by regulating cancer-related genes. AIMS This study aims to investigate the effects of H3K27me3-mediated inactivation of tumor suppressor gene SFRP1 and its function in esophageal squamous cell carcinoma (ESCC). METHODS We performed ChIP-seq on H3K27me3-enriched genomic DNA fragments in ESCC cells to screen out tumor suppressor genes that may be regulated by H3K27me3. ChIP-qPCR and Western blot were employed to explore the regulating mechanisms between H3K27me3 and SFRP1. Expression level of SFRP1 was assessed by quantitative real-time polymerase chain reaction (q-PCR) in 29 pairs of ESCC surgical samples. SFRP1 function in ESCC cells were detected by cell proliferation assay, colony formation assay and wound-healing assay. RESULTS Our results indicated that H3K27me3 was widely distributed in the genome of ESCC cells. Specifically, we found that H3K27me3 deposited on the upstream region of SFRP1 promoter and inactivated SFRP1 expression. Furthermore, we found SFRP1 was significantly down-regulated in ESCC tissues compared with the adjacent non-tumor tissues, and SFRP1 expression was significantly associated with TNM stage and lymph node metastasis. In vitro cell-based assay indicated that over-expression of SFRP1 significantly suppressed cell proliferation and negatively correlated with the expression of β-catenin in the nucleus. CONCLUSIONS Our study revealed a previously unrecognized finding that H3K27me3-mediated SFRP1 inhibit the cell proliferation of ESCC through inactivation of Wnt/β-catenin signaling pathway.
Collapse
|
9
|
Xie J, Wang B, Luo W, Li C, Jia X. Upregulation of KIF18B facilitates malignant phenotype of esophageal squamous cell carcinoma by activating CDCA8/mTORC1 pathway. J Clin Lab Anal 2022; 36:e24633. [PMID: 36085568 PMCID: PMC9550975 DOI: 10.1002/jcla.24633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Kinesin family member 18B (KIF18B) has been regarded as an oncogene that is abnormally overexpressed in some cancers, but its mechanism in esophageal squamous cell carcinoma (ESCC) remains unclear, which is thereby investigated in this study. Methods Bioinformatics analysis was performed to analyze the expression of KIF18B in esophageal carcinoma (ESCA). Quantitative real‐time polymerase chain reaction (qRT‐PCR) was used to detect KIF18B expression in ESCC cells. After KIF18B overexpression or cell division cycle associated 8 (CDCA8) deficiency, ESCC cells were subjected to determination of qRT‐PCR, Western blot, cell counting kit‐8 assay, flow cytometry, wound healing, and Transwell assay. The mechanism of KIF18B in the mechanistic target of rapamycin complex 1 (mTORC1) pathway was detected by Western blot. Results KIF18B was overexpressed in ESCA samples and ESCC cells. Upregulation of KIF18B enhanced the viability, accelerated cell cycle by elevating CDK4 and Cyclin D3 levels as well as promoted the migration and invasion by decreasing E‐cadherin level and increasing Vimentin and N‐cadherin levels in ESCC cells, which was counteracted by CDCA8 silencing. The expression of CDCA8 in ESCC cells was upregulated by KIF18B overexpression. KIF18B overexpression activated the mTORC1 pathway by upregulating phosphorylated (p)‐/p70S6K and p‐/mTOR levels in the ESCC cells, which was reversed by CDCA8 silencing. Conclusion KIF18B overexpression promotes the proliferation, migration, and invasion of ESCC cells via CDCA8‐mediated mTORC1 signaling pathway in vitro.
