1
|
Mohamed MF, Hamed AA, Kashmiry AA, Saddiq AA, Abdelhamid IA, Elgamal AM. A practical and environmentally sustainable approach to dye removal: Synthesis and characterization of a highly efficient crosslinked chitosan-Schiff base adsorbent for Eriochrome Black T removal. Int J Biol Macromol 2025; 308:142048. [PMID: 40139587 DOI: 10.1016/j.ijbiomac.2025.142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
The removal of dyes from aquatic environments is crucial amidst the growing demands of industrialization and environmental sustainability. This study focuses on fabricating a novel crosslinked chitosan adsorbent with high adsorption capacity to remove EBT dye effectively. The synthesis of the adsorbent involved a two-step process: condensation with pyridine-3-carbaldehyde followed by crosslinking with 1,1'-(piperazine-1,4-diyl)bis(2-chloroethan-1-one). The synthesized adsorbent, designated as Cs-Py1-Pz, was characterized using techniques such as TGA, 1H NMR, BET, SEM, EDX, XPS, XRD, and FTIR. The effects of controlling factors, including initial concentration, temperature, pH, contact time, and dosage, on adsorption performance were investigated. Based on the Langmuir isotherm model, the Cs-Py1-Pz adsorbent exhibited a maximum adsorption capacity of 1640.04 mg g-1 for EBT dye removal at 298 K. Furthermore, the pseudo-first-order model best described the experimental kinetic data. While the intraparticle diffusion mechanism influenced the adsorption process, it was not the sole controlling factor. Combined theoretical and experimental thermodynamic studies suggested that the interaction between EBT dye and Cs-Py1-Pz is likely governed by a physical process occurring spontaneously and exothermically. Reusability studies demonstrated successful regeneration of the adsorbent using NaOH as an eluent. Notably, Cs-Py1-Pz exhibited significant antibacterial activity against E. coli growth, with a 66.7 % inhibition rate. Overall, these findings highlight Cs-Py1-Pz as a promising adsorbent with a high capacity for the effective removal of EBT dye from aqueous solutions.
Collapse
Affiliation(s)
- Magda F Mohamed
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia; Department of Chemistry (Biochemistry Branch), Cairo University, Giza, Egypt; Department of Environmental Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Amira A Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Alaa A Kashmiry
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Amna A Saddiq
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Ahmed M Elgamal
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| |
Collapse
|
2
|
Patamia V, Saccullo E, Fuochi V, Magaletti F, Trecarichi L, Furnari S, Furneri PM, Barbera V, Floresta G, Rescifina A. Developing Advanced Antibacterial Alginic Acid Biomaterials through Dual Functionalization. ACS APPLIED BIO MATERIALS 2024; 7:6932-6940. [PMID: 39253768 DOI: 10.1021/acsabm.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This paper delves into the intersection of biomaterials and antibacterial agents, highlighting the importance of alginic acid-based biomaterials. We investigate enhancing antibacterial properties by functionalizing alginic acid with an ionic liquid and a potent chelating agent, tris(hydroxypyridinone) (THP). Initial functionalization with the ionic liquid markedly improves the material's antibacterial efficacy. Subsequent functionalization with THP further enhances this activity, reducing the minimum inhibitory concentration from 6 to 3 mg/mL. Notably, the newly developed dual-functionalized materials exhibit no cytotoxic effects at the concentrations tested, underscoring their potential for safe and effective antibacterial applications. These findings highlight the promising role of dual-functionalized alginic acid biomaterials in developing advanced antibacterial treatments.
Collapse
Affiliation(s)
- Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy
| | - Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Federica Magaletti
- Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Luca Trecarichi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Salvatore Furnari
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
3
|
Patamia V, Saccullo E, Magaletti F, Fuochi V, Furnari S, Fiorenza R, Furneri PM, Barbera V, Floresta G, Rescifina A. Nature-inspired innovation: Alginic-kojic acid material for sustainable antibacterial and carbon dioxide fixation. Int J Biol Macromol 2024; 277:134514. [PMID: 39111504 DOI: 10.1016/j.ijbiomac.2024.134514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The current environmental consciousness of the world's population encourages researchers to work on new materials that are environmentally benign and able to display the appropriate features for the needed application. To develop high-performing, inexpensive eco-materials, scientists have frequently turned to nature, attempting to mimic its processes' excellent performance at a reasonable price. In this regard, we decided to focus on alginic acid (AA), a polysaccharide widely found in brown algae, and kojic acid (KA), a chelating agent fungi produces. This study proposes rapidly synthesizing a sustainable, biocompatible material (AK) based on AA and KA, employing chlorokojic acid (CKA). The material has a dual function: antibacterial activity on both Gram-positive and Gram-negative bacteria, without any cytotoxic action on human cells in vitro, and catalytic ability to convert CO2 into cyclic carbonates at atmospheric pressure, without solvents, with high yields, and without the use of metals. Furthermore, the material's insolubility in organic solvents allows it to be easily separated from the reaction product and reused for other catalytic cycles. Both applications have a key role in the medical and environmental fields, combating the outbreak of infections and providing an innovative methodology to fix the CO2 on specific substrates.
