1
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
3
|
Zhu W, Zhang J, Wei Z, Zhang B, Weng X. Advances and Progress in Self-Healing Hydrogel and Its Application in Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031215. [PMID: 36770226 PMCID: PMC9920416 DOI: 10.3390/ma16031215] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 06/02/2023]
Abstract
A hydrogel is a three-dimensional structure that holds plenty of water, but brittleness largely limits its application. Self-healing hydrogels, a new type of hydrogel that can be repaired by itself after external damage, have exhibited better fatigue resistance, reusability, hydrophilicity, and responsiveness to environmental stimuli. The past decade has seen rapid progress in self-healing hydrogels. Self-healing hydrogels can automatically self-repair after external damage. Different strategies have been proposed, including dynamic covalent bonds and reversible noncovalent interactions. Compared to traditional hydrogels, self-healing gels have better durability, responsiveness, and plasticity. These features allow the hydrogel to survive in harsh environments or even to be injected as a drug carrier. Here, we summarize the common strategies for designing self-healing hydrogels and their potential applications in clinical practice.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jinyi Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhanqi Wei
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Baozhong Zhang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Calder D, Fathi A, Oveissi F, Maleknia S, Abrams T, Wang Y, Maitz J, Tsai KH, Maitz P, Chrzanowski W, Canoy I, Menon VA, Lee K, Ahern BJ, Lean NE, Silva DM, Young PM, Traini D, Ong HX, Mahmoud RS, Montazerian H, Khademhosseini A, Dehghani F. Thermoresponsive and Injectable Hydrogel for Tissue Agnostic Regeneration. Adv Healthc Mater 2022; 11:e2201714. [PMID: 36148581 PMCID: PMC11468498 DOI: 10.1002/adhm.202201714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Indexed: 01/28/2023]
Abstract
Injectable hydrogels can support the body's innate healing capability by providing a temporary matrix for host cell ingrowth and neovascularization. The clinical adoption of current injectable systems remains low due to their cumbersome preparation requirements, device malfunction, product dislodgment during administration, and uncontrolled biological responses at the treatment site. To address these challenges, a fully synthetic and ready-to-use injectable biomaterial is engineered that forms an adhesive hydrogel that remains at the administration site regardless of defect anatomy. The product elicits a negligible local inflammatory response and fully resorbs into nontoxic components with minimal impact on internal organs. Preclinical animal studies confirm that the engineered hydrogel upregulates the regeneration of both soft and hard tissues by providing a temporary matrix to support host cell ingrowth and neovascularization. In a pilot clinical trial, the engineered hydrogel is successfully administered to a socket site post tooth extraction and forms adhesive hydrogel that stabilizes blood clot and supports soft and hard tissue regeneration. Accordingly, this injectable hydrogel exhibits high therapeutic potential and can be adopted to address multiple unmet needs in different clinical settings.
Collapse
Affiliation(s)
- Dax Calder
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Faculty of Medicine and HealthNano InstituteThe University of SydneySydneyNSW2006Australia
- Faculty of Health and Medical SciencesSchool of Biomedical SciencesUniversity of Western AustraliaPerthWA6009Australia
| | - Ali Fathi
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- TetratherixSydneyNSW2015Australia
| | - Farshad Oveissi
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | | | | | - Yiwei Wang
- Burns and Reconstructive Surgery Research GroupANZAC Research InstituteConcordNSW2139Australia
| | - Joanneke Maitz
- Burns and Reconstructive Surgery Research GroupANZAC Research InstituteConcordNSW2139Australia
| | - Kevin Hung‐Yueh Tsai
- Burns and Reconstructive Surgery Research GroupANZAC Research InstituteConcordNSW2139Australia
| | - Peter Maitz
- Burns and Reconstructive Surgery Research GroupANZAC Research InstituteConcordNSW2139Australia
| | - Wojtek Chrzanowski
- Faculty of Medicine and HealthNano InstituteThe University of SydneySydneyNSW2006Australia
- Faculty of Health and Medical SciencesSchool of Biomedical SciencesUniversity of Western AustraliaPerthWA6009Australia
| | - Ivan Canoy
- Anatomical PathologyNSW Health PathologyConcord Repatriation General HospitalConcordNSW2139Australia
