1
|
Wen W, Li Y, Cao X, Li Y, Liu Z, Tang Z, Xie L, He R. Expression and Clinical Significance of NUDCD1, PI3K/AKT/mTOR Signaling Pathway-Related Molecules and Immune Infiltration in Breast Cancer. Clin Breast Cancer 2024; 24:e429-e451. [PMID: 38553373 DOI: 10.1016/j.clbc.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND NUDCD1 (NudC Domain Containing 1) performs an essential function in biological processes such as cell progression, migration, cell cycle, and intracellular material transport. Many solid tumors express it highly, which is a prospective biomarker and therapeutic approach. However, the expression and clinical importance of NUDCD1 across breast cancer is unclear. METHODS The expressions of NUDCD1 in breast cancers and normal breast tissues were studied utilizing the TIMER database and immunohistochemical analysis. Subsequently, we validate the association between the expression of NUDCD1 and clinicopathologic features and prognosis of breast cancer. The immunohistochemical experiments of pathway-related molecules were done on 214 breast cancer tissue microarrays. The investigation of correlation between NUDCD1 expression and tumor immune infiltration was subsequently conducted. RESULTS Through the utilization of bioinformatics analysis and immunohistochemical experiments, it was determined that NUDCD1 exhibited upregulation within breast cancer. Furthermore, it was discovered that an elevated expression of NUDCD1 may potentially be linked to a worse prognosis in breast cancer. Our study reveals that the PI3K/AKT/mTOR signaling pathway may perform a function in NUDCD1 regulating breast cancer progression via enrichment analysis. Furthermore, the expression of NUDCD1 may be associated with the degree of immunological infiltration. CONCLUSION The expression of NUDCD1 was explored to be elevated in breast cancer and was observed to be correlated with a poorer prognosis. p-AKT, PI3K, AKT, mTOR, and p-mTOR expression levels underwent significant elevation in breast cancer. The function of NUDCD1 within breast cancer might be associated with the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wei Wen
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; Department of Pathology, Yongchuan Hospital Of Chongqing Medical University, Yongchuan 402160, Chongqing, China
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xi Cao
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yanyan Li
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ziyi Liu
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhuoqi Tang
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Liming Xie
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Rongfang He
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
2
|
Wang Y, Xu T, Wang H, Xia G, Huang X. Inhibition of autophagy induced by tetrandrine promotes the accumulation of reactive oxygen species and sensitizes efficacy of tetrandrine in pancreatic cancer. Cancer Cell Int 2024; 24:241. [PMID: 38987818 PMCID: PMC11238362 DOI: 10.1186/s12935-024-03410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic cancer, characterized by its poor prognosis, exhibits a marked resistance to conventional chemotherapy and immunotherapy, underscoring the urgent need for more effective treatment modalities. In light of this, the present study is designed to assess the potential antineoplastic efficacy of a combined regimen involving tetrandrine, a plant-derived alkaloid, and autophagy inhibitors in the context of pancreatic cancer. Electron microscopy and immunoblots showed that tetrandrine promoted the formation of autophagosomes and the upregulation of LC3II and the downregulation of p62 expression, indicating that tetrandrine induced autophagy in pancreatic cancer cells. Western blot revealed that tetrandrine inhibited the phosphorylation of AKT and mTOR, as well as the expression of Bcl-2, while upregulating Beclin-1 expression. Moreover, tetrandrine promoted the transcription and protein expression of ATG7. Following the combination of autophagy inhibitors and tetrandrine, the apoptotic rate and cell death significantly increased in pancreatic cancer cells. Consistent results were obtained when ATG7 was silenced. Additionally, tetrandrine induced the generation of ROS, which was involved in the activation of autophagy and apoptosis. Further investigation revealed that upon autophagy inhibition, ROS accumulated in pancreatic cancer cells, resulting in decreased mitochondrial membrane potential and further induction of apoptosis. The results of treating subcutaneous xenograft tumors with a combination of tetrandrine and chloroquine validated that autophagy inhibition enhances the toxicity of tetrandrine against pancreatic cancer in vivo. Altogether, our study demonstrates that tetrandrine induces cytoprotective autophagy in pancreatic cancer cells. Inhibiting tetrandrine-induced autophagy promotes the accumulation of ROS and enhances its toxicity against pancreatic cancer.