Collapse
Affiliation(s)
- Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Federica Magaletti
- Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, Milano, Italy
| | - Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Salvatore Furnari
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Roberto Fiorenza
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, Milano, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Tarek A, Tartor YH, Hassan MN, Pet I, Ahmadi M, Abdelkhalek A. Fighting Emerging Caspofungin-Resistant Candida Species: Mitigating Fks1-Mediated Resistance and Enhancing Caspofungin Efficacy by Chitosan. Antibiotics (Basel) 2024; 13:578. [PMID: 39061260 PMCID: PMC11274059 DOI: 10.3390/antibiotics13070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, Candida species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal potential of chitosan to mitigate caspofungin resistance in caspofungin-resistant Candida albicans, C. krusei, and C. tropicalis isolates originating from human and animal sources using agar well diffusion, broth microdilution tests, and transmission electron microscope (TEM) analysis of treated Candida cells. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed to assess the expression of SAGA complex genes (GCN5 and ADA2) and the caspofungin resistance gene (FKS) in Candida species isolates after chitosan treatment. The highest resistance rate was observed to ketoconazole (80%) followed by clotrimazole (62.7%), fluconazole (60%), terbinafine (58%), itraconazole (57%), miconazole (54.2%), amphotericin B (51.4%), voriconazole (34.28%), and caspofungin (25.7%). Nine unique FKS mutations were detected, including S645P (n = 3 isolates), S645F, L644F, S645Y, L688M, E663G, and F641S (one isolate in each). The caspofungin minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values before chitosan treatment ranged from 2 to 8 µg/mL and 4 to 16 µg/mL, respectively. However, the MIC and MFC values were decreased after chitosan treatment (0.0625-1 µg/mL) and (0.125-2 µg/mL), respectively. Caspofungin MIC was significantly decreased (p = 0.0007) threefold following chitosan treatment compared with the MIC values before treatment. TEM analysis revealed that 0.5% chitosan disrupted the integrity of the cell surface, causing irregular morphologies and obvious aberrant changes in cell wall thickness in caspofungin-resistant and sensitive Candida isolates. The cell wall thickness of untreated isolates was 0.145 μm in caspofungin-resistant isolate and 0.125 μm in sensitive isolate, while it was significantly lower in chitosan-treated isolates, ranging from 0.05 to 0.08 μm when compared with the cell wall thickness of sensitive isolate (0.03 to 0.06 μm). Moreover, RT-qPCR demonstrated a significant (p < 0.05) decrease in the expression levels of histone acetyltransferase genes (GCN5 and ADA2) and FKS gene of caspofungin-resistant Candida species isolates treated with 0.5% chitosan when compared with before treatment (fold change values ranged from 0.001 to 0.0473 for GCN5, 1.028 to 4.856 for ADA2, and 2.713 to 12.38 for FKS gene). A comparison of the expression levels of cell wall-related genes (ADA2 and GCN5) between caspofungin-resistant and -sensitive isolates demonstrated a significant decrease following chitosan treatment (p < 0.001). The antifungal potential of chitosan enhances the efficacy of caspofungin against various caspofungin-resistant Candida species isolates and prevents the development of further antifungal resistance. The results of this study contribute to the progress in repurposing caspofungin and inform a development strategy to enhance its efficacy, appropriate antifungal activity against Candida species, and mitigate resistance. Consequently, chitosan could be used in combination with caspofungin for the treatment of candidiasis.
Collapse
Affiliation(s)
- Aya Tarek
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed N. Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Ioan Pet
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Mirela Ahmadi
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| |
Collapse
|
5
|
Joseph DP, Rajchakit U, Pilkington LI, Sarojini V, Barker D. Synthesis and antibacterial analysis of C-6 amino-functionalised chitosan derivatives. Int J Biol Macromol 2023; 240:124278. [PMID: 37004934 DOI: 10.1016/j.ijbiomac.2023.124278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Synthesis of 6-O-(3-alkylamino-2-hydroxypropyl) derivatives of chitosan was achieved using a four-step strategy of N-protection, O-epoxide addition, epoxide ring opening using an amine and N-deprotection. Benzaldehyde and phthalic anhydride were used for the N-protection step, producing N-benzylidene and N-phthaloyl protected derivatives, respectively, resulting in two corresponding final 6-O-(3-alkylamino-2-hydroxypropyl) derivative series, BD1-BD6 and PD1-PD14. All the compounds were characterized using FTIR, XPS and PXRD studies and tested for antibacterial efficacy. The phthalimide protection strategy was found to be easier to apply and effective in terms of the synthetic process and improvement in antibacterial activity. Amongst the newly synthesized compounds, PD13 (6-O-(3-(2-(N,N-dimethylamino)ethylamino)-2-hydroxypropyl)chitosan) was the most active with eight times greater activity compared to the unmodified chitosan and, PD7 6-O-(3-(3-(N-(3-aminopropyl)propane-1,3-diamino)propylamino)-2-hydroxypropyl)chitosan) having a four-fold activity than chitosan, was found to be the second most potent derivative. This work has produced new chitosan derivatives those are more potent than chitosan itself and show promise in antimicrobial applications.