| | - Vivek Ashoka Menon
- Anatomical PathologyNSW Health PathologyConcord Repatriation General HospitalConcordNSW2139Australia
| | - Kenneth Lee
- Anatomical PathologyNSW Health PathologyConcord Repatriation General HospitalConcordNSW2139Australia
- School of MedicineUniversity of SydneySydneyNSW2006Australia
| | - Benjamin J. Ahern
- School of Veterinary ScienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Natasha E. Lean
- School of Veterinary ScienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Dina M. Silva
- Macquarie Medical SchoolFaculty of Medicine and HealthMacquarie University & Woolcock Institute of Medical ResearchThe University of SydneyGlebeNSW2037Australia
- Ab Initio PharmaCamperdownNSW2050Australia
| | - Paul M. Young
- Macquarie Medical SchoolFaculty of Medicine and HealthMacquarie University & Woolcock Institute of Medical ResearchThe University of SydneyGlebeNSW2037Australia
- Ab Initio PharmaCamperdownNSW2050Australia
| | - Daniela Traini
- Macquarie Medical SchoolFaculty of Medicine and HealthMacquarie University & Woolcock Institute of Medical ResearchThe University of SydneyGlebeNSW2037Australia
- Ab Initio PharmaCamperdownNSW2050Australia
| | - Hui Xin Ong
- Macquarie Medical SchoolFaculty of Medicine and HealthMacquarie University & Woolcock Institute of Medical ResearchThe University of SydneyGlebeNSW2037Australia
- Ab Initio PharmaCamperdownNSW2050Australia
| | | | - Hossein Montazerian
- Terasaki Institute for Biomedical InnovationLos AngelesCA90024USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems Institute (CNSI)University of CaliforniaLos AngelesCA90095USA
| | | | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
5
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Yang X, Wang B, Peng D, Nie X, Wang J, Yu CY, Wei H. Hyaluronic Acid‐Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xu Yang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Bin Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Dongdong Peng
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Xiaobo Nie
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Jun Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Cui-Yun Yu
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Hua Wei
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| |
Collapse
|
7
|
Poudel BK, Robert MC, Simpson FC, Malhotra K, Jacques L, LaBarre P, Griffith M. In situ Tissue Regeneration in the Cornea from Bench to Bedside. Cells Tissues Organs 2021; 211:506-526. [PMID: 34380144 DOI: 10.1159/000514690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Corneal blindness accounts for 5.1% of visual deficiency and is the fourth leading cause of blindness globally. An additional 1.5-2 million people develop corneal blindness each year, including many children born with or who later develop corneal infections. Over 90% of corneal blind people globally live in low- and middle-income regions (LMIRs), where corneal ulcers are approximately 10-fold higher compared to high-income countries. While corneal transplantation is an effective option for patients in high-income countries, there is a considerable global shortage of corneal graft tissue and limited corneal transplant programs in many LMIRs. In situ tissue regeneration aims to restore diseases or damaged tissues by inducing organ regeneration. This can be achieved in the cornea using biomaterials based on extracellular matrix (ECM) components like collagen, hyaluronic acid, and silk. Solid corneal implants based on recombinant human collagen type III were successfully implanted into patients resulting in regeneration of the corneal epithelium, stroma, and sub-basal nerve plexus. As ECM crosslinking and manufacturing methods improve, the focus of biomaterial development has shifted to injectable, in situ gelling formulations. Collagen, collagen-mimetic, and gelatin-based in situ gelling formulas have shown the ability to repair corneal wounds, surgical incisions, and perforations in in-vivo models. Biomaterial approaches may not be sufficient to treat inflammatory conditions, so other cell-free therapies such as treatment with tolerogenic exosomes and extracellular vesicles may improve treatment outcomes. Overall, many of the technologies described here show promise as future medical devices or combination products with cell or drug-based therapies. In situ tissue regeneration, particularly with liquid formulas, offers the ability to triage and treat corneal injuries and disease with a single regenerative solution, providing alternatives to organ transplantation and improving patient outcomes.
