1
|
Claude L, Schiffler C, Isnardi V, Metzger S, Darnis S, Martel-Lafay I, Baudier T, Rit S, Sarrut D, Ayadi M. "Mid-P strategy" versus "internal target volume strategy in locally advanced non small cell lung cancer: Clinical results from the randomized non-comparative phase II study Mid-P. Radiother Oncol 2024; 199:110435. [PMID: 39004227 DOI: 10.1016/j.radonc.2024.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/03/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Locally advanced non-small cell lung cancer (LA-NSCLC) reported poor 5-year survival rates with frequent local or regional recurrences. Personalized RT may contribute to improve control and clinical outcome. We investigated efficacy and tolerance of "Mid-position" (Mid-P) strategy versus the conventional Internal Target Volume (ITV) strategy in LA-NSCLC patients treated by definitive conformal radiotherapy. METHODS This prospective non-comparative randomized monocentric phase II trial included adult patients with non-resected, non-metastatic, non-previously irradiated proven LA-NSCLC treated with definitive normo-fractionated conformal radiotherapy (+/- chemotherapy). Allocated patients (randomisation 2:1) were treated using Mid-P or ITV strategy. A Fleming single-stage design (1-sided α = 0.1, 80 % power, P0 = 30 %, P1 = 50 %) planned enrolment of 36 patients in the Mid-P group. The ITV group ensured the absence of selection bias. The primary outcome was 1-year progression-free- survival (1y-PFS) rate. RESULTS Among 54 eligible patients included from September 2012 to May 2018, 51 patients were analyzed (Mid-P: N = 34; ITV: 17). The 1y-PFS was 38 % (1-sided 95 %CI 25 %-not reached) with Mid-P strategy, and 47 % (95 %CI [27 %-not reached[) with ITV. Loco-regional failure as first event mainly occurred within radiation-field regardless the strategy. Acute and middle-term radiation toxicities were observed with both strategies. CONCLUSION Local control and survival remain poor using the Mid-P strategy in this prospective randomized non-comparative monocentric study investigating Mid-P strategy versus ITV strategy in LA-NSCLC. Since the Mid-P strategy is not integrated into routine software, and perceived as a time-consuming method, Mid-P strategy cannot be recommended in LA-NSCLCC treated by definitive normo-fractionated conformal radiotherapy outside clinical trials.
Collapse
Affiliation(s)
- Line Claude
- Radiotherapy Oncology Department, Léon Bérard Cancer Center, Lyon, France.
| | - Camille Schiffler
- Clinical Research and Innovation Department, Léon Bérard Cancer Center, Lyon, France
| | - Vanina Isnardi
- Nuclear Medicine Department, Léon Bérard Cancer Center, Lyon, France
| | - Séverine Metzger
- Clinical Research and Innovation Department, Léon Bérard Cancer Center, Lyon, France
| | - Sophie Darnis
- Clinical Research and Innovation Department, Léon Bérard Cancer Center, Lyon, France
| | | | - Thomas Baudier
- INSA-Lyon, Université Lyon 1; Centre Léon Bérard; CREATIS CNRS UMR 5220, Inserm U1206, F-69373, Lyon, France
| | - Simon Rit
- INSA-Lyon, Université Lyon 1; Centre Léon Bérard; CREATIS CNRS UMR 5220, Inserm U1206, F-69373, Lyon, France
| | - David Sarrut
- INSA-Lyon, Université Lyon 1; Centre Léon Bérard; CREATIS CNRS UMR 5220, Inserm U1206, F-69373, Lyon, France
| | - Myriam Ayadi
- Radiotherapy Oncology Department, Léon Bérard Cancer Center, Lyon, France
| |
Collapse
|
2
|
Zarei M, Wallsten E, Grefve J, Söderkvist K, Gunnlaugsson A, Sandgren K, Jonsson J, Keeratijarut Lindberg A, Nilsson E, Bergh A, Zackrisson B, Moreau M, Thellenberg Karlsson C, Olsson LE, Widmark A, Riklund K, Blomqvist L, Berg Loegager V, Axelsson J, Strandberg SN, Nyholm T. Accuracy of gross tumour volume delineation with [68Ga]-PSMA-PET compared to histopathology for high-risk prostate cancer. Acta Oncol 2024; 63:503-510. [PMID: 38912830 PMCID: PMC11332483 DOI: 10.2340/1651-226x.2024.39041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The delineation of intraprostatic lesions is vital for correct delivery of focal radiotherapy boost in patients with prostate cancer (PC). Errors in the delineation could translate into reduced tumour control and potentially increase the side effects. The purpose of this study is to compare PET-based delineation methods with histopathology. MATERIALS AND METHODS The study population consisted of 15 patients with confirmed high-risk PC intended for prostatectomy. [68Ga]-PSMA-PET/MR was performed prior to surgery. Prostate lesions identified in histopathology were transferred to the in vivo [68Ga]-PSMA-PET/MR coordinate system. Four radiation oncologists manually delineated intraprostatic lesions based on PET data. Various semi-automatic