1
|
Zhang Z, Liang X, Lin K, Deng Y, Liang Y. Volatile organic compounds exposure associated with skin cancer among U. S. adults: results from NHANES 2011-2018. Arch Dermatol Res 2025; 317:401. [PMID: 39951040 DOI: 10.1007/s00403-025-03954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
Skin cancer, including melanoma, squamous cell carcinoma, and basal cell carcinoma, ranks as the fifth most common cancer globally. It exhibits a high incidence rate, with men being more susceptible, particularly as they age, making middle-aged and older men a high-risk group. This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018 to investigate the relationship between skin cancer and 15 urinary volatile organic compounds (VOC). VOC are a class of gases that are volatile at room temperature and atmospheric pressure, with carbon as the main structural atom. We used binary logistic regression to comprehensively assess the potential association between each urinary VOC exposure and skin cancer, while weighted quantile sum regression was employed to explore the associations of mixed co-exposures. Specific VOC, notably mercapturic acid (MA), showed significant correlations with skin cancer risk, particularly in females. Our research presents a comprehensive assessment of the link between VOC and skin cancer, aiming to provide a scientific basis for understanding the correlation between VOC and skin cancer within human populations.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofeng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Kefan Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ying Deng
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yunsheng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Deng D, Xu X, Cui T, Xu M, Luo K, Zhang H, Wang Q, Song C, Li C, Li G, Shang D. PBAC: A pathway-based attention convolution neural network for predicting clinical drug treatment responses. J Cell Mol Med 2024; 28:e18298. [PMID: 38683133 PMCID: PMC11057419 DOI: 10.1111/jcmm.18298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Precise and personalized drug application is crucial in the clinical treatment of complex diseases. Although neural networks offer a new approach to improving drug strategies, their internal structure is difficult to interpret. Here, we propose PBAC (Pathway-Based Attention Convolution neural network), which integrates a deep learning framework and attention mechanism to address the complex biological pathway information, thereby provide a biology function-based robust drug responsiveness prediction model. PBAC has four layers: gene-pathway layer, attention layer, convolution layer and fully connected layer. PBAC improves the performance of predicting drug responsiveness by focusing on important pathways, helping us understand the mechanism of drug action in diseases. We validated the PBAC model using data from four chemotherapy drugs (Bortezomib, Cisplatin, Docetaxel and Paclitaxel) and 11 immunotherapy datasets. In the majority of datasets, PBAC exhibits superior performance compared to traditional machine learning methods and other research approaches (area under curve = 0.81, the area under the precision-recall curve = 0.73). Using PBAC attention layer output, we identified some pathways as potential core cancer regulators, providing good interpretability for drug treatment prediction. In summary, we presented PBAC, a powerful tool to predict drug responsiveness based on the biology pathway information and explore the potential cancer-driving pathways.