Collapse
Affiliation(s)
- Bijay K Poudel
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Marie-Claude Robert
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Fiona C Simpson
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| | - Kamal Malhotra
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Ludovic Jacques
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - May Griffith
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Motiei M, Mirahmadi-Zare SZ, Nasr-Esfahani MH. Chemical stabilization of γ-polyglutamate by chitosan and the effect of co-solvents on the stability. Biophys Chem 2021; 275:106605. [PMID: 33964508 DOI: 10.1016/j.bpc.2021.106605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022]
Abstract
In protein-based formulations, conformational distortions and attractive interactions may cause insoluble and undesired aggregates. In the case of ionic peptides, including cationic or anionic, commonly electrostatic interactions are the main factors that control structure assembling. In this study, it was proposed that grafting of chitosan (CS) to γ-polyglutamic acid (γ-PGA) might exhibit much strong inhibiting effect on the formation of protein aggregates due to multiple amino groups and hydrophilic properties. To guarantee stable and safe biopharmaceutical formulation, the potency of a variety of stabilizers including sugars (glucose, sucrose), polyols (sorbitol, glycerol), surfactant (Tween 20), salting-out salt (PBS), and also different pH values have been evaluated on stabilizing or destabilizing the native state of CS-g-PGA copolymer using FTIR, CD, DLS, and SDS-PAGE. The comparable analysis revealed that the stability of CS-g-PGA was strongly dependent on pH owing to the polyelectrolyte characteristics of the polymers. Altogether these results implied that CS at optimized conditions might be an important precursor for the pharmaceutical industry and function as a new polymer for aggregation suppression and protein stabilization.
Collapse
Affiliation(s)
- Marjan Motiei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran; Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| |
Collapse
|
9
|
Wang C, Zhang H, Zhang T, Zou X, Wang H, Rosenberger J, Vannam R, Trout WS, Grimm JB, Lavis LD, Thorpe C, Jia X, Li Z, Fox JM. Enabling In Vivo Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts. J Am Chem Soc 2021; 143:10793-10803. [PMID: 34250803 PMCID: PMC8765119 DOI: 10.1021/jacs.1c05547] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.
Collapse
Affiliation(s)
- Chuanqi Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Tao Zhang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Julia Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Raghu Vannam
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - William S. Trout
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia, 20147, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia, 20147, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
- Delaware Biotechnology Institute, Newark, Delaware 19711, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
10
|
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi M. Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Adv Healthc Mater 2021; 10:e2001571. [PMID: 33274841 DOI: 10.1002/adhm.202001571] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Indexed: 01/16/2023]
Abstract
The complexity of hard-to-treat diseases strongly undermines the therapeutic potential of available treatment options. Therefore, a paradigm shift from monotherapy toward combination therapy has been observed in clinical research to improve the efficiency of available treatment options. The advantages of combination therapy include the possibility of synchronous alteration of different biological pathways, reducing the required effective therapeutic dose, reducing drug resistance, and lowering the overall costs of treatment. The tunable physical properties, excellent biocompatibility, facile preparation, and ease of administration with minimal invasiveness of injectable hydrogels (IHs) have made them excellent candidates to solve the clinical and pharmacological limitations of present systems for multitherapy by direct delivery of therapeutic payloads and improving therapeutic responses through the formation of depots containing drugs, genes, cells, or a combination of them in the body after a single injection. In this review, currently available methods for the design and fabrication of IHs are systematically discussed in the first section. Next, as a step toward establishing IHs for future multimodal synergistic therapies, recent advances in cancer combination therapy, wound healing, and tissue engineering are addressed in detail in the following sections. Finally, opportunities and challenges associated with IHs for multitherapy are listed and further discussed.