Collapse
Affiliation(s)
- Yiwei Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Ting Xu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Hongcheng Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China
| | - Guanggai Xia
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China.
| | - Xinyu Huang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, China.
| |
Collapse
|
3
|
Mantooth SM, Abdou Y, Saez-Ibañez AR, Upadhaya S, Zaharoff DA. Intratumoral delivery of immunotherapy to treat breast cancer: current development in clinical and preclinical studies. Front Immunol 2024; 15:1385484. [PMID: 38803496 PMCID: PMC11128577 DOI: 10.3389/fimmu.2024.1385484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Breast cancer poses one of the largest threats to women's health. Treatment continues to improve for all the subtypes of breast cancer, but some subtypes, such as triple negative breast cancer, still present a significant treatment challenge. Additionally, metastasis and local recurrence are two prevalent problems in breast cancer treatment. A newer type of therapy, immunotherapy, may offer alternatives to traditional treatments for difficult-to-treat subtypes. Immunotherapy engages the host's immune system to eradicate disease, with the potential to induce long-lasting, durable responses. However, systemic immunotherapy is only approved in a limited number of indications, and it benefits only a minority of patients. Furthermore, immune related toxicities following systemic administration of potent immunomodulators limit dosing and, consequently, efficacy. To address these safety considerations and improve treatment efficacy, interest in local delivery at the site of the tumor has increased. Numerous intratumorally delivered immunotherapeutics have been and are being explored clinically and preclinically, including monoclonal antibodies, cellular therapies, viruses, nucleic acids, cytokines, innate immune agonists, and bacteria. This review summarizes the current and past intratumoral immunotherapy clinical landscape in breast cancer as well as current progress that has been made in preclinical studies, with a focus on delivery parameters and considerations.
Collapse
Affiliation(s)
- Siena M. Mantooth
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, United States
| | - Yara Abdou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | - David A. Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Zhou J, Lyu N, Wang Q, Yang M, Kimchi ET, Cheng K, Joshi T, Tukuli AR, Staveley-O'Carroll KF, Li G. A novel role of TGFBI in macrophage polarization and macrophage-induced pancreatic cancer growth and therapeutic resistance. Cancer Lett 2023; 578:216457. [PMID: 37865162 DOI: 10.1016/j.canlet.2023.216457] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Tumor-associated macrophages (TAMs), as a major and essential component of tumor microenvironment (TME), play a critical role in orchestrating pancreatic cancer (PaC) tumorigenesis from initiation to angiogenesis, growth, and systemic dissemination, as well as immunosuppression and resistance to chemotherapy and immunotherapy; however, the critical intrinsic factors responsible for TAMs reprograming and function remain to be identified. By performing single-cell RNA sequencing, transforming growth factor-beta-induced protein (TGFBI) was identified as TAM-producing factor in murine PaC tumors. TAMs express TGFBI in human PaC and TGFBI expression is positively related with human PaC growth. By inducing TGFBI loss-of-function in macrophage (MΦs) in vitro with siRNA and in vivo with Cre-Lox strategy in our developed TGFBI-floxed mice, we demonstrated disruption of TGFBI not only inhibited MΦ polarization to M2 phenotype and MΦ-mediated stimulation on PaC growth, but also significantly improved anti-tumor immunity, sensitizing PaC to chemotherapy in association with regulation of fibronectin 1, Cxcl10, and Ccl5. Our studies suggest that targeting TGFBI in MΦ can develop an effective therapeutic intervention for highly lethal PaC.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Nan Lyu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qiongling Wang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Ming Yang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA; Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA; Department of Health Management and Informatics and MU Institute of Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Adama R Tukuli
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| |
Collapse
|
5
|
Shyr CR, Liu LC, Chien HS, Huang CP. Immunotherapeutic Agents for Intratumoral Immunotherapy. Vaccines (Basel) 2023; 11:1717. [PMID: 38006049 PMCID: PMC10674963 DOI: 10.3390/vaccines11111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Immunotherapy using systemic immune checkpoint inhibitors (ICI) and chimeric antigen receptor (CAR) T cells has revolutionized cancer treatment, but it only benefits a subset of patients. Systemic immunotherapies cause severe autoimmune toxicities and cytokine storms. Immune-related adverse events (irAEs) plus the immunosuppressive tumor microenvironment (TME) have been linked to the inefficacy of systemic immunotherapy. Intratumoral immunotherapy that increases immunotherapeutic agent bioavailability inside tumors could enhance the efficacy of immunotherapies and reduce systemic toxicities. In preclinical and clinical studies, intratumoral administration of immunostimulatory agents from small molecules to xenogeneic cells has demonstrated antitumor effects not only on the injected tumors but also against noninjected lesions. Herein, we review and discuss the results of these approaches in preclinical models and clinical trials to build the landscape of intratumoral immunotherapeutic agents and we describe how they stimulate the body's immune system to trigger antitumor immunity as well as the challenges in clinical practice. Systemic and intratumoral combination immunotherapy would make the best use of the body's immune system to treat cancers. Combining precision medicine and immunotherapy in cancer treatment would treat both the mutated targets in tumors and the weakened body's immune system simultaneously, exerting maximum effects of the medical intervention.