Collapse
Affiliation(s)
- Dexun Deng
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐omics And Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
- School of ComputerUniversity of South ChinaHengyangHunanChina
| | - Xiaoqiang Xu
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐omics And Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Ting Cui
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐omics And Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Mingcong Xu
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐omics And Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Kunpeng Luo
- Department of Gastroenterology and HepatologySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Han Zhang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐omics And Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
- School of ComputerUniversity of South ChinaHengyangHunanChina
| | - Qiuyu Wang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐omics And Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
- School of ComputerUniversity of South ChinaHengyangHunanChina
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Chao Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐omics And Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
- School of ComputerUniversity of South ChinaHengyangHunanChina
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Chao Li
- Department of AnesthesiologyThe First Affiliated Hospital of University of South ChinaHengyangPR China
| | - Guohua Li
- Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical SchoolInstitute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South ChinaHengyangHunanChina
| | - Desi Shang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐omics And Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
- School of ComputerUniversity of South ChinaHengyangHunanChina
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| |
Collapse
|
3
|
Feng M, Santhanam RK, Xing H, Zhou M, Jia H. Inhibition of γ-secretase/Notch pathway as a potential therapy for reversing cancer drug resistance. Biochem Pharmacol 2024; 220:115991. [PMID: 38135129 DOI: 10.1016/j.bcp.2023.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The mechanism of tumor drug resistance is complex and may involve stem cell maintenance, epithelial-mesenchymal transition, the activation of survival signaling pathways, transporter protein expression, and tumor microenvironment remodeling, all of which are linked to γ-secretase/Notch signaling. Increasing evidence has shown that the activation of the γ-secretase/Notch pathway is a key driver of cancer progression and drug resistance development and that γ-secretase inhibitors (GSIs) may be the most promising agents for reversing chemotherapy resistance of tumors by targeting the γ-secretase/Notch pathway. Here, we systematically summarize the roles in supporting γ-secretase/Notch activation-associated transformation of cancer cells into cancer stem cells, promotion of the EMT process, PI3K/Akt, MEK/ERK and NF-κB activation, enhancement of ABC transporter protein expression, and TME alteration in mediating tumor drug resistance. Subsequently, we analyze the mechanism of GSIs targeting the γ-secretase/Notch pathway to reverse tumor drug resistance and propose the outstanding advantages of GSIs in treating breast cancer drug resistance over other tumors. Finally, we emphasize that the development of GSIs for reversing tumor drug resistance is promising.
Collapse
Affiliation(s)
- Mei Feng
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Huan Xing
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China
| | - Mingsheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang 110034, China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, China.
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
4
|
Jęśkowiak-Kossakowska I, Jawień P, Krzyżak E, Mączyński M, Szafran R, Szeląg A, Janeczek M, Wiatrak B. Search for immunomodulatory compounds with antiproliferative activity against melanoma. Biomed Pharmacother 2023; 160:114374. [PMID: 36774726 DOI: 10.1016/j.biopha.2023.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Melanoma is a highly aggressive neoplasm with a high degree of malignancy and rapid acquisition of resistance by cancer cells. METHODS Biological studies of a series of isoxazole compounds with immunomodulatory properties were preceded by in silico analysis. The assay evaluated the viability of NHDF and A375 cell cultures after the administration of isoxazole compounds after a 24-hour incubation period in the MTT test. Analyzes of ROS and NO scavenging, P-glycoprotein activity, and properties were performed. The levels of Caspase 3 and Caspase 9 were measured using ELISA to assess which pathways induced apoptosis by the tested compounds. On the chip, the synergistic effect of doxorubicin and the most active compound from the MM9 series on cells of the A375 melanoma line was determined. RESULTS All tested N'-substituted derivatives of 5-amino-N,3-dimethyl-1,2-oxazole-4-carbohydrazide with immunomodulatory activity show multidirectional antitumor activity on A375 melanoma lines with an affinity for P-glycoprotein, induction of free radical formation and generation of DNA damage leading to the death of cancer cells, as well as formation of complexes with DNA Topoisomerase II. Most of the tested compounds show pro-apoptotic activity. The most active compound in the series induces apoptosis in three distinct pathways and acts synergistically with doxorubicin. CONCLUSIONS The most active compound with immunomodulatory properties showed multidirectional antitumor activity against cells of the A375 melanoma line and also had a synergistic pro-apoptotic effect with doxorubicin, which may result in a reduction of this cytostatic dose with increased effectiveness.
Collapse
Affiliation(s)
- Izabela Jęśkowiak-Kossakowska
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland.
| | - Edward Krzyżak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland.
| | - Roman Szafran
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. Norwida 4/6, 50-373 Wroclaw, Poland.
