1
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R, Khorramdelazad H. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother 2025; 186:118014. [PMID: 40157004 DOI: 10.1016/j.biopha.2025.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Colorectal cancer (CRC) is still one of the leading causes of cancer deaths worldwide. Even though there has been progress in cancer immunotherapy, the results of applying immune checkpoint inhibitors (ICIs) have been unsatisfactory, especially in microsatellite stable (MSS) CRC. Single-agent ICIs that target programmed cell death-1 (PD-1)/ PD-L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell Ig- and mucin-domain-containing molecule-3 (TIM-3), and lymphocyte activation gene (LAG)-3 have emerged as having specific benefits. However, many primary and secondary resistance mechanisms are available in the tumor microenvironment (TME) that prevent it from happening. Combination strategies, such as the use of anti-PD-1 and anti-CTLA-4, can be effective in overcoming these resistance pathways, but toxicities remain a significant concern. Moreover, ICIs have been integrated with various treatment modalities, including chemotherapy, radiotherapy, antibiotics, virotherapy, polyadenosine diphosphate-ribose polymerase (PARP) inhibitors, and heat shock protein 90 (HSP90) inhibitors. The outcomes observed in both preclinical and clinical settings have been encouraging. Interestingly, manipulating gut microbiota via fecal microbiota transplantation (FMT) has been identified as a new strategy to increase the efficacy of immunotherapy in CRC patients. Therefore, integrating ICIs with other treatment approaches holds promise in enhancing the prognosis of CRC patients. This review focuses on the unmet need for new biomarkers to select patients for combination therapies and the ongoing work to overcome resistance and immune checkpoint blockade.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Ye D, Zhang Z, Yao Y, Pan B, Wu H, Zhang X, Wang X, Tang N. Neurogranin facilitates maintaining the immunosuppressive state of hepatocellular carcinoma by promoting TGF-β1 secretion. Int J Biol Macromol 2025; 311:143716. [PMID: 40316076 DOI: 10.1016/j.ijbiomac.2025.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Immunotherapy has revolutionized cancer treatment, but its effectiveness is limited due to the complexity of the tumor immune microenvironment. Identifying reliable biomarkers that can predict immunotherapy response is essential for enhancing treatment strategies. This study evaluated the potential of Neurogranin (NRGN) as a biomarker for prognosis and immunotherapy response across multiple cancers. Through pan-cancer bioinformatics analyses, coupled with in vitro and in vivo experiments, we explored NRGN's differential expression across various cancer types and its role in the immune microenvironment. Our approach involved database mining, immune genomic feature correlation analyses, and functional validation through NRGN knockdown and overexpression studies. The results revealed differential NRGN expression across cancers, particularly hepatocellular carcinoma (HCC), where elevated levels correlated with immune evasion, poor prognosis, and upregulation of checkpoint genes like TGFB1. NRGN modulated T cell activity and macrophage polarization by regulating the TGF-β pathway through interaction with TCF4 and promoting its nuclear localization, driving tumor progression. Targeting TGF-β with anti-TGF-β and anti-PD-1 antibodies additively inhibited HCC in an Nrgn-dependent manner in mice. These findings indicate that NRGN may serve as a promising immunotherapeutic target, as its overexpression predicts poor prognosis and immune evasion, thereby offering insights for improving immunotherapy and developing new treatments.
Collapse
Affiliation(s)
- Dongjie Ye
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhu Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hao Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xinyu Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
3
|
He L, Cheng X, Gu Y, Zhou C, Li Q, Zhang B, Cheng X, Tu S. Fruquintinib Combined With PD-1 Inhibitors for the Treatment of the Patients With Microsatellite Stability Metastatic Colorectal Cancer: Real-World Data. Clin Oncol (R Coll Radiol) 2025; 38:103700. [PMID: 39700765 DOI: 10.1016/j.clon.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
AIMS Programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitors have shown limited effectiveness in patients with microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Combining anti-angiogenesis inhibitors with PD-1 inhibitors has the potential to reverse the immunosuppressive tumour microenvironment, synergistically enhancing the anti-tumour immune response in MSS mCRC. The goal is to present real-world data that prove the clinical efficacy and safety of fruquintinib combined with PD-1 inhibitors in MSS mCRC. MATERIALS AND METHODS We conducted a real-world retrospective study in patients with MSS mCRC who received treatment with fruquintinib combined with PD-1 inhibitors between May 2019 and March 2023 in our centre. RESULTS Seventy seven patients with MSS mCRC received fruquintinib combined with PD-1 inhibitors. In total, 5.2% of patients (4/77) achieved a partial response (PR), while 50.6% (39/77) had a stable disease (SD). Notably, three lesions achieving PR were all lung metastases and the overall disease control rate (DCR) reached 55.8% (43/77). Median progression-free survival (PFS) and overall survival (OS) reached 5.1 months (95% CI: 3.6-6.7) and 14.6 months (95% CI: 9.6-15.6), respectively. Multivariate Cox analysis showed that prior treatment without vascular endothelial growth factor (VEGF) inhibitors was significantly associated with PFS and OS (p < 0.05). Further analysis indicated that total- or polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) significantly decreased after treatment (P = 0.039), especially in the PR/SD group (P = 0.003). Most adverse events included abdominal pain, rash, oedema, diarrhoea, and immunotherapy-associated hypothyroidism, yet symptoms were controllable. CONCLUSION Our results provided additional evidence that patients with MSS mCRC could benefit from the combination of fruquintinib and PD-1 inhibitors, especially those with lung metastases or without prior treatment with VEGF inhibitors. The detection of MDSCs may be an immune indicator for predicting of the combined therapy.