Collapse
Affiliation(s)
- Fatemeh Poustchi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Nanotechnology University of Guilan Rasht Guilan 41996‐13765 Iran
| | - Hamed Amani
- Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology Iran University of Medical Science Tehran 14496‐14535 Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz 71987‐54361 Iran
| | - Soraya Mehrabi
- Faculty of Medicine, Department of Physiology Iran University of Medical Sciences Tehran 14496‐14535 Iran
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|
11
|
Rizzo F, Kehr NS. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv Healthc Mater 2021; 10:e2001341. [PMID: 33073515 DOI: 10.1002/adhm.202001341] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have received considerable interest in the biomedical field due to their potential applications in minimally invasive local drug delivery, more precise implantation, and site-specific drug delivery into poorly reachable tissue sites and into interface tissues, where wound healing takes a long time. Injectable hydrogels, such as in situ forming and/or shear-thinning hydrogels, can be generated using chemically and/or physically crosslinked hydrogels. Yet, for controlled and local drug delivery applications, the ideal injectable hydrogel should be able to provide controlled and sustained release of drug molecules to the target site when needed and should limit nonspecific drug molecule distribution in healthy tissues. Thus, such hydrogels should sense the environmental changes that arise in disease states and be able to release the optimal amount of drug over the necessary time period to the target region. To address this, researchers have designed stimuli-responsive injectable hydrogels. Stimuli-responsive hydrogels change their shape or volume when they sense environmental stimuli, e.g., pH, temperature, light, electrical signals, or enzymatic changes, and deliver an optimal concentration of drugs to the target site without affecting healthy tissues.
Collapse
Affiliation(s)
- Fabio Rizzo
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC) Consiglio Nazionale delle Ricerche (CNR) via Fantoli 16/15 Milan 20138 Italy
- Organic Chemistry Institute Westfälische Wilhelms‐Universität Münster Corrensstr. 36 Münster 48149 Germany
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
| | - Nermin Seda Kehr
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
- Physikalisches Institut Westfälische Wilhelms‐Universität Münster Wilhelm‐Klemm‐Str. 10 Münster 48149 Germany
| |
Collapse
|
12
|
Zia I, Jolly R, Mirza S, Umar MS, Owais M, Shakir M. Hydroxyapatite Nanoparticles Fortified Xanthan Gum-Chitosan Based Polyelectrolyte Complex Scaffolds for Supporting the Osteo-Friendly Environment. ACS APPLIED BIO MATERIALS 2020; 3:7133-7146. [PMID: 35019373 DOI: 10.1021/acsabm.0c00948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle-reinforced polymer-based scaffolding matrices as artificial bone-implant materials are potential suitors for bone regenerative medicine as they simulate the native bone. In the present work, a series of bioinspired, osteoconductive tricomposite scaffolds made up of nano-hydroxyapatite (NHA) embedded xanthan gum-chitosan (XAN-CHI) polyelectrolyte complex (PEC) are explored for their bone-regeneration potential. The Fourier transform infrared spectroscopy studies confirmed complex formation between XAN and CHI and showed strong interactions between the NHA and PEC matrix. The X-ray diffraction studies indicated regulation of the nanocomposite (NC) scaffold crystallinity by the physical cues of the PEC matrix. Further results exhibited that the XAN-CHI/NHA5 scaffold, with a 50/50 (polymer/NHA) ratio, has optimized porous structure, appropriate compressive properties, and sufficient swelling ability with slower degradation rates, which are far better than those of CHI/NHA and other XAN-CHI/NHA NC scaffolds. The simulated body fluid studies showed XAN-CHI/NHA5 generated apatite-like surface structures of a Ca/P ratio ∼1.66. Also, the in vitro cell-material interaction studies with MG-63 cells revealed that relative to the CHI/NHA NC scaffold, the cellular viability, attachment, and proliferation were better on XAN-CHI/NHA scaffold surfaces, with XAN-CHI/NHA5 specimens exhibiting an effective increment in cell spreading capacity compared to XAN-CHI/NHA4 and XAN-CHI/NHA6 specimens. The presence of an osteo-friendly environment is also indicated by enhanced alkaline phosphatase expression and protein adsorption ability. The higher expression of extracellular matrix proteins, such as osteocalcin and osteopontin, finally validated the induction of differentiation of MG-63 cells by tricomposite scaffolds. In summary, this study demonstrates that the formation of PEC between XAN and CHI and incorporation of NHA in XAN-CHI PEC developed tricomposite scaffolds with robust potential for use in bone regeneration applications.