Collapse
Affiliation(s)
- Jiangliu Xie
- Gastroenterology Department, Yaan People's Hospital, Ya'an, China
| | - Bo Wang
- Gastroenterology Department, Yaan People's Hospital, Ya'an, China
| | - Wenjie Luo
- Gastroenterology Department, Yaan People's Hospital, Ya'an, China
| | - Chen Li
- Cardiology Department, Yaan People's Hospital, Ya'an, China
| | - Xunchao Jia
- Oncology Department, Yaan People's Hospital, Ya'an, China
| |
Collapse
|
10
|
Zhao S, Liu Q, Li J, Hu C, Cao F, Ma W, Gao J. Construction and Validation of Prognostic Regulation Network Based on RNA-Binding Protein Genes in Lung Squamous Cell Carcinoma. DNA Cell Biol 2021; 40:1563-1583. [PMID: 34931870 DOI: 10.1089/dna.2021.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a common histologic subtype of non-small cell lung cancer with a poor prognosis. RNA-binding proteins (RBPs) are key modulators in the posttranscriptional regulation and RBP alterations are commonly found in various cancer types. However, its roles in predicting the tumorigenesis and prognosis have not been identified in LUSC. To identify the roles of RBPs in the tumorigenesis and prognosis of LUSC, the RNA sequencing data of patients with LUSC were retrieved from The Cancer Genome Atlas (TCGA) databases. The differential expressed genes (DEGs) were evaluated and identified. The intersection of manually curated RBPs and tumorigenesis-related DEGs was filtered to the univariate Cox regression analysis. The intersection genes with prognostic value were defined as prognostic RNA-binding protein genes (PRBPGs). Based on them, the predicted model was constructed. Its accuracy was tested by the area under the curve (AUC) of the receiver operator characteristic curve and the risk score. In addition, to explore the key regulatory network, the relationship among PRBPGs, target RNA, and absolute quantification of 50 hallmarks of cancer was also identified by Pearson correlation analysis. A total of 311 genes were filtered as the intersection of 1542 manually curated RBPs and tumorigenesis-related DEGs and the results revealed 17 PRBPGs. Based on them, we constructed the predict model with a relatively high accuracy (AUC: 0.739). The Kaplan-Meier survival curve showed the significant prognostic value of risk score (p < 0.001). Moreover, we uncovered the regulatory networks of PHF5A-TOMM22-oxidative phosphorylation, TLR3-CTSO inflammation-related pathway, SECISBP2L-targeted RNA (ADGRF5, TGFBR2, CD302, AC096921.2, AHCYL2, RPS6KA2, SLC34A2, and SFTPB) angiogenesis, and SECISBP2L-AKAP13 signaling (DNA repair, MTORC1 signaling, and MYC targets). The regulation mechanisms and cellular location of key PRBPGs were validated by assay for targeting accessible chromatin with high-throughput sequencing and single-cell RNA sequencing. Our study identifies PRBPGs as reliable indexes in predicting the tumorigenesis and prognosis of patients with LUSC and provides a well-applied model for predicting the overall survival for patients with LUSC. Besides, we also identified the regulatory network among PRBPGs, target RNA, and cancer gene sets in mediating the LUSC tumorigenesis.
Collapse
Affiliation(s)
- Shilong Zhao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuhong Liu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junlu Li
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunling Hu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengan Cao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wentao Ma
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Gao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Shen S, Liang J, Liang X, Wang G, Feng B, Guo W, Guo Y, Dong Z. SNHG17, as an EMT-related lncRNA, promotes the expression of c-Myc by binding to c-Jun in esophageal squamous cell carcinoma. Cancer Sci 2021; 113:319-333. [PMID: 34714590 PMCID: PMC8748231 DOI: 10.1111/cas.15184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of long noncoding RNA SNHG17 is associated with the occurrence of several tumors; however, its role in esophageal squamous cell carcinoma (ESCC) remains obscure. The present study demonstrated that SNHG17 was upregulated in ESCC tissues and cell lines, induced by TGF‐β1, and associated with poor survival. It is also involved in the epithelial‐to‐mesenchymal transition (EMT) process. The mechanism underlying SNHG17‐regulated c‐Myc was detected by RNA immunoprecipitation, RNA pull‐down, chromatin immunoprecipitation, and luciferase reporter assays. SNHG17 was found to directly regulate c‐Myc transcription by binding to c‐Jun protein and recruiting the complex to specific sequences of the c‐Myc promoter region, thereby increasing its expression. Moreover, SNHG17 hyperactivation induced by TGF‐β1 results in PI3K/AKT pathway activation, promoting cells EMT, forming a positive feedback loop. Furthermore, SNHG17 facilitated ESCC tumor growth in vivo. Overall, this study demonstrated that the SNHG17/c‐Jun/c‐Myc axis aggravates ESCC progression and EMT induction by TGF‐β1 and may serve as a new therapeutic target for ESCC.