Collapse
|
6
|
Shipovskaya AB, Lugovitskaya TN, Zudina IV. Biocidal Activity of Chitosan Aspartate Nanoparticles. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261722602378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
7
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Salem AE, Mohammed SF, Sadeek SA, Zordok WA, S. El‐Attar M. Synthesis, structural elucidation, molecular modeling and antimicrobial studies of some nanoparticles mixed ligands complexes of cetirizine in presence of 2,2′‐bipyridine. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ahmed E. Salem
- Department of Chemistry, The Egyptian mineral resources authority (EMRA) Cairo Egypt
| | - Soha F. Mohammed
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Sadeek A. Sadeek
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Wael A. Zordok
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Mohamed S. El‐Attar
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| |
Collapse
|
9
|
Shafi QI, Ihsan H, Hao Y, Wu X, Ullah N, Younas M, He B, Rezakazemi M. Multi-ionic electrolytes and E.coli removal from wastewater using chitosan-based in-situ mediated thin film composite nanofiltration membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112996. [PMID: 34126538 DOI: 10.1016/j.jenvman.2021.112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
This work presents the experimental investigation of flat sheet composite nanofiltration membrane synthesized with chitosan nanoparticles through interfacial polymerization of piperazine with trimesoyl chloride on polyethersulfone/sulfonated polysulfone substrates. The synthesized membrane was tested in wastewater treatment containing inorganic salts and E.Coli. Single binary electrolyte solution of KCl, MgCl2, MgSO4, and Na2SO4, ternary electrolyte solution, containing a combination of MgCl2 and MgSO4, KCl and MgCl2 and quaternary electrolyte solution of KCl, MgCl2, and MgSO4 as feed were treated in crossflow membrane cell for the water flux and species rejection in the permeate under operating pressure up to 0.5 MPa. The rejection of Na1+, K1+, Mg2+, Cl1-, and SO42- was observed to be 81, 28, 87, 96, and 98%, respectively with an average water flux up to 214 ± 10 L m⁻2.hr⁻1 in the permeate for the binary electrolyte solution. Similarly, the rejection for K1+, Mg2+, Cl1- and SO42- was noted to be 33, 94, 97, and 99%, respectively, for ternary electrolyte solution with an average water flux up to 211 ± 10 L m-2.hr-1. The quaternary ion system in the feed resulted in an average water flux up to 198 ± 12 L m⁻2.hr⁻1 with the rejection of K+, Mg+2, Cl- and SO4-2 as 35, 87, 96, and 99%, respectively. The model feed solution of E. coli after passing through the membrane achieved an E. coli rejection (99%) with water flux up to 220 L m-2.hr-1.
Collapse
Affiliation(s)
- Qazi Iqra Shafi
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Haseena Ihsan
- Department of Chemistry, Sharhad University of Information Technology, Peshawar, Pakistan
| | - Yufan Hao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xin Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Nehar Ullah
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Mohammad Younas
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan.
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
10
|
In vitro biological and antimicrobial properties of chitosan-based bioceramic coatings on zirconium. Sci Rep 2021; 11:15104. [PMID: 34302008 PMCID: PMC8302640 DOI: 10.1038/s41598-021-94502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Ca-based porous and rough bioceramic surfaces were coated onto zirconium by micro-arc oxidation (MAO). Subsequently, the MAO-coated zirconium surfaces were covered with an antimicrobial chitosan layer via the dip coating method to develop an antimicrobial, bioactive, and biocompatible composite biopolymer and bioceramic layer for implant applications. Cubic ZrO2, metastable Ca0.15Zr0.85O1.85, and Ca3(PO4)2 were detected on the MAO surface by powder-XRD. The existence of chitosan on the MAO-coated Zr surfaces was verified by FTIR. The micropores and thermal cracks on the bioceramic MAO surface were sealed using a chitosan coating, where the MAO surface was porous and rough. All elements such as Zr, O, Ca, P, and C were homogenously distributed across both surfaces. Moreover, both surfaces indicated hydrophobic properties. However, the contact angle of the MAO surface was lower than that of the chitosan-based MAO surface. In vitro bioactivity on both surfaces was investigated via XRD, SEM, and EDX analyses post-immersion in simulated body fluid (SBF) for 14 days. In vitro bioactivity was significantly enhanced on the chitosan-based MAO surface with respect to the MAO surface. In vitro microbial adhesions on the chitosan-based MAO surfaces were lower than the MAO surfaces for Staphylococcus aureus and Escherichia coli.