Collapse
Affiliation(s)
- L He
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - X Cheng
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Y Gu
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - C Zhou
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Q Li
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - B Zhang
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - X Cheng
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - S Tu
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
4
|
Večurkovská I, Stupák M, Kaťuchová J, Bohuš P, Hostačná L, Mareková M, Mašlanková J. Expression of individual members of the TGF-β/SMAD signalling pathway in the progression and survival of patients with colorectal carcinoma. Sci Rep 2024; 14:27442. [PMID: 39523401 PMCID: PMC11551139 DOI: 10.1038/s41598-024-79463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Current knowledge of tumor biology offers many "targets" for therapeutic intervention. The molecular basis of many processes that play a role in the pathogenesis of colorectal cancer has been identified. One part of colorectal cancer clinical trials is focused on testing substances in a group of patients with tumors in which the TGF-β signalling pathway is hyperactivated. The TGF-β/SMAD signalling pathway members are considered important markers; however, genetic, proteomic, or metabolomic analyses still yield controversial results. According to our results, TGF-βRII, and SMAD4 can be used in monitoring CRC progression. With increasing CRC stage, TGF-βRII expression decreases and SMAD4 expression increases. The patients with TGF-βRII expression lower than 700 pg/ml had a slightly lower survival time (28.103 months) than patients with higher TGF-βRII expression (31.620 months). Conversely, patients with SMAD4 expression lower than 200 pg/ml had a higher survival rate (30.979 months) than patients with higher expression (26.316 months). Regarding TGF-β1 expression, the patient´s survival assessment determined no significant difference between patients with high or low tissue TGF-β1 expression. A personalized approach and consideration of a wide range of factors are important when using these markers in treatment assessment.
Collapse
Grants
- VEGA 1/0435/23 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
- VEGA 1/0435/23 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
- VEGA 1/0435/23 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
- VEGA 1/0435/23 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
- VEGA 1/0435/23 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
- VEGA 1/0435/23 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
- VEGA 1/0435/23 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
Collapse
Affiliation(s)
- Ivana Večurkovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Marek Stupák
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Jana Kaťuchová
- Department of Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Bohuš
- Department of Pathology, Louis Pasteur University Hospital, Rastislavová 43, 041 90, Košice, Slovakia
| | - Lenka Hostačná
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
- Department of Clinical Biochemistry, Medirex, a.s., Magnezitárska 2/C, 040 13, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia.