Collapse
Affiliation(s)
- Supeng Shen
- the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia Liang
- the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoliang Liang
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gaoyan Wang
- the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Feng
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Guo
- the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Dong
- the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Ko JMY, Lam SY, Ning L, Chai AWY, Lei LC, Choi SSA, Wong CWY, Lung ML. RAD50 Loss of Function Variants in the Zinc Hook Domain Associated with Higher Risk of Familial Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13184715. [PMID: 34572942 PMCID: PMC8472384 DOI: 10.3390/cancers13184715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/09/2022] Open
Abstract
Simple Summary Two deleterious RAD50 loss-of-function germline mutations were identified from the blood DNA of a cohort of 3289 Henan individuals by next-generation sequencing. These rare loss-of-function RAD50 variants were associated with a substantial increased risk of familial esophageal squamous cell carcinoma in high-risk Northern China. A functional study suggested that the RAD50 mutations may affect DNA repair and cell survival upon replication stress. Our preliminary functional study provided novel insight and the potential clinical implication that patients with heterozygous RAD50L1264F and RAD50Q672X status may have a potential synthetic lethal therapeutic option with CHK1 inhibitors. Further study is warranted for validation of the implicated genetic susceptibility role of the RAD50 Zinc Hook mutants. Abstract Unbiased whole-exome sequencing approaches in familial esophageal squamous cell carcinoma (ESCC) initially prioritized RAD50 as a candidate cancer predisposition gene. The combined study with 3289 Henan individuals from Northern China identified two pathogenic RAD50 protein truncation variants, p.Q672X and a recurrent p.K722fs variant at the zinc hook domain significantly conferring increased familial ESCC risk. Effects of ~10-fold higher familial ESCC risk were observed, when compared to East Asians from the gnomAD database. Functional characterization suggested that the RAD50Q672X mutation contributes a dominant-negative effect in DNA repair of double-stranded breaks. Overexpression of the RAD50Q672X and RAD50L1264F missense mutation also sensitized cell death upon replication stress stimuli induced by formaldehyde treatment and the CHK1 inhibitor, AZD7762. Our study suggested the novel insight of the potential for synthetic lethal therapeutic options for RAD50Q672X and the East-Asian-specific RAD50L1264F variants and CHK1 inhibitors. Our study also suggested the association of RAD50 LOF variants in the zinc hook domain with a higher risk of familial ESCC in Chinese.
Collapse
Affiliation(s)
- Josephine Mun Yee Ko
- Correspondence: (J.M.Y.K.); (M.L.L.); Tel.: +852-3917-6931 (J.M.Y.K.); +852-3917-9783 (M.L.L.)
| | | | | | | | | | | | | | - Maria Li Lung
- Correspondence: (J.M.Y.K.); (M.L.L.); Tel.: +852-3917-6931 (J.M.Y.K.); +852-3917-9783 (M.L.L.)
| |
Collapse
|
13
|
Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. Nat Commun 2021; 12:4230. [PMID: 34244494 PMCID: PMC8270969 DOI: 10.1038/s41467-021-24315-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix protein-1 (ECM1) promotes tumorigenesis in multiple organs but the mechanisms associated to ECM1 isoform subtypes have yet to be clarified. We report in this study that the secretory ECM1a isoform induces tumorigenesis through the GPR motif binding to integrin αXβ2 and the activation of AKT/FAK/Rho/cytoskeleton signaling. The ATP binding cassette subfamily G member 1 (ABCG1) transduces the ECM1a-integrin αXβ2 interactive signaling to facilitate the phosphorylation of AKT/FAK/Rho/cytoskeletal molecules and to confer cancer cell cisplatin resistance through up-regulation of the CD326-mediated cell stemness. On the contrary, the non-secretory ECM1b isoform binds myosin and blocks its phosphorylation, impairing cytoskeleton-mediated signaling and tumorigenesis. Moreover, ECM1a induces the expression of the heterogeneous nuclear ribonucleoprotein L like (hnRNPLL) protein to favor the alternative mRNA splicing generating ECM1a. ECM1a, αXβ2, ABCG1 and hnRNPLL higher expression associates with poor survival, while ECM1b higher expression associates with good survival. These results highlight ECM1a, integrin αXβ2, hnRNPLL and ABCG1 as potential targets for treating cancers associated with ECM1-activated signaling. Extracellular matrix protein 1 (ECM1) has been associated with cancer but the underlying molecular mechanisms are not clear. Here, the authors show that while ECM1b isoform is a tumour suppressor, the secreted isoform ECM1a promotes tumourigenesis and chemoresistance through increasing stemness and alternative mRNA splicing in ovarian cancer.
Collapse
|
14
|
Depletion of DNA Polymerase Theta Inhibits Tumor Growth and Promotes Genome Instability through the cGAS-STING-ISG Pathway in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133204. [PMID: 34206946 PMCID: PMC8268317 DOI: 10.3390/cancers13133204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary DNA polymerase theta, encoded by the human POLQ gene, is upregulated in several cancers and is associated with poor clinical outcomes. The importance of POLQ, however, has yet to be elucidated in esophageal cancer. In this study, we explored the functional impacts of POLQ and looked into its underlying mechanisms. POLQ was overexpressed in esophageal squamous cell carcinoma (ESCC) tumors associated with unfavorable prognosis and contributed to malignant phenotypes by promoting genome stability, suggesting that targeting polymerase theta may provide a potential therapeutic approach for improving ESCC management. Abstract Overexpression of the specialized DNA polymerase theta (POLQ) is frequent in breast, colon and lung cancers and has been correlated with unfavorable clinical outcomes. Here, we aimed to determine the importance and functional role of POLQ in esophageal squamous cell carcinoma (ESCC). Integrated analysis of four RNA-seq datasets showed POLQ was predominantly upregulated in ESCC tumors. High expression of POLQ was also observed in a cohort of 25 Hong Kong ESCC patients and negatively correlated with ESCC patient survival. POLQ knockout (KO) ESCC cells were sensitized to multiple genotoxic agents. Both rH2AX foci staining and the comet assay indicated a higher level of genomic instability in POLQ-depleted cells. Double KO of POLQ and FANCD2, known to promote POLQ recruitment at sites of damage, significantly impaired cell proliferation both in vitro and in vivo, as compared to either single POLQ or FANCD2 KOs. A significantly increased number of micronuclei was observed in POLQ and/or FANCD2 KO ESCC cells. Loss of POLQ and/or FANCD2 also resulted in the activation of cGAS and upregulation of interferon-stimulated genes (ISGs). Our results suggest that high abundance of POLQ in ESCC contributes to the malignant phenotype through genome instability and activation of the cGAS pathway.