Collapse
|
11
|
Kocak G, Tamfu AN, Bütün V, Ceylan O. Synthesis of quaternary piperazine methacrylate homopolymers and their antibiofilm and anti‐quorum sensing effects on pathogenic bacteria. J Appl Polym Sci 2021. [DOI: 10.1002/app.50466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gökhan Kocak
- Department of Chemistry and Chemical Process Technologies Vocational School of Higher Education, Adiyaman University Adiyaman Turkey
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering School of Chemical Engineering and Mineral Industries, University of Ngaoundere Ngaoundere Cameroon
| | - Vural Bütün
- Department of Chemistry, Faculty of Science and Letters Eskisehir Osmangazi University Eskisehir Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program Ula Ali Kocman Vocational School, Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
12
|
Liu TT, Su GZ, Yang TS. Functionalities of chitosan conjugated with lauric acid and l-carnitine and application of the modified chitosan in an oil-in-water emulsion. Food Chem 2021; 359:129851. [PMID: 33957325 DOI: 10.1016/j.foodchem.2021.129851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
The aim of this research was to conjugate chitosan (CT) with lauric acid (LA) and l-carnitine (CNT) to yield a product that is water-soluble at neutral pH and has surface, antimicrobial, and antioxidant activities. The resulting CT-LA-CNT is water-soluble at neutral pH, in contrast with CT and CT-LA, which require the aid of acid to become soluble. Concerning antimicrobial activity, for S. aureus, the minimum bactericidal concentration of CT was lower than those of CT-LA or CT-LA-CNT, while the three compounds exhibited similar bactericidal activity against E. coli. CT-LA-CNT was also used to study the oxidative stability of soybean oil in an oil-in-water (O/W) emulsion; sodium dodecyl sulfate (SDS) and Tween 80 and Span 80 (TS), an emulsifier mixture, were used as controls for comparison. The results showed that CT-LA-CNT was better than SDS and TS at protecting the lipid from oxidation.
Collapse
Affiliation(s)
- Tai-Ti Liu
- Department of Food Science, Yuanpei University of Medical Technology, No. 306 Yuanpei Street, Hsinchu 30015, Taiwan
| | - Guan-Zhen Su
- Department of Cosmeceutics, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Tsung-Shi Yang
- Department of Cosmeceutics, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan.
| |
Collapse
|
13
|
Yue L, Zheng M, Wang M, Khan IM, Wang B, Ma X, Peng C, Wang Z, Xia W. A general strategy to synthesis chitosan oligosaccharide-O-Terpenol derivatives with antibacterial properties. Carbohydr Res 2021; 503:108315. [PMID: 33865180 DOI: 10.1016/j.carres.2021.108315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023]
Abstract
The objectives of the present study are to synthesize a series of chitosan oligosaccharide-O-Terpenol (COS-O-Ter) derivatives and their implication to evaluate in vitro antibacterial activity. Herein, a general strategy is described for preparing COS-O-Ter derivatives, including substitution and deprotection reactions. The structures of COS-O-Ter derivatives were characterized by FT-IR, 1H NMR, XRD, TGA, and elemental analysis. COS-O-Ter derivatives revealed the excellent solubility and in vitro antibacterial activity. Moreover, their antibacterial activities were more sensitive to Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) indicating the effective potential application of COS-O-Ter derivatives as natural antibacterial agents. The aforementioned study opens a pave to expand the application scope of COS and its derivatives in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.
| | - Meihong Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Bin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| |
Collapse
|
14
|
Muthu M, Gopal J, Chun S, Devadoss AJP, Hasan N, Sivanesan I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants (Basel) 2021; 10:228. [PMID: 33546282 PMCID: PMC7913366 DOI: 10.3390/antiox10020228] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chitosan is obtained from chitin that in turn is recovered from marine crustacean wastes. The recovery methods and their varying types and the advantages of the recovery methods are briefly discussed. The bioactive properties of chitosan, which emphasize the unequivocal deliverables contained by this biopolymer, have been concisely presented. The variations of chitosan and its derivatives and their unique properties are discussed. The antioxidant properties of chitosan have been presented and the need for more work targeted towards harnessing the antioxidant property of chitosan has been emphasized. Some portions of the crustacean waste are being converted to chitosan; the possibility that all of the waste can be used for harnessing this versatile multifaceted product chitosan is projected in this review. The future of chitosan recovery from marine crustacean wastes and the need to improve in this area of research, through the inclusion of nanotechnological inputs have been listed under future perspective.
Collapse
Affiliation(s)
- Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India;
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | - Sechul Chun
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | | | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
15
|
Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, Khafaga AF, Abd El-Hakim YM, Al-Sagheer AA. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int J Biol Macromol 2020; 164:2726-2744. [PMID: 32841671 DOI: 10.1016/j.ijbiomac.2020.08.153] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
In this era, there is a global concern in the use of bioactive molecules such as chitosan in the field of antimicrobial and antioxidant benefits. Because of its biodegradability, biological compatibility, antimicrobial, antioxidants activity, and high safety, chitosan could be used in a large number of applications. It could exist in many forms, such as fibers, gels, films, sponges, nanoparticles, and beads. The different biological activities of chitosan and its products are extensively investigated to broaden the application fields in several areas. Chitosan's natural properties depend strongly on water and other solvent solubility. Consequently, the chitosan oligosaccharides with a low polymerization degree are getting significant attention in the pharmaceutical and medical applications because they have lower viscosity and higher water solubility than chitosan. The objective of this review article is to put the antioxidant and antimicrobial properties of chitosan and its derivatives under the spotlight. The impacts of chitosan on physicochemical parameters like molecular weight and deacetylation degree on its bioactivities are also identified. Additionally, other applications of chitosan and its derivatives, including wound healing products, wastewater treatment, and cosmetics, have also been highlighted.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nidal M Zabermawi