| |
Collapse
|
5
|
Wang Y, Liu F, Du X, Shi J, Yu R, Li S, Na R, Zhao Y, Zhou M, Guo Y, Cheng L, Wang G, Zheng T. Combination of Anti-PD-1 and Electroacupuncture Induces a Potent Antitumor Immune Response in Microsatellite-Stable Colorectal Cancer. Cancer Immunol Res 2024; 12:26-35. [PMID: 37956404 DOI: 10.1158/2326-6066.cir-23-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Programmed death receptor-1 (PD-1) inhibitors are ineffective against microsatellite-stable (MSS) colorectal cancer. Electroacupuncture (EA) has oncosuppressive and immunomodulatory properties. Here, we investigated the antitumor effects of EA and explored the feasibility of EA combined with anti-PD-1 in MSS colorectal cancer. Results showed that EA exerted its antitumor effect in an intensity-specific manner, and moderate-intensity EA (1.0 mA) induced maximal tumor inhibition. EA enhanced antitumor immune responses by increasing lymphocytes and granzyme B (GzmB) levels, as well as activating the stimulator of IFN genes (STING) pathway. EA combined with anti-PD-1 showed superior efficacy compared with either monotherapy in multiple MSS colorectal cancer mouse models. Single-cell RNA sequencing revealed that cotreatment reprogrammed the tumor immune microenvironment (TIME), as characterized by enhancement of cytotoxic functions. Mechanically, we found that the potentiated effect of EA was dependent upon the STING pathway. Collectively, EA reshapes the TIME of MSS colorectal cancer and sensitizes tumors to anti-PD-1 in a STING pathway-dependent manner. These results provide a mechanistic rationale for using EA as an immunomodulatory strategy to improve the clinical efficacy of anti-PD-1 in MSS colorectal cancer. EA is safe, well-tolerated, and feasible for clinical translation as a promising strategy for treating MSS colorectal cancer.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Fengyi Liu
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
- Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Xiaoxue Du
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Jiaqi Shi
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Shuang Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Ruisi Na
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Ying Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Meng Zhou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Ying Guo
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, P. R. China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
- Heilongjiang Cancer Institute, Harbin, P. R. China
| |
Collapse
|
6
|
Richter F, Paget C, Apetoh L. STING-driven activation of T cells: relevance for the adoptive cell therapy of cancer. Cell Stress 2023; 7:95-104. [PMID: 37970489 PMCID: PMC10642958 DOI: 10.15698/cst2023.11.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
Adoptive cell therapy (ACT) can successfully treat hematopoietic cancers but lacks efficacy against solid tumors. This is due to insufficient T cell infiltration, high tumor heterogeneity, frequent antigen loss with subsequent tumor escape, and the immunosuppressive tumor microenvironment (TME). Alternative methods to boost the anticancer efficacy of adoptively transferred cells are actively pursued. Among adjuvants that are utilized to stimulate anticancer immune responses, ligands of the stimulator of interferon genes (STING) pathway have received increasing attention. STING activation can trigger dendritic cell (DC) activation and endogenous immune responses, thereby preventing tumor escape. Activation of the STING pathway in the context of ACT was accordingly associated with improved T cell trafficking and persistence in the TME combined with the reduced presence of immunosuppressive cells. Recent findings also suggest cell-intrinsic effects of STING ligands on T cells. Activation of the STING signaling pathway was in this regard shown to enhance effector functions of CD4+ and CD8+ T cells, suggesting that the STING signaling could be exploited to harness T cell anticancer functions. In this review, we will discuss how the STING signaling can be used to enhance the anticancer efficacy of ACT.
Collapse
Affiliation(s)
- Fabian Richter
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Zhang Y, He S, Yu L, Shi C, Zhang Y, Tang S. Prognostic significance of HLA-G in patients with colorectal cancer: a meta-analysis and bioinformatics analysis. BMC Cancer 2023; 23:1024. [PMID: 37875821 PMCID: PMC10594707 DOI: 10.1186/s12885-023-11522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
PURPOSE Human leukocyte antigen-G (HLA-G) has been reported to be aberrantly expressed in colorectal cancer (CRC); however, its prognostic value remains controversial. Hence, our meta-analysis aims to assess the prognostic value of HLA-G in CRC patients based on published literature and The Cancer Genome Atlas (TCGA) datasets. METHODS A systematic search was conducted on relevant studies retrieved from four electronic databases including PubMed, Embase, Web of Science and Cochrane Library. Hazard ratios (HRs) with 95% confidence intervals (CIs) were recorded to be applied as effective values. Fixed-effects models or random-effects models were applied on the basis of the value of heterogeneity (I 2). Publication bias was analyzed by Begg's and Egger's tests. In addition, the results were validated by using TCGA datasets. RESULTS Thirteen studies comprising 3896 patients were incorporated into this meta-analysis. The pooled results showed that HLA-G expression was significantly associated with poor overall survival (OS) in both the univariate analysis (HR = 1.44, 95% CI: 1.14-1.83, P = 0.002) and the multivariate analysis (HR = 1.55, 95% CI: 1.23-1.95, P < 0.001). Nevertheless, the expression of HLA-G is not related to age, sex, tumor type, tumor differentiation, TNM stage, or distant metastasis but lymph node metastasis. Notably, the prognosis of colorectal cancer was not consistent with the analysis result from TCGA data. CONCLUSION HLA-G expression was significantly related to poor OS in CRC according to the results of our meta-analysis. However, we found that the prognostic significance was inconsistent with our results according to the TCGA data in CRC. Hence, more research is still needed to further illustrate the prognostic role of HLA-G in CRC.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.