Collapse
|
15
|
Sun JR, Kong CF, Lou YN, Yu R, Qu XK, Jia LQ. Genome-Wide Profiling of Alternative Splicing Signature Reveals Prognostic Predictor for Esophageal Carcinoma. Front Genet 2020; 11:796. [PMID: 32793288 PMCID: PMC7387693 DOI: 10.3389/fgene.2020.00796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background Alternative splicing (AS) is a molecular event that drives protein diversity through the generation of multiple mRNA isoforms. Growing evidence demonstrates that dysregulation of AS is associated with tumorigenesis. However, an integrated analysis in identifying the AS biomarkers attributed to esophageal carcinoma (ESCA) is largely unexplored. Methods AS percent-splice-in (PSI) data were obtained from the TCGA SpliceSeq database. Univariate and multivariate Cox regression analysis was successively performed to identify the overall survival (OS)-associated AS events, followed by the construction of AS predictor through different splicing patterns. Then, a nomogram that combines the final AS predictor and clinicopathological characteristics was established. Finally, a splicing regulatory network was created according to the correlation between the AS events and the splicing factors (SF). Results We identified a total of 2389 AS events with the potential to be used as prognostic markers that are associated with the OS of ESCA patients. Based on splicing patterns, we then built eight AS predictors that are highly capable in distinguishing high- and low-risk patients, and in predicting ESCA prognosis. Notably, the area under curve (AUC) value for the exon skip (ES) prognostic predictor was shown to reach a score of 0.885, indicating that ES has the highest prediction strength in predicting ESCA prognosis. In addition, a nomogram that comprises the pathological stage and risk group was shown to be highly efficient in predicting the survival possibility of ESCA patients. Lastly, the splicing correlation network analysis revealed the opposite roles of splicing factors (SFs) in ESCA. Conclusion In this study, the AS events may provide reliable biomarkers for the prognosis of ESCA. The splicing correlation networks could provide new insights in the identification of potential regulatory mechanisms during the ESCA development.
Collapse
Affiliation(s)
- Jian-Rong Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen-Fan Kong
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Yan-Ni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ran Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiang-Ke Qu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Rheumatism Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Li-Qun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
16
|
Dai J, Jiang L, Qiu L, Shao Y, Shi P, Li J. WHSC1 Promotes Cell Proliferation, Migration, and Invasion in Hepatocellular Carcinoma by Activating mTORC1 Signaling. Onco Targets Ther 2020; 13:7033-7044. [PMID: 32801739 PMCID: PMC7398890 DOI: 10.2147/ott.s248570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background Wolf-Hirschhorn syndrome candidate gene-1 (WHSC1) plays key regulatory roles in cancer development and progression. However, its specific functions and potential mechanisms of action remain to be described in hepatocellular carcinoma (HCC). Materials and Methods WHSC1 expression in HCC was evaluated using The Cancer Genome Atlas and verified in HCC tissues and cell lines using qRT-PCR, Western blotting, and immunohistochemistry. Functional assays were performed to explore the role of WHSC1 in HCC progression. Immunoprecipitation-mass spectrometry, co-immunoprecipitation, immunofluorescence, and immunohistochemistry were conducted to evaluate the interaction between WHSC1 and prolyl 4-hydroxylase subunit beta (P4HB). Pathway enrichment was performed using gene set enrichment analysis. Results WHSC1 was markedly overexpressed in HCC tissues and cell lines. The level of expression was strongly associated with adverse clinicopathological characteristics. Survival analyses revealed that WHSC1 upregulation predicted poor overall survival and higher recurrence rates in patients with HCC. Functional studies revealed that WHSC1 significantly stimulated HCC proliferation, migration, and invasion in vitro and in vivo. WHSC1 was shown to interact with P4HB to stimulate P4HB expression and subsequently activate mTOR1 signaling. Conclusion We determined the oncogenic role of WHSC1 in HCC, via P4HB interaction, which activates mTOR1 signaling, and identified WHSC1 as a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Jingjing Dai
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lei Qiu
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Yuyun Shao
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ping Shi
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|