Collapse
Affiliation(s)
- Iram Zia
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Reshma Jolly
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Sumbul Mirza
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Molecular Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Molecular Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
13
|
Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo A, Vázquez-Lasa B, San Román J. 3D Printing of a Reactive Hydrogel Bio-Ink Using a Static Mixing Tool. Polymers (Basel) 2020; 12:E1986. [PMID: 32878273 PMCID: PMC7564821 DOI: 10.3390/polym12091986] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogel-based bio-inks have recently attracted more attention for 3D printing applications in tissue engineering due to their remarkable intrinsic properties, such as a cell supporting environment. However, their usually weak mechanical properties lead to poor printability and low stability of the obtained structures. To obtain good shape fidelity, current approaches based on extrusion printing use high viscosity solutions, which can compromise cell viability. This paper presents a novel bio-printing methodology based on a dual-syringe system with a static mixing tool that allows in situ crosslinking of a two-component hydrogel-based ink in the presence of living cells. The reactive hydrogel system consists of carboxymethyl chitosan (CMCh) and partially oxidized hyaluronic acid (HAox) that undergo fast self-covalent crosslinking via Schiff base formation. This new approach allows us to use low viscosity solutions since in situ gelation provides the appropriate structural integrity to maintain the printed shape. The proposed bio-ink formulation was optimized to match crosslinking kinetics with the printing process and multi-layered 3D bio-printed scaffolds were successfully obtained. Printed scaffolds showed moderate swelling, good biocompatibility with embedded cells, and were mechanically stable after 14 days of the cell culture. We envision that this straightforward, powerful, and generalizable printing approach can be used for a wide range of materials, growth factors, or cell types, to be employed for soft tissue regeneration.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (M.P.-B.); (J.S.R.)
- CIBER’s Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| | | | - Aránzazu del Campo
- INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; (M.K.W.-B.); (A.d.C.)
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (M.P.-B.); (J.S.R.)
- CIBER’s Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (M.P.-B.); (J.S.R.)
- CIBER’s Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
14
|
Hozumi T, Sreedevi AM, Ohta S, Ito T. Nonlinear Pressure Drop Oscillations during Gelation in a Kenics Static Mixer. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuro Hozumi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Athira M Sreedevi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Chen T, Li S, Zhu W, Liang Z, Zeng Q. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul 2019; 36:96-107. [DOI: 10.1080/02652048.2019.1604846] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tingting Chen
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shunying Li
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenting Zhu
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhi Liang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qingbing Zeng
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sukriti, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Safi S, Karimzadeh F, Labbaf S. Mesoporous and hollow hydroxyapatite nanostructured particles as a drug delivery vehicle for the local release of ibuprofen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:712-719. [PMID: 30184799 DOI: 10.1016/j.msec.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/18/2018] [Accepted: 07/01/2018] [Indexed: 12/14/2022]
Abstract
The high risk of infection caused by implantation of orthopedic bio-metals is still a daunting challenge for surgeons as it can lead to implant failure. One approach to overcome this issue is the local release of antibacterial drug through coating on the surface of a metallic implant. One ideal carrier for this purpose is hydroxyapatite (HA) particles which are bioactive, biodegradable, biocompatible and have the potential to bond to bone. In the current study, highly crystalline mesoporous HA nanostructure particles were successfully synthesized in a low-temperature solvent process with the aid of an inorganic CaCO3 template and then fully characterized. The specific surface area and the average size of the cavities of the nanostructured mesoporous HA particles were 85 m2/g and 20 nm, respectively. The feasibility of the prepared HA mesoporous nanostructures for drug delivery, using ibuprofen as a model drug, was also investigated. The as-prepared HA mesoporous nanostructures showed a high drug-loading capacity, as well as sustained drug release in a phosphate buffered saline (PBS) at a pH of 7.4. Overall, results show that HA mesoporous nanostructures gave great potential in bone regeneration and local delivery of either drugs or biomolecules.