| | - Siying He
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lisha Yu
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao Shi
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yanyue Zhang
- Department of clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shiyue Tang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
8
|
He X, Lan H, Jin K, Liu F. Can immunotherapy reinforce chemotherapy efficacy? a new perspective on colorectal cancer treatment. Front Immunol 2023; 14:1237764. [PMID: 37790928 PMCID: PMC10543914 DOI: 10.3389/fimmu.2023.1237764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
As one of the main threats to human life (the fourth most dangerous and prevalent cancer), colorectal cancer affects many people yearly, decreases patients' quality of life, and causes irreparable financial and social damages. In addition, this type of cancer can metastasize and involve the liver in advanced stages. However, current treatments can't completely eradicate this disease. Chemotherapy and subsequent surgery can be mentioned among the current main treatments for this disease. Chemotherapy has many side effects, and regarding the treatment of this type of tumor, chemotherapy can lead to liver damage, such as steatohepatitis, steatosis, and sinus damage. These damages can eventually lead to liver failure and loss of its functions. Therefore, it seems that other treatments can be used in addition to chemotherapy to increase its efficiency and reduce its side effects. Biological therapies and immunotherapy are one of the leading suggestions for combined treatment. Antibodies (immune checkpoint blockers) and cell therapy (DC and CAR-T cells) are among the immune system-based treatments used to treat tumors. Immunotherapy targets various aspects of the tumor that may lead to 1) the recruitment of immune cells, 2) increasing the immunogenicity of tumor cells, and 3) leading to the elimination of inhibitory mechanisms established by the tumor. Therefore, immunotherapy can be used as a complementary treatment along with chemotherapy. This review will discuss different chemotherapy and immunotherapy methods for colorectal cancer. Then we will talk about the studies that have dealt with combined treatment.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Han Q, Zeng H, Xu W, Wu M. Neoadjuvant anti-PD-1/PD-L1 therapy for colorectal cancer: Current status and future prospects. Shijie Huaren Xiaohua Zazhi 2023; 31:615-621. [DOI: 10.11569/wcjd.v31.i15.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023] Open
Abstract
Immunotherapy, particularly programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) inhibitors, has made revolutionary progress in the treatment strategies for various types of cancer. Regarding colorectal cancer (CRC), the current clinical application of PD-1/PD-L1 inhibitors is primarily categorized based on mutation patterns, including deficient mismatch repair (dMMR)/high microsatellite instability (MSI-H) and proficient mismatch repair (pMMR) or non-high microsatellite instability (non-MSI-H). PD-1/PD-L1 inhibitors have demonstrated good efficacy against dMMR/MSI-H CRC by increasing T-cell infiltration into tumor tissues. However, the effectiveness of PD-1/PD-L1 inhibitors for pMMR/non-MSI-H CRC remains uncertain. Due to the lower prevalence of dMMR/MSI-H in CRC, recent clinical trials have reported combined applications of PD-1/PD-L1 inhibitors with other anti-tumor treatments such as chemotherapy, radiotherapy, and targeted therapy to achieve better therapeutic outcomes. Neoadjuvant therapy, primarily consisting of chemotherapy and radiotherapy, not only downstages the tumor but also provides benefits from local control, thus improving clinical symptoms and quality of life. Integrating immunotherapy into neoadjuvant therapy may alter the treatment approach for potentially resectable or certain metastatic CRC cases. In this article, we focus on the development of neoadjuvant anti-PD-1/PD-L1 therapy and discuss its future prospects for the treatment of CRC.