- Department of Biological Sciences, Microbiology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Gaber Elsaber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, 080-8555 Obihiro, Hokkaido, Japan; Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | | | - Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
16
|
Savin S, Craciunescu O, Oancea A, Ilie D, Ciucan T, Antohi LS, Toma A, Nicolescu A, Deleanu C, Oancea F. Antioxidant, Cytotoxic and Antimicrobial Activity of Chitosan Preparations Extracted from
Ganoderma Lucidum
Mushroom. Chem Biodivers 2020; 17:e2000175. [DOI: 10.1002/cbdv.202000175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Simona Savin
- National Institute of Research and Development for Biological Sciences 296, Splaiul Independentei 060031 Bucharest Romania
| | - Oana Craciunescu
- National Institute of Research and Development for Biological Sciences 296, Splaiul Independentei 060031 Bucharest Romania
| | - Anca Oancea
- National Institute of Research and Development for Biological Sciences 296, Splaiul Independentei 060031 Bucharest Romania
| | - Daniela Ilie
- National Institute of Research and Development for Biological Sciences 296, Splaiul Independentei 060031 Bucharest Romania
| | - Teodora Ciucan
- National Institute of Research and Development for Biological Sciences 296, Splaiul Independentei 060031 Bucharest Romania
| | - Loredana Stefania Antohi
- National Institute of Research and Development for Biological Sciences 296, Splaiul Independentei 060031 Bucharest Romania
| | - Agnes Toma
- National Institute of Research and Development for Biological Sciences 296, Splaiul Independentei 060031 Bucharest Romania
| | - Alina Nicolescu
- ‘Petru Poni' Institute of Macromolecular Chemistry 41 A, Grigore Ghica Voda Str. 700487 Romania Iasi
| | - Calin Deleanu
- ‘Petru Poni' Institute of Macromolecular Chemistry 41 A, Grigore Ghica Voda Str. 700487 Romania Iasi
| | - Florin Oancea
- National Institute for Research and Development in Chemistry and Petrochemistry – ICECHIM 202, Splaiul Independentei 060021 Bucharest Romania
| |
Collapse
|
17
|
Kianfar P, Vitale A, Dalle Vacche S, Bongiovanni R. Photo-crosslinking of chitosan/poly(ethylene oxide) electrospun nanofibers. Carbohydr Polym 2019; 217:144-151. [DOI: 10.1016/j.carbpol.2019.04.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
|
18
|
Aslam A, Abbas MA, Iqbal M, Bashir S, Mehmood T, Kressler J. Synthesis, Characterization and Antimicrobial Activity of Bis(Phthalimido)Piperazine and its Derivatives: a New Class of Bioactive Molecules with Enhanced Safety and Efficacy. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Tabriz A, Ur Rehman Alvi MA, Khan Niazi MB, Batool M, Bhatti MF, Khan AL, Khan AU, Jamil T, Ahmad NM. Quaternized trimethyl functionalized chitosan based antifungal membranes for drinking water treatment. Carbohydr Polym 2019; 207:17-25. [DOI: 10.1016/j.carbpol.2018.11.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 01/29/2023]
|
20
|
Araújo J, Fernandes C, Pinto M, Tiritan ME. Chiral Derivatives of Xanthones with Antimicrobial Activity. Molecules 2019; 24:E314. [PMID: 30654546 PMCID: PMC6359477 DOI: 10.3390/molecules24020314] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
According to the World Health Organization, the exacerbated use of antibiotics worldwide is increasing multi-resistant infections, especially in the last decade. Xanthones are a class of compounds receiving great interest in drug discovery and development that can be found as natural products or obtained by synthesis. Many derivatives of xanthones are chiral and associated with relevant biological activities, including antimicrobial. The aim of this review is to compile information about chiral derivatives of xanthones from natural sources and their synthesized examples with antimicrobial activity.
Collapse
Affiliation(s)
- Joana Araújo
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla Fernandes
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edificio do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edificio do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edificio do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Institute of Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| |
Collapse
|
21
|
Merzendorfer H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes. Carbohydr Polym 2018; 200:54-62. [DOI: 10.1016/j.carbpol.2018.07.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
|
23
|
Gaballah ST, El-Nazer HA, Abdel-Monem RA, El-Liethy MA, Hemdan BA, Rabie ST. Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int J Biol Macromol 2018; 121:707-717. [PMID: 30340001 DOI: 10.1016/j.ijbiomac.2018.10.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
We herein describe the synthesis of four Cs-PVC conjugates three of them were functionalized with benzothiazole (BTh) derivative as an antibacterial agent. Two of these BTh-functionalized conjugates, namely Cs2 and Cs3, comprise silver nanoparticles (AgNPs) and Ag/TiO2 NPs, respectively. The structures were characterized via FTIR spectroscopic analysis, morphological investigation such as scanning (SEM) and transmission (TEM) electron microscopy, and thermal gravimetric analysis (TGA). Spectral data confirmed the introduction of the BTh to the Cs backbone as well as the coupling between the two polymers. SEM data showed homogenous polymer surfaces with well-distributed Ag nanoparticles. The Ag contents in the prepared samples Cs2 and Cs3 were, respectively, 0.61 and 0.21%, however, TEM analysis showed that the sizes of AgNPs and Ag/TiO2 NPs were in the range of 3-7 nm and 15-22 nm for the prepared conjugates, respectively. The antibacterial activity of the synthesized conjugates was investigated against two Gram-negative (E. coli, and S. typhimurium) and two Gram-positive (S. aureus, and L. monocytogenes) bacteria. The antibacterial assay showed that all three Cs-PVC (Cs1, Cs2, and Cs3) conjugates modified with BTh exhibited excellent bacterial inhibition after 30, 60, and 120 min.