Collapse
Affiliation(s)
- Chih-Rong Shyr
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (C.-R.S.); (H.-S.C.)
- eXCELL Biotherapeutics Inc., Taichung 404328, Taiwan
| | - Lang-Chi Liu
- Department of Medicine, Department of Surgery, College of Medicine, China Medical University and Hospital, Taichung 404328, Taiwan;
| | - Hui-Shan Chien
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (C.-R.S.); (H.-S.C.)
| | - Chi-Ping Huang
- Department of Medicine, Urology Division, China Medical University and Hospital, Taichung 404328, Taiwan
| |
Collapse
|
6
|
Steenbrugge J, Pauwelyn G, Demeyere K, Devriendt N, de Rooster H, Sanders NN, Spaas JH, Meyer E. Xenogeneic equine stem cells activate anti-tumor adaptive immunity in a 4T1-based intraductal mouse model for triple-negative breast cancer: proof-of-principle. Front Immunol 2023; 14:1252374. [PMID: 37928528 PMCID: PMC10623058 DOI: 10.3389/fimmu.2023.1252374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) remains difficult to treat, especially due to ineffective immune responses. Current treatments mainly aim at a cytotoxic effect, whereas (stem) cell therapies are being investigated for their immune stimulatory capacities to initiate the anti-tumor immunity. Here, a thoroughly characterized, homogenous and non-tumorigenic mixture of equine mesenchymal stem cells (eMSCs) harvested from horse peripheral blood as innovative xenogeneic immunomodulators were tested in a 4T1-based intraductal mouse model for TNBC. The eMSCs significantly reduced 4T1 progression upon systemic injection, with induction of inflammatory mediators and T-cell influx in primary tumors, already after a single dose. These xenogeneic anti-cancer effects were not restricted to MSCs as systemic treatment with alternative equine epithelial stem cells (eEpSCs) mimicked the reported disease reduction. Mechanistically, effective eMSC treatment did not rely on the spleen as systemic entrapment site, whereas CD4+ and CD8α+ T-cell infiltration and activation were critical. These results show that eMSCs and potentially also other equine stem cell types can be a valuable TNBC treatment strategy for further (pre)clinical evaluation.
Collapse
Affiliation(s)
- Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Glenn Pauwelyn
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nausikaa Devriendt
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hilde de Rooster
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N. Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H. Spaas
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Boehringer-Ingelheim Animal Health USA, Athens, GA, United States
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
7
|
Lin Q, Wang X, Hu Y. The opportunities and challenges in immunotherapy: Insights from the regulation of PD-L1 in cancer cells. Cancer Lett 2023:216318. [PMID: 37454966 DOI: 10.1016/j.canlet.2023.216318] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The immunosuppressive molecule programmed death-ligand 1 (PD-L1) is frequently upregulated in human cancers. Binding of PD-L1 to its receptor, programmed death-1 (PD-1), on activated T cells facilitates cancer cells to evade the host immune system. Antibody-based PD-1/PD-L1 inhibitors can inhibit PD-1/PD-L1 interaction allowing reactivate cytotoxic T cells to eradicate advanced cancer cells. However, the majority of cancer patients fail to respond to anti-PD-1/PD-L1 therapies and the molecular mechanisms for this remain poorly understood. Recent studies show that PD-L1 expression level on tumor cells affect the clinical efficacy of immune checkpoint therapies. Thus, furthering our understanding of the regulatory mechanisms of PD-L1 expression in cancer cells will be critical to improve clinical response rates and the efficacy of PD-1/PD-L1 immune therapies. Here we review recent studies, primarily focusing on the mechanisms that regulate PD-L1 expression at the transcriptional, post-transcriptional and protein level, with the purpose to drive the development of more targeted and effective anti-PD-1/PD-L1 cancer therapies.