Collapse
Affiliation(s)
- Qu Han
- First Department of General Surgery, Fengcheng City People's Hospital, Fengcheng 331100, Jiangxi Province, China
| | - Hui Zeng
- First Department of General Surgery, Fengcheng City People's Hospital, Fengcheng 331100, Jiangxi Province, China
| | - Wei Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mo Wu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
10
|
Kong X, Xiong Y, Xue M, He J, Lu Q, Chen M, Li L. Identification of cuproptosis-related lncRNA for predicting prognosis and immunotherapeutic response in cervical cancer. Sci Rep 2023; 13:10697. [PMID: 37400520 DOI: 10.1038/s41598-023-37898-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
Patients diagnosed with advanced cervical cancer (CC) have poor prognosis after primary treatment, and there is a lack of biomarkers for predicting patients with an increased risk of recurrence of CC. Cuproptosis is reported to play a role in tumorigenesis and progression. However, the clinical impacts of cuproptosis-related lncRNAs (CRLs) in CC remain largely unclear. Our study attempted to identify new potential biomarkers to predict prognosis and response to immunotherapy with the aim of improving this situation. The transcriptome data, MAF files, and clinical information for CC cases were obtained from the cancer genome atlas, and Pearson correlation analysis was utilized to identify CRLs. In total, 304 eligible patients with CC were randomly assigned to training and test groups. LASSO regression and multivariate Cox regression were performed to construct a cervical cancer prognostic signature based on cuproptosis-related lncRNAs. Afterwards, we generated Kaplan-Meier curves, receiver operating characteristic curves and nomograms to verify the ability to predict prognosis of patients with CC. Genes for assessing differential expression among risk subgroups were also evaluated by functional enrichment analysis. Immune cell infiltration and the tumour mutation burden were analysed to explore the underlying mechanisms of the signature. Furthermore, the potential value of the prognostic signature to predict response to immunotherapy and sensitivity to chemotherapy drugs was examined. In our study, a risk signature containing eight cuproptosis-related lncRNAs (AL441992.1, SOX21-AS1, AC011468.3, AC012306.2, FZD4-DT, AP001922.5, RUSC1-AS1, AP001453.2) to predict the survival outcome of CC patients was developed, and the reliability of the risk signature was appraised. Cox regression analyses indicated that the comprehensive risk score is an independent prognostic factor. Moreover, significant differences were found in progression-free survival, immune cell infiltration, therapeutic response to immune checkpoint inhibitors, and IC50 for chemotherapeutic agents between risk subgroups, suggesting that our model can be well employed to assess the clinical efficacy of immunotherapy and chemotherapy. Based on our 8-CRLs risk signature, we were able to independently assess the outcome and response to immunotherapy of CC patients, and this signature might benefit clinical decision-making for individualized treatment.
Collapse
Affiliation(s)
- Xiaoyu Kong
- School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Mei Xue
- School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Jie He
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Qinsheng Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Miaojuan Chen
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510632, Guangdong, People's Republic of China.
| | - Liping Li
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, 330008, Jiangxi, People's Republic of China.
| |
Collapse
|
11
|
Zhang B, Zhang J, Li Y, Li N, Wang Y, Jang R, Xu X, Li R, Chen Z, Duan S, Wang Y, Zhang L. In Situ STING-Activating Nanovaccination with TIGIT Blockade for Enhanced Immunotherapy of Anti-PD-1-Resistant Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300171. [PMID: 37053496 DOI: 10.1002/adma.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/02/2023] [Indexed: 06/16/2023]
Abstract
Immunotherapies comprising programmed cell death protein 1/PD ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors are effective cancer treatments. However, the low response rate and immunoresistance resulting from alternative immune checkpoint upregulation and inefficient immune stimulation by T cells are problematic. The present report describes a biomimetic nanoplatform that simultaneously blocks the alternative T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) checkpoint and activates the stimulator of interferon genes (STING) signaling pathway in situ for enhanced antitumor immunity. The nanoplatform is engineered by fusing a red blood cell membrane with glutathione-responsive liposome-encapsulated cascade-activating chemoagents (β-lapachone and tirapazamine), and anchoring them with a detachable TIGIT block peptide (named as RTLT). In the tumor environment, the peptide is spatiotemporally released to reverse T-cell exhaustion and restore antitumor immunity. The cascade activation of chemotherapeutic agents causes DNA damage and inhibits the repair of double-stranded DNA, which induces robust in situ STING activation for an efficient immune response. The RTLT inhibits anti-PD-1-resistant tumor growth, and prevents tumor metastasis and recurrence in vivo by inducing antigen-specific immune memory. This biomimetic nanoplatform thus provides a promising strategy for in situ cancer vaccination.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
- School of Biological Engineering, Henan University of Technology, 450001, Zhengzhou, China
| | - Juan Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Yaqiong Li
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Na Li