Collapse
Affiliation(s)
- Samir T Gaballah
- Photochemistry Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt.
| | - Hossam A El-Nazer
- Photochemistry Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| | - Reham A Abdel-Monem
- Photochemistry Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| | - Bahaa A Hemdan
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| | - Samira T Rabie
- Photochemistry Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| |
Collapse
|
24
|
Govindaiah S, Sreenivasa S, Ramakrishna RA, Rao TMC, Nagabhushana H. Regioselective Synthesis, Antibacterial, Molecular Docking and Fingerprint Applications of 1-Benzhydrylpiperazine Derivatized 1,4-Disubstituted 1,2,3-Triazoles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shivaraja Govindaiah
- Department of Studies and Research in Chemistry; Tumkur University; Tumkur-572103
| | - Swamy Sreenivasa
- Department of Studies and Research in Chemistry; Tumkur University; Tumkur-572103
| | | | | | | |
Collapse
|
25
|
Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydr Polym 2018; 190:31-42. [DOI: 10.1016/j.carbpol.2017.11.088] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 11/09/2017] [Accepted: 11/24/2017] [Indexed: 11/21/2022]
|
26
|
Huang X, Fang B, Xu Z, Cao Z, Zeng R, Tu M, Zhao J. Branched dicationically-charged phosphodicholine (PdC) modified chitosan with specific associated water structure and unique interactions with biocomponents. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Ivanova A, Ivanova K, Hoyo J, Heinze T, Sanchez-Gomez S, Tzanov T. Layer-By-Layer Decorated Nanoparticles with Tunable Antibacterial and Antibiofilm Properties against Both Gram-Positive and Gram-Negative Bacteria. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3314-3323. [PMID: 29313670 DOI: 10.1021/acsami.7b16508] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria-mediated diseases are a global healthcare concern due to the development and spread of antibiotic-resistant strains. Cationic compounds are considered membrane active biocidal agents having a great potential to control bacterial infections, while limiting the emergence of drug resistance. Herein, the versatile and simple layer-by-layer (LbL) technique is used to coat alternating multilayers of an antibacterial aminocellulose conjugate and the biocompatible hyaluronic acid on biocompatible polymer nanoparticles (NPs), taking advantage of the nanosize of these otherwise biologically inert templates. Stable polyelectrolyte-decorated particles with an average size of 50 nm and ζ potential of +40.6 mV were developed after five LbL assembly cycles. The antibacterial activity of these NPs against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli increased significantly when the polycationic aminocellulose was in the outermost layer. The large number of amino groups available on the particle surface, together with the nanosize of the multilayer conjugates, improved their interaction with bacterial membrane phospholipids, leading to membrane disruption, as confirmed by a Langmuir monolayer model, and the 10 logs reduction for both bacteria. The biopolymer decorated NPs were also able to inhibit the biofilm formation of S. aureus and E. coli by 94 and 40%, respectively, without affecting human cell viability. The use of LbL-coated NPs appears to be a promising antibiotic-free alternative for controlling bacterial infections using a low amount of antimicrobial agent.
Collapse
Affiliation(s)
- Aleksandra Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Kristina Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Javier Hoyo
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena , Humboldtstraße 10, 07743 Jena, Germany
| | | | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| |
Collapse
|
28
|
Sharma S. Enhanced antibacterial efficacy of silver nanoparticles immobilized in a chitosan nanocarrier. Int J Biol Macromol 2017; 104:1740-1745. [DOI: 10.1016/j.ijbiomac.2017.07.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/30/2017] [Accepted: 07/07/2017] [Indexed: 11/28/2022]
|
29
|
Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohydr Polym 2017; 176:356-364. [DOI: 10.1016/j.carbpol.2017.07.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022]
|
30
|
Sahariah P, Másson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017; 18:3846-3868. [DOI: 10.1021/acs.biomac.7b01058] [Citation(s) in RCA: 434] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Priyanka Sahariah
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Már Másson
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
31
|
Evaluation of the antibacterial activity of a cationic polymer in aqueous solution with a convenient electrochemical method. Anal Bioanal Chem 2016; 409:1627-1633. [DOI: 10.1007/s00216-016-0105-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
32
|
Abstract
Antimicrobial chitosan-alumina/functionalized-multiwalled carbon nanotube (f-MWCNT) nanocomposites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nanocomposites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nanocomposites show a potential for use as a biocide in water treatment for the removal of bacteria at different environmental conditions.
Collapse
|
33
|
Sahariah P, Snorradóttir BS, Hjálmarsdóttir MÁ, Sigurjónsson ÓE, Másson M. Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. J Mater Chem B 2016; 4:4762-4770. [DOI: 10.1039/c6tb00546b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental design was utilized for synthesis and optimization of antimicrobial chitosan derivatives and for the development of their structure–activity relationship.