segmentation methods were employed, including absolute and relative thresholds, adaptive threshold, and multi-level Otsu threshold. RESULTS The gross tumour volumes (GTVs) delineated by the oncologists showed a moderate level of interobserver agreement with Dice similarity coefficient (DSC) of 0.68. In comparison with histopathology, manual delineations exhibited the highest median DSC and the lowest false discovery rate (FDR) among all approaches. Among semi-automatic approaches, GTVs generated using standardized uptake value (SUV) thresholds above 4 (SUV > 4) demonstrated the highest median DSC (0.41), with 0.51 median lesion coverage ratio, FDR of 0.66 and the 95th percentile of the Hausdorff distance (HD95%) of 8.22 mm. INTERPRETATION Manual delineations showed a moderate level of interobserver agreement. Compared to histopathology, manual delineations and SUV > 4 exhibited the highest DSC and the lowest HD95% values. The methods that resulted in a high lesion coverage were associated with a large overestimation of the size of the lesions.
Collapse
Affiliation(s)
- Maryam Zarei
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden.
| | - Elin Wallsten
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
| | - Josefine Grefve
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
| | - Karin Söderkvist
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Adalsteinn Gunnlaugsson
- Skane University Hospital, Department of Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Kristina Sandgren
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
| | - Joakim Jonsson
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
| | - Angsana Keeratijarut Lindberg
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
| | - Erik Nilsson
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Björn Zackrisson
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Mathieu Moreau
- Skane University Hospital, Department of Hematology, Oncology and Radiation Physics, Lund, Sweden
| | | | - Lars E Olsson
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Anders Widmark
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Lennart Blomqvist
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Vibeke Berg Loegager
- Department of Radiology, Copenhagen University Hospital in Herlev, Herlev, Denmark
| | - Jan Axelsson
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
| | - Sara N Strandberg
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Tufve Nyholm
- Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Philip MM, Watts J, Moeini SNM, Musheb M, McKiddie F, Welch A, Nath M. Comparison of semi-automatic and manual segmentation methods for tumor delineation on head and neck squamous cell carcinoma (HNSCC) positron emission tomography (PET) images. Phys Med Biol 2024; 69:095005. [PMID: 38530298 DOI: 10.1088/1361-6560/ad37ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. Accurate and reproducible tumor delineation on positron emission tomography (PET) images is required to validate predictive and prognostic models based on PET radiomic features. Manual segmentation of tumors is time-consuming whereas semi-automatic methods are easily implementable and inexpensive. This study assessed the reliability of semi-automatic segmentation methods over manual segmentation for tumor delineation in head and neck squamous cell carcinoma (HNSCC) PET images.Approach. We employed manual and six semi-automatic segmentation methods (just enough interaction (JEI), watershed, grow from seeds (GfS), flood filling (FF), 30% SUVmax and 40%SUVmax threshold) using 3D slicer software to extract 128 radiomic features from FDG-PET images of 100 HNSCC patients independently by three operators. We assessed the distributional properties of all features and considered 92 log-transformed features for subsequent analysis. For each paired comparison of a feature, we fitted a separate linear mixed effect model using the method (two levels; manual versus one semi-automatic method) as a fixed effect and the subject and the operator as the random effects. We estimated different statistics-the intraclass correlation coefficient agreement (aICC), limits of agreement (LoA), total deviation index (TDI), coverage probability (CP) and coefficient of individual agreement (CIA)-to evaluate the agreement between the manual and semi-automatic methods.Main results. Accounting for all statistics across 92 features, the JEI method consistently demonstrated acceptable agreement with the manual method, with median values of aICC = 0.86, TDI = 0.94, CP = 0.66, and CIA = 0.91.Significance. This study demonstrated that JEI method is a reliable semi-automatic method for tumor delineation on HNSCC PET images.