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Yuzhou Wang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Ru Jang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Xiaoxia Xu
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Ruifang Li
- School of Biological Engineering, Henan University of Technology, 450001, Zhengzhou, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, 450001, Zhengzhou, China
| | - Shaobo Duan
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| | - Yongchao Wang
- School of Life Sciences, Zhengzhou University, 450001, Zhengzhou, China
| | - Lianzhong Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, China
| |
Collapse
|
12
|
Shi F, Huang X, Hong Z, Lu N, Huang X, Liu L, Liang T, Bai X. Improvement strategy for immune checkpoint blockade: A focus on the combination with immunogenic cell death inducers. Cancer Lett 2023; 562:216167. [PMID: 37031916 DOI: 10.1016/j.canlet.2023.216167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Cancer immunotherapies have yielded promising outcomes in various malignant tumors by blocking specific immune checkpoint molecules, such as programmed cell death 1 and cytotoxic T lymphocyte antigen 4. However, only a few patients respond to immune checkpoint blockade therapy because of the poor immunogenicity of tumor cells and immune-suppressive tumor microenvironment. Accumulating evidence suggests that chemotherapeutic agents, including oxaliplatin and doxorubicin, not only mediate direct cytotoxicity in tumor cells but also induce immunogenic cancer cell death to stimulate a powerful anti-cancer immune response in the tumor microenvironment. In this review, we summarize the recent advances in cancer combination therapy based on immune checkpoint inhibitors plus immunogenic cell death inducers. Despite some clinical failures and challenges, immunogenic cell death inducers have displayed great potential when combined with immune checkpoint inhibitors for anti-cancer treatment in both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Na Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xin Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
13
|
Zhang X, Lu X, Yu Y, Tan K, Cui H. Changes of IL-6 And IFN-γ before and after the adverse events related to immune checkpoint inhibitors: A retrospective study. Medicine (Baltimore) 2022; 101:e31761. [PMID: 36401365 PMCID: PMC9678612 DOI: 10.1097/md.0000000000031761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the status of tumor immunotherapy. ICIs-related adverse events (irAEs) have the high incidence and are difficult to predict and prevent. Researches have suggested that changes of cytokines were associated with irAEs. This study focused on the changes of interleukin-6 (IL-6) and interferon-γ in patients before and after irAEs and trying to find the biomarkers of irAEs. Collect basic data of patients who were treated with ICIs in China-Japan Friendship Hospital from January 2017 to August 2021 and had irAEs. Make statistics on IL-6 and INF-γ in the blood before and after irAEs. A total of 10 patients were enrolled, including 7 males and 3 females. According to statistical analysis, the IL-6 concentration level after irAEs was significantly higher than before, and the difference was statistically significant (P = .023); the interferon-γ concentration level was not changed significantly from before, the difference was not statistically significant (P = .853). The elevation of IL-6 was associated with the occurrence of adverse reactions in ICIs.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xingyu Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Kexin Tan
- Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Cui
- Integrative Oncology Department, China-Japan Friendship Hospital, Beijng, China
- *Correspondence: Huijuan Cui, Integrative Oncology Department, China-Japan Friendship Hospital, Beijing 100029, China (e-mail: )
| |
Collapse
|
14
|
Zhou Y, Song S, Yuan B, Wu Y, Gao Y, Wan G, Li G. A Novel CTLA-4 affinity peptide for cancer immunotherapy by increasing the integrin αvβ3 targeting. Discov Oncol 2022; 13:99. [PMID: 36195696 PMCID: PMC9532478 DOI: 10.1007/s12672-022-00562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are changing all aspects of malignant tumour therapy as an immunotherapy subverter in oncology. However, the current ICIs might induce systemic immune activation in other tissues and organs since they are not tumour-specific, causing the immune system to attack some normal tissues and organs of the human body. The toxicity can also amplify greatly although combined immunotherapy for cancer has increased the curative efficacy. The LC4 peptide was modified to improve its tumour-targeting ability and reduce peripheral immune system activation, which was obtained through phage display peptide library screening and could block the CTLA-4/CD80 interaction. The LC4 peptide as a result, like other ICIs, exerts anti-tumour effects by refreshing T cell function, and also activates the peripheral immune system. We used the PLGLAG peptide as a linker at the C-terminal of LC4 to connect with a tumour-targeting peptide RGD to increase the tumour tissue targeting ability, and obtain LC4-PLG-RGD. Further experiments demonstrated that the anti-tumour LC4-PLG-RGD activity was better than LC4 in vivo, and the ability to activate the peripheral immune system was weakened. In conclusion, LC4-PLG-RGD can increase the ICIs tumour-targeting and reduce excessive peripheral tissue immune activation, thereby reducing the side effects of ICIs, while increasing their anti-tumour efficacy. This study confirmed that enhanced ICI tumour targeting can effectively reduce immune-related adverse reaction occurrence.