Collapse
Affiliation(s)
- Priyanka Sahariah
- Faculty of Pharmaceutical Sciences
- School of Health Sciences
- University of Iceland
- IS-107 Reykjavík
- Iceland
| | - Bergthóra S. Snorradóttir
- Faculty of Pharmaceutical Sciences
- School of Health Sciences
- University of Iceland
- IS-107 Reykjavík
- Iceland
| | | | | | - Már Másson
- Faculty of Pharmaceutical Sciences
- School of Health Sciences
- University of Iceland
- IS-107 Reykjavík
- Iceland
| |
Collapse
|
34
|
Lakum HP, Shah DR, Chikhalia KH. Convenient Synthesis of Novel Quinazoline Congeners via Copper Catalyzed C-N/C-S Coupling and Their Biological Evaluation. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Harshad P. Lakum
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad 380009 Gujarat India
| | - Dhruvin R. Shah
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad 380009 Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad 380009 Gujarat India
| |
Collapse
|
35
|
Němečková D, Mary YS, Panicker CY, Varghese HT, Van Alsenoy C, Procházková M, Pazdera P, Al-Saadi AA. 1-Alkyl-1-methylpiperazine-1,4-diium salts: Synthetic, acid–base, XRD-analytical, FT-IR, FT-Raman spectral and quantum chemical study. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.03.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Sahariah P, Gaware VS, Lieder R, Jónsdóttir S, Hjálmarsdóttir MÁ, Sigurjonsson OE, Másson M. The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives. Mar Drugs 2014; 12:4635-58. [PMID: 25196937 PMCID: PMC4145335 DOI: 10.3390/md12084635] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 11/17/2022] Open
Abstract
A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group's structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7-23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed.
Collapse
Affiliation(s)
- Priyanka Sahariah
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| | - Vivek S Gaware
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| | - Ramona Lieder
- The REModeL Lab, The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavik, Iceland.
| | - Sigríður Jónsdóttir
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland.
| | - Martha Á Hjálmarsdóttir
- Department of _Biomedical Science, Faculty of_ Medicine, University of _Iceland, Stapi, Hringbraut 31, 101 Reykjavík, Iceland.
| | - Olafur E Sigurjonsson
- The REModeL Lab, The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavik, Iceland.
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| |
Collapse
|
37
|
Pavinatto A, Souza AL, Delezuk JAM, Pavinatto FJ, Campana-Filho SP, Oliveira ON. Interaction of O-acylated chitosans with biomembrane models: probing the effects from hydrophobic interactions and hydrogen bonding. Colloids Surf B Biointerfaces 2013; 114:53-9. [PMID: 24161506 DOI: 10.1016/j.colsurfb.2013.09.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022]
Abstract
One of the major challenges in establishing the mechanisms responsible for the chitosan action in biomedical applications lies in the determination of the molecular-level interactions with the cell membrane. In this study, we probed hydrophobic interactions and H-bonding in experiments with O,O'-diacetylchitosan (DACT) and O,O'-dipropionylchitosan (DPPCT) incorporated into monolayers of distinct phospholipids, the zwitterionic dipalmitoyl phosphatidyl choline (DPPC), and the negatively charged dipalmitoyl phosphatidyl glycerol (DPPG) and dimyristoyl phosphatidic acid (DMPA). The importance of hydrophobic interactions was confirmed with the larger effects observed for DACT and DPPCT than for parent chitosan (Chi), particularly for the more hydrophobic DPPCT. Such larger effects were noted in surface pressure isotherms and elasticity of the monolayers. Since H-bonding is hampered for the chitosan derivatives, which have part of their hydroxyl groups shielded by O-acylation, these effects indicate that H-bonding does not play an important role in the chitosan-membrane interactions. Using polarization-modulated infrared reflection absorption (PM-IRRAS) spectroscopy, we found that the chitosan derivatives were incorporated into the hydrophobic chain of the phospholipids, even at high surface pressures comparable to those in a real cell membrane. Taken together, these results indicate that the chitosan derivatives containing hydrophobic moieties would probably be more efficient than parent chitosan as antimicrobial agents, where interaction with the cell membrane is crucial.
Collapse
Affiliation(s)
- Adriana Pavinatto
- Institute of Chemistry of São Carlos, USP, PO Box 780, 13560-970 São Carlos, SP, Brazil.