Collapse
Affiliation(s)
- Mahima Merin Philip
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Jessica Watts
- National Health Service Grampian, Aberdeen AB15 6RE, United Kingdom
| | | | - Mohammed Musheb
- National Health Service Highland, Inverness IV2 3BW, United Kingdom
| | - Fergus McKiddie
- National Health Service Grampian, Aberdeen AB15 6RE, United Kingdom
| | - Andy Welch
- Institute of Education in Healthcare and Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Mintu Nath
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
4
|
Deng H, Chen Y, Li P, Hang Q, Zhang P, Jin Y, Chen M. PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism: Potential targets to overcome radioresistance in small cell lung cancer. CANCER PATHOGENESIS AND THERAPY 2023; 1:56-66. [PMID: 38328610 PMCID: PMC10846321 DOI: 10.1016/j.cpt.2022.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 02/09/2024]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive tumor type for which limited therapeutic progress has been made. Platinum-based chemotherapy with or without thoracic radiotherapy remains the backbone of treatment, but most patients with SCLC acquire therapeutic resistance. Given the need for more effective therapies, better elucidation of the molecular pathogenesis of SCLC is imperative. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is frequently activated in SCLC and strongly associated with resistance to ionizing radiation in many solid tumors. This pathway is an important regulator of cancer cell glucose metabolism, and its activation probably effects radioresistance by influencing bioenergetic processes in SCLC. Glucose metabolism has three main branches-aerobic glycolysis, oxidative phosphorylation, and the pentose phosphate pathway-involved in radioresistance. The interaction between the PI3K/AKT/mTOR pathway and glucose metabolism is largely mediated by hypoxia-inducible factor 1 (HIF-1) signaling. The PI3K/AKT/mTOR pathway also influences glucose metabolism through other mechanisms to participate in radioresistance, including inhibiting the ubiquitination of rate-limiting enzymes of the pentose phosphate pathway. This review summarizes our understanding of links among the PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism in SCLC radioresistance and highlights promising research directions to promote cancer cell death and improve the clinical outcome of patients with this devastating disease.
Collapse
Affiliation(s)
- Huan Deng
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yamei Chen
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peijing Li
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qingqing Hang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peng Zhang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ying Jin
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ming Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
5
|
Kuyumcu S, Sanli Y, Subramaniam RM. Fibroblast-Activated Protein Inhibitor PET/CT: Cancer Diagnosis and Management. Front Oncol 2021; 11:758958. [PMID: 34858834 PMCID: PMC8632139 DOI: 10.3389/fonc.2021.758958] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast activation protein (FAP), overexpressed on cancer-associated fibroblasts (CAFs), is a novel target for molecular imaging of various tumors. Recently, the development of several small-molecule FAP inhibitors for radiolabeling with 68Ga has resulted in the emergence of studies evaluating its clinical role in cancer imaging. Preliminary findings have demonstrated that, in contrast to radiotracers taking advantage of cancer-specific targets such as PSMA and DOTATATE, FAPs as a target are the most promising that can compete with 18FDG in terms of widespread indications. They also have the potential to overcome the shortcomings of 18FDG, particularly false-positive uptake due to inflammatory or infectious processes, low sensitivity in certain cancer types, and radiotherapy planning. In addition, the attractive theranostic properties may facilitate the treatment of many refractory cancers. This review summarizes the current FAP variants and related clinical studies, focusing on radiopharmacy, dosimetry, and diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Serkan Kuyumcu
- Department of Nuclear Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yasemin Sanli
- Department of Nuclear Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Rathan M. Subramaniam
- Otago Medical School, University of Otago, Dunedin, New Zealand
- Department of Radiology, Duke University, Durham, NC, United States
| |
Collapse
|
6
|
Lucia F, Miranda O, Bourbonne V, Martin E, Pradier O, Schick U. Integration of functional imaging in brachytherapy. Cancer Radiother 2021; 26:517-525. [PMID: 34172398 DOI: 10.1016/j.canrad.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022]
Abstract
Functional imaging allows the evaluation of numerous biological properties that could be considered at all steps of the therapeutic management of patients treated with brachytherapy. Indeed, it enables better initial staging of the disease, and some parameters may also be used as predictive biomarkers for treatment response, allowing better selection of patients eligible for brachytherapy. It may also improve the definition of target volumes with the aim of dose escalations by dose-painting. Finally, it could be useful during the follow-up to assess response to treatment. In this review, we report how functional imaging is integrated at the present time during the brachytherapy procedure, and what are its potential future contributions in the main tumour locations where brachytherapy is recommended. Functional imaging has great potential in the contact of brachytherapy, but still, several issues remain to be resolved before integrating it into clinical practice, especially as a biomarker or in dose painting strategies.
Collapse
Affiliation(s)
- F Lucia
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France.
| | - O Miranda
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - V Bourbonne
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - E Martin
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - O Pradier
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - U Schick
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| |
Collapse
|