Collapse
Affiliation(s)
- Ying Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zheng Zhou University, Zhengzhou, 450001, China
| | - Shuyi Song
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zheng Zhou University, Zhengzhou, 450001, China
| | - Baomei Yuan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zheng Zhou University, Zhengzhou, 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangming Wan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China.
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zheng Zhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Yang Z, Wu G, Zhang X, Gao J, Meng C, Liu Y, Wei Q, Sun L, Wei P, Bai Z, Yao H, Zhang Z. Current progress and future perspectives of neoadjuvant anti-PD-1/PD-L1 therapy for colorectal cancer. Front Immunol 2022; 13:1001444. [PMID: 36159842 PMCID: PMC9501688 DOI: 10.3389/fimmu.2022.1001444] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, especially the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) inhibitors, have revolutionized the therapeutic strategies of various cancers. As for colorectal cancer (CRC), the current clinical application of PD-1/PD-L1 inhibitors are mainly used according to the mutation pattern, which is categorized into deficient mismatch repair (dMMR)/high levels of microsatellite instability (MSI-H) and proficient mismatch repair (pMMR), or non-high levels of microsatellite instability (non-MSI-H). PD-1/PD-L1 inhibitors have been proven to have favorable outcomes against dMMR/MSI-H CRC because of more T-cell infiltration into tumor tissues. Nevertheless, the effectiveness of PD-1/PD-L1 inhibitors in pMMR/non-MSI-H CRC is still uncertain. Because of the quite-lower proportion of dMMR/MSI-H in CRC, PD-1/PD-L1 inhibitors have been reported to combine with other antitumor treatments including chemotherapy, radiotherapy, and targeted therapy for better therapeutic effect in recent clinical trials. Neoadjuvant therapy, mainly including chemotherapy and radiotherapy, not only can reduce clinical stage but also benefit from local control, which can improve clinical symptoms and the quality of life. Adding immunotherapy into neoadjuvant therapy may change the treatment strategy of primary resectable or some metastatic CRC. In this review, we focus on the development of neoadjuvant anti-PD-1/PD-L1 therapy and discuss the future perspectives in CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhigang Bai
- *Correspondence: Zhongtao Zhang, ; Hongwei Yao, ; Zhigang Bai,
| | - Hongwei Yao
- *Correspondence: Zhongtao Zhang, ; Hongwei Yao, ; Zhigang Bai,
| | - Zhongtao Zhang
- *Correspondence: Zhongtao Zhang, ; Hongwei Yao, ; Zhigang Bai,
| |
Collapse
|
16
|
Min H, Cho J, Sim JY, Boo H, Lee J, Lee S, Lee Y, Kim SJ, Kim K, Park I, Hong S, Zhang X, Zhang Z, Park R, Lee H. S100A14: A novel negative regulator of cancer stemness and immune evasion by inhibiting STAT3-mediated programmed death-ligand 1 expression in colorectal cancer. Clin Transl Med 2022; 12:e986. [PMID: 35858011 PMCID: PMC9299575 DOI: 10.1002/ctm2.986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) has functional roles in cancer stem-like cell (CSC) phenotypes and chemoresistance besides immune evasion. Chemotherapy is a common treatment choice for colorectal cancer (CRC) patients; however, chemoresistance limits its effectiveness of treatment. METHODS We examined the role of S100A14 (SA14) in CRC by adopting PD-L1high subpopulations within CRC cell lines and patient tumours, by establishing PD-L1high chemoresistant CRC sublines through prolonged exposure to 5-fluorouracil/oxaliplatin-based chemotherapy in vitro and in vivo, and by analysing a public database. RESULTS We identified a novel function of SA14 as a regulator of immune surveillance, major CSC phenotypes, and survival capacity under hostile microenvironments, including those harbouring chemotherapeutics, and as a prognostic biomarker in CRC. Mechanistically, SA14 inhibits PD-L1 expression by directly interacting with signal transducer and activator of transcription 3 (STAT3) and inducing its proteasome-mediated degradation. While gain-of-SA14 causes loss of PD-L1 expression and tumourigenic potential and sensitisation to chemotherapy-induced apoptosis in chemoresistant CRC cells, loss-of-SA14 causes increases in PD-L1 expression, tumourigenic potential, and chemoresistance in vitro and in vivo. We further show that a combinatorial treatment with chemotherapy and recombinant SA14 protein effectively induces apoptosis in PD-L1high chemoresistant CRC cells. CONCLUSIONS Our results suggest that SA14-based therapy is an effective strategy to prevent tumour progression and that SA14 is a predictive biomarker for anti-PD-L1 immunotherapy and chemotherapy in combination.