Collapse
Affiliation(s)
- Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China.
| |
Collapse
|
8
|
Li K, Wu LL, Wang H, Cheng H, Zhuo HM, Hao Y, Liu ZY, Li CW, Qian JY, Li ZX, Xie D, Chen C. The characterization of tumor microenvironment infiltration and the construction of predictive index based on cuproptosis-related gene in primary lung adenocarcinoma. Front Oncol 2022; 12:1011568. [PMID: 36505852 PMCID: PMC9733577 DOI: 10.3389/fonc.2022.1011568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE We aimed to use the cancer genome atlas and gene expression omnibus databases to explore the characterization of tumor microenvironment (TME) infiltration and construct a predictive index of prognosis and treatment effect based on cuproptosis-related genes (CRGs) in primary lung adenocarcinoma (LUAD). METHODS We described the alterations of CRGs in 954 LUAD samples from genetic and transcriptional fields and evaluated their expression patterns from three independent datasets. We identified two distinct molecular subtypes and found that multi-layer CRG alterations were correlated with patient clinicopathological features, prognosis, and TME cell infiltrating characteristics. Then, a cuproptosis scoring system (CSS) for predicting the prognosis was constructed, and its predictive capability in LUAD patients was validated. RESULTS Two molecular subtypes of cuproptosis (Copper Genes cluster A and cluster B) in LUAD were identified. Copper Genes cluster B had better survival than those with Copper Genes cluster A (p <0.01). Besides, we found that the infiltration of activated CD4+ T cells, natural killer T cells, and neutrophils was stronger in cluster A than in cluster B. Then, we constructed a highly accurate CSS to predict the prognosis, targeted therapy effect, and immune response. Compared with the low-CSS subgroup, the mutations of the TP53, MUC16, and TTN genes were more common in the high-CSS subgroup, while the mutation of TP53, TTN, and CSMD3 genes were more common in the low-CSS subgroup than in high-CSS subgroup. The low-score CSS group had an inferior survival than high-score CSS group (p <0.01). In addition, CSS presented good ability to predict the immune response (area under curve [AUC], 0.726). Moreover, AZD5363 and AZD8186 were the inhibitors of AKT and PI3K, respectively, and had lower IC50 and AUC in the low-score CSS group than it in the high-score CSS group. CONCLUSIONS CRGs are associated with the development, TME, and prognosis of LUAD. Besides, a scoring system based on CRGs can predict the efficacy of targeted drugs and immune response. These findings may improve our understanding of CRGs in LUAD and pave a new path for the assessment of prognosis and the development of more effective targeted therapy and immunotherapy strategies.
Collapse
Affiliation(s)
- Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Hao Cheng
- School of Medicine and School of Life Science and Technology, Shanghai Tenth People’s Hospital of Tongji University, Tongji University, Shanghai, China
| | - Hui-Min Zhuo
- School of Medicine and School of Life Science and Technology, Shanghai Tenth People’s Hospital of Tongji University, Tongji University, Shanghai, China
| | - Yun Hao
- School of Medicine and School of Life Science and Technology, Shanghai Tenth People’s Hospital of Tongji University, Tongji University, Shanghai, China
| | - Zhi-Yuan Liu
- School of Medicine and School of Life Science and Technology, Shanghai Tenth People’s Hospital of Tongji University, Tongji University, Shanghai, China
| | - Chong-Wu Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Yi Qian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi-Xin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Liu Y, Huang L, Kim MY, Cho JY. The Role of Thymoquinone in Inflammatory Response in Chronic Diseases. Int J Mol Sci 2022; 23:ijms231810246. [PMID: 36142148 PMCID: PMC9499585 DOI: 10.3390/ijms231810246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Anti-inflammatory therapies have been shown to be effective in the prevention of various cardiovascular diseases, tumors, and cancer complications. Thymoquinone (TQ), the main active constituent of Nigella sativa, has shown promising therapeutic properties in many in vivo and in vitro models. However, TQ has poor bioavailability and is hydrophobic, prohibiting clinical trials with TQ alone. Studies have explored the combination of TQ with biological nanomaterials to improve its bioavailability. The TQ nanoparticle formulation shows better bioavailability than free TQ, and these formulations are ready for clinical trials to determine their potential as therapeutic agents. In this paper, we review current knowledge about the interaction between TQ and the inflammatory response and summarize the research prospects in Korea and abroad. We discuss the different biological activities of TQ and various combination therapies of TQ and nanomaterials in clinical trials.
Collapse
Affiliation(s)
- Yan Liu
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-Yeon Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|