Collapse
Affiliation(s)
- S Safi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - F Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
18
|
Zhang W, Zhao Q, Yuan J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew Chem Int Ed Engl 2018; 57:6754-6773. [PMID: 29124842 PMCID: PMC6001701 DOI: 10.1002/anie.201710272] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/27/2023]
Abstract
The past decade has witnessed rapid advances in porous polyelectrolytes and there is tremendous interest in their synthesis as well as their applications in environmental, energy, biomedicine, and catalysis technologies. Research on porous polyelectrolytes is motivated by the flexible choice of functional organic groups and processing technologies as well as the synergy of the charge and pores spanning length scales from individual polyelectrolyte backbones to their nano-/micro-superstructures. This Review surveys recent progress in porous polyelectrolytes including membranes, particles, scaffolds, and high surface area powders/resins as well as their derivatives. The focus is the interplay between surface chemistry, Columbic interaction, and pore confinement that defines new chemistry and physics in such materials for applications in energy conversion, molecular separation, water purification, sensing/actuation, catalysis, tissue engineering, and nanomedicine.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
- Department of Materials and Environmental Chemistry (MMK)Stockholm University10691StockholmSweden
| |
Collapse
|
19
|
Zhang W, Zhao Q, Yuan J. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
- Department of Materials and Environmental Chemistry (MMK); Stockholm University; 10691 Stockholm Schweden
| |
Collapse
|
20
|
Preparation of Chitosan/Poly‐γ‐Glutamic Acid Polyelectrolyte Multilayers on Biomedical Metals for Local Antibiotic Delivery. METALS 2017. [DOI: 10.3390/met7100418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyelectrolyte multilayer assembly is one of the most widely applied biomaterial coatings for applications from surface modification, drug delivery, tissue engineering to biomimetic extracellular environment. In this research, we propose a simple layer-wise spin coating technique to prepare chitosan/poly-γ-glutamic acid (C/PGA) polyelectrolyte multilayers (PEMs) on two different biomedical metals, 316L stainless steel (316LSS) and titanium alloy (Ti6Al4V). The multilayer coating was fabricated using oppositely charged chitosan and poly--glutamic acid to deposit a total of 10, 20, or 30 multilayered films. Afterward, tetracycline was loaded by soaking the coated metals for 12 hours. The microstructure, mechanical properties, biocompatibility and drug release rate were investigated by scanning electron microscopy, contact angle measurement, MG63 cell viability and inhibition of Escherichia coli (E. coli) growth. Lastly, MG63 cell attachment was detected by fluorescence microscopy after staining with Hoechst 33258. This coating technique can prepare a layer of 2.2–6.9 m C/PGA PEMs favoring cell attachment and growth. Moreover, tetracycline was released from C/PGA PEMs and inhibited the growth of E. coli. The results suggest that C/PGA PEMs provide a useful platform for modulating the micro-environment for better cell adhesion and antibiotic delivery, which hold great potential for surface modification and drug loading for biomimetic materials.
Collapse
|
21
|
Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules 2016; 18:1-26. [PMID: 27966916 DOI: 10.1021/acs.biomac.6b01619] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomechanical performance of functional cartilage is executed by the exclusive anisotropic composition and spatially varying intricate architecture in articulating ends of diarthrodial joint. Osteochondral tissue constituting the articulating ends comprise superfical soft cartilage over hard subchondral bone sandwiching interfacial soft-hard tissue. The shock-absorbent, lubricating property of cartilage and mechanical stability of subchondral bone regions are rendered by extended chemical structure of glycosaminoglycans and mineral deposition, respectively. Extracellular matrix glycosaminoglycans analogous polysaccharides are major class of hydrogels investigated for restoration of functional cartilage. Recently, injectable hydrogels have gained momentum as it offers patient compliance, tunable mechanical properties, cell deliverability, and facile administration at physiological condition with long-term functionality and hyaline cartilage construction. Interestingly, facile modifiable functional groups in carbohydrate polymers impart tailorability of desired physicochemical properties and