Collapse
Affiliation(s)
- Hye‐Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Jaebeom Cho
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Jeong Yeon Sim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Hye‐Jin Boo
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Ji‐Sun Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Seon‐Boon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Cell & Matrix Research InstituteKyungpook National UniversityDaeguRepublic of Korea
| | - Young‐Jin Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Cell & Matrix Research InstituteKyungpook National UniversityDaeguRepublic of Korea
| | - Sung Joo Kim
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Kyu‐Pyo Kim
- Department of Oncology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - In‐Ja Park
- Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Seung‐Mo Hong
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Xue‐Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiP.R. China
| | - Zhi‐Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiP.R. China
| | - Rang‐Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, Cell & Matrix Research InstituteKyungpook National UniversityDaeguRepublic of Korea
| | - Ho‐Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
17
|
Xu W, Ren D, Yu Z, Hou J, Huang F, Gan T, Ji P, Zhang C, Ma L, Hu Y. Bacteria-mediated tumor immunotherapy via photothermally-programmed PD1 expression. NANOSCALE ADVANCES 2022; 4:1577-1586. [PMID: 36134371 PMCID: PMC9417531 DOI: 10.1039/d1na00857a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 06/07/2023]
Abstract
The special microenvironment of a solid tumor promotes the orientation and colonization of facultative anaerobes. Intratumoral bacterial infection disrupts the local vascular system to form a thrombus, resulting in darkened tumor sites and enhanced near-infrared absorption. Based on this, we constructed thermally-induced bacteria (TIB) to express programmed cell death protein 1 (PD1) at tumor tissue sites. Under laser irradiation, the elevated temperature at the tumor site not only caused damage to tumor cells but also induced the expression of PD1. Expressed PD1 bound to the ligand of PD1 (PD-L1) on the tumor cell surface and facilitated its internalization and reduction, thereby relieving immune suppression in the tumor microenvironment. Through the combined effects of photothermal therapy and immune activation, the ingenious TIB@PD1 approach greatly inhibited the proliferation and metastasis of tumor cells. Therefore, bacteria-based photothermal immunotherapy represents an appealing method for tumor therapy with good specificity and selectivity.
Collapse
Affiliation(s)
- Wenxuan Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| | - Debao Ren
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| | - Zimeng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| | - Jia Hou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| | - Fan Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| | - Tingfang Gan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| | - Ping Ji
- Department of Chemistry, Wuhan University Wuhan 430072 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| | - Yunhong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University Wuhan 430062 P. R. China
| |
Collapse
|
18
|
Lu S, Shan N, Chen X, Peng F, Wang Y, Long H. A novel immune-related long non-coding RNAs risk model for prognosis assessment of lung adenocarcinoma. Aging (Albany NY) 2021; 13:25550-25563. [PMID: 34905504 PMCID: PMC8714149 DOI: 10.18632/aging.203772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Background: The abundant immune-related long non-coding RNA (IRLNRs) in immune cells and immune microenvironment have the potential to forecast prognosis and evaluate the effect of immunotherapy. IRLNRs analysis will provide a new perspective for LUAC research. Methods: We calculated the immune score of each sample according to the expression levels of immune-related genes (IRGs) and screened the survival-related IRLNRs (sIRLNRs) by Cox regression analysis. The expression levels of AC068338.3 and AL691432.2 in tissues and cell lines were confirmed by RT-qPCR. Results: 36 IRLNRs were selected by Pearson correlation analysis. Ten sIRLNRs were significantly correlated with the clinical outcomes of LUAC patients. Five sIRLNRs were identified by multivariate COX regression analysis to establish the immune-related risk score model (IRRS). The overall survival (OS) in the high-risk group was shorter than that in the low-risk group. IRRS could be an independent prognostic factor with significant survival correlation The distributions of immune gene concentrations were different between high-risk group and low-risk group. Furthermore, we further verified that the expression levels of AC068338.3 and AL691432.2 in different LUAC cell lines and tumor tissues were lower than that in Human bronchial epithelial cell (HBE) and adjacent tissues respectively. The lower expression levels of AC068338.3 and AL691432.2 were detected with the more advance T-stages. Conclusions: Our results highlighted some sIRLNRs with significant clinical correlations and demonstrated their monitored and prognostic values for LUAC patients. The results of this study may provide a new perspective for immunological research and immunotherapy strategies.
Collapse
Affiliation(s)
- Songmei Lu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Nan Shan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyue Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Fangliang Peng
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Wang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hao Long
- Department of Biological Immunotherapy, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|