| | - Adriano L Souza
- Institute of Physics of São Carlos, USP, PO Box 369, 13566-590 São Carlos, SP, Brazil
| | - Jorge A M Delezuk
- Institute of Physics of São Carlos, USP, PO Box 369, 13566-590 São Carlos, SP, Brazil
| | - Felippe J Pavinatto
- Institute of Physics of São Carlos, USP, PO Box 369, 13566-590 São Carlos, SP, Brazil
| | | | - Osvaldo N Oliveira
- Institute of Physics of São Carlos, USP, PO Box 369, 13566-590 São Carlos, SP, Brazil
| |
Collapse
|
38
|
Chitosan conjugates with biologically active compounds: design strategies, properties, and targeted drug delivery. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0109-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Gaware VS, Håkerud M, Leósson K, Jónsdóttir S, Høgset A, Berg K, Másson M. Tetraphenylporphyrin Tethered Chitosan Based Carriers for Photochemical Transfection. J Med Chem 2013; 56:807-19. [DOI: 10.1021/jm301270r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek S. Gaware
- Faculty of Pharmaceutical Sciences,
School of Health Sciences, University of Iceland, Hofsvallagata 53,
IS-107 Reykjavík, Iceland
- PCI Biotech AS, N-1366 Lysaker,
Norway
| | - Monika Håkerud
- PCI Biotech AS, N-1366 Lysaker,
Norway
- Oslo University Hospital,
The
Norwegian Radium Hospital, Institute for Cancer Research, Department
of Radiation Biology, N-0310 Oslo, Norway
| | - Kristján Leósson
- Department of Physics, Science
Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
| | - Sigrídur Jónsdóttir
- Department of Chemistry, Science
Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
| | | | - Kristian Berg
- Oslo University Hospital,
The
Norwegian Radium Hospital, Institute for Cancer Research, Department
of Radiation Biology, N-0310 Oslo, Norway
| | - Már Másson
- Faculty of Pharmaceutical Sciences,
School of Health Sciences, University of Iceland, Hofsvallagata 53,
IS-107 Reykjavík, Iceland
| |
Collapse
|
40
|
Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 2013; 14:1854-69. [PMID: 23325051 PMCID: PMC3565352 DOI: 10.3390/ijms14011854] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered.
Collapse
|
41
|
de Oliveira Pedro R, Takaki M, Gorayeb TCC, Bianchi VLD, Thomeo JC, Tiera MJ, de Oliveira Tiera VA. Synthesis, characterization and antifungal activity of quaternary derivatives of chitosan on Aspergillus flavus. Microbiol Res 2013; 168:50-5. [DOI: 10.1016/j.micres.2012.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/16/2012] [Accepted: 06/23/2012] [Indexed: 11/29/2022]
|
42
|
Physicochemical Properties and Bioactivity of a Novel Class of Cellulosics: 6-Deoxy-6-amino Cellulose Sulfate. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201100571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Molecular weight and pH effects of aminoethyl modified chitosan on antibacterial activity in vitro. Int J Biol Macromol 2012; 50:918-24. [PMID: 22342739 DOI: 10.1016/j.ijbiomac.2012.01.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/27/2011] [Accepted: 01/12/2012] [Indexed: 11/23/2022]
Abstract
Aminoethyl modified chitosan derivatives (AEMCSs) with different molecular weight (Mw) were synthesized by grafting aminoethyl group on different molecular weight chitosans and chitooligosaccharide. FTIR, (1)H NMR, (13)C NMR, elemental analysis and potentiometric titration results showed that branched polyethylimine chitosan was synthesized. Clinical Laboratory Standard Institute (CLSI) protocols were used to determine MIC for Gram-negative strain of Escherichia coli under different pH. The antibacterial activity of the derivatives was significantly improved compared with original chitosans, with MIC values against E. coli varying from 4 to 64 μg/mL depending on different Mw and pH. High molecular weight seems to be in favor of stronger antibacterial activity. At pH 7.4, derivatives with Mw above 27 kDa exhibited equivalent antibacterial activity (16 μg/mL), while oligosaccharide chitosan derivative with lower Mw (~1.4 kDa) showed decreased MIC of 64 μg/mL. The effect of pH on antibacterial activity is more complicated. An optimal pH for HAEMCS was found around 6.5 to give MIC as low as 4 μg/mL, while higher or lower pH compromised the activity. Cell integrity assay and SEM images showed evident cell disruption, indicating membrane disruption may be one possible mechanism for antibacterial activity.
Collapse
|
44
|
Xu T, Xin M, Li M, Huang H, Zhou S, Liu J. Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan. Carbohydr Res 2011; 346:2445-50. [DOI: 10.1016/j.carres.2011.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/15/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
|
45
|
Sharma PK, Kumar M, Vats S. Synthesis and antimicrobial activity of morpholinyl/piperazinylbenzothiazines. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9732-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/460381] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, much attention has been paid to chitosan as a potential polysaccharide resource. Although several efforts have been reported to prepare functional derivatives of chitosan by chemical modifications, few attained their antimicrobial activity against plant pathogens. The present paper aims to present an overview of the antimicrobial effects, mechanisms, and applications of a biopolymer chitosan and its derivatives in crop protection. In addition, this paper takes a closer look at the physiochemical properties and chemical modifications of chitosan molecule. The recent growth in this field and the latest research papers published will be introduced and discussed.
Collapse
|
47
|
Qian T, Su H, Tan T. The bactericidal and mildew-proof activity of a TiO2–chitosan composite. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2010.12.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Friedman M, Juneja VK. Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 2010; 73:1737-61. [PMID: 20828484 DOI: 10.4315/0362-028x-73.9.1737] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.
Collapse
Affiliation(s)
- Mendel Friedman
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA.
| | | |
Collapse
|
49
|
Rúnarsson ÖV, Holappa J, Malainer C, Steinsson H, Hjálmarsdóttir M, Nevalainen T, Másson M. Antibacterial activity of N-quaternary chitosan derivatives: Synthesis, characterization and structure activity relationship (SAR) investigations. Eur Polym J 2010. [DOI: 10.1016/j.eurpolymj.2010.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride. Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2009.05.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|