| | - Adam Szeląg
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| |
Collapse
|
5
|
Huang L, You L, Aziz N, Yu SH, Lee JS, Choung ES, Luong VD, Jeon MJ, Hur M, Lee S, Lee BH, Kim HG, Cho JY. Antiphotoaging and Skin-Protective Activities of Ardisia silvestris Ethanol Extract in Human Keratinocytes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1167. [PMID: 36904025 PMCID: PMC10007040 DOI: 10.3390/plants12051167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Ardisia silvestris is a traditional medicinal herb used in Vietnam and several other countries. However, the skin-protective properties of A. silvestris ethanol extract (As-EE) have not been evaluated. Human keratinocytes form the outermost barrier of the skin and are the main target of ultraviolet (UV) radiation. UV exposure causes skin photoaging via the production of reactive oxygen species. Protection from photoaging is thus a key component of dermatological and cosmetic products. In this research, we found that As-EE can prevent UV-induced skin aging and cell death as well as enhance the barrier effect of the skin. First, the radical-scavenging ability of As-EE was checked using DPPH, ABTS, TPC, CUPRAC, and FRAP assays, and a 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay was used to examine cytotoxicity. Reporter gene assays were used to determine the doses that affect skin-barrier-related genes. A luciferase assay was used to identify possible transcription factors. The anti-photoaging mechanism of As-EE was investigated by determining correlated signaling pathways using immunoblotting analyses. As-EE had no harmful effects on HaCaT cells, according to our findings, and As-EE revealed moderate radical-scavenging ability. With high-performance liquid chromatography (HPLC) analysis, rutin was found to be one of the major components. In addition, As-EE enhanced the expression levels of hyaluronic acid synthase-1 and occludin in HaCaT cells. Moreover, As-EE dose-dependently up-regulated the production of occludin and transglutaminase-1 after suppression caused by UVB blocking the activator protein-1 signaling pathway, in particular, the extracellular response kinase and c-Jun N-terminal kinase. Our findings suggest that As-EE may have anti-photoaging effects by regulating mitogen-activated protein kinase, which is good news for the cosmetics and dermatology sectors.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Long You
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nur Aziz
- Pharmacy Program, Faculty of Science and Technology, Ma Chung University, Malang 65151, Indonesia
| | - Seung Hui Yu
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Jong Sub Lee
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Eui Su Choung
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Van Dung Luong
- Department of Biology, Dalat University, 01 Phu Dong Thien Vuong, Dalat 66106, Vietnam
| | - Mi-Jeong Jeon
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Moonsuk Hur
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
7
|
Liu Q, Cui W, Yang C, Du LP. Circular RNA ZNF609 drives tumor progression by regulating the miR-138-5p/SIRT7 axis in melanoma. Aging (Albany NY) 2021; 13:19822-19834. [PMID: 34370715 PMCID: PMC8386576 DOI: 10.18632/aging.203394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
Melanoma serves as a prevailing and lethal skin malignancy with high mortality and a growing number of patients globally. Circular RNAs (circRNAs), as a type of emerging cellular regulator, are involved in the modulation of melanoma. Nevertheless, the function of circZNF609 in melanoma development remains obscure. In this study, we were interested in the effect and the underlying mechanism of circZNF609 on DNA damage during melanoma progression. The circZNF609 depletion significantly suppressed melanoma cell invasion, migration, and proliferation, and stimulated apoptosis. Meanwhile, comet assays showed that the tail length and γH2AX levels were elevated by circZNF609 depletion. Mechanically, circZNF609 sponged miR-138-5p and miR-138-5p targeted SIRT7 in the melanoma cells. The SIRT7 overexpression and miR-138-5p inhibitor could reverse circZNF609 depletion-mediated DNA damage and malignant progression in melanoma cells. Functionally, CircZNF609 promoted cell growth of melanoma in the nude mice. Consequently, we conclude that circZNF609 suppresses DNA damage and potentially enhances melanoma progression at the experimental condition by modulating the miR-138-5p/SIRT7 axis. Our finding provides new insights into the mechanism by which circZNF609 modulates the development of melanoma. CircZNF609 and miR-138-5p may be utilized as therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Quan Liu
- Department of Plastic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan, China
| | - Wei Cui
- Department of Plastic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan, China
| | - Chao Yang
- Department of Traditional Chinese Medicine Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan, China
| | - Li-Ping Du
- Department of Plastic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan, China
| |
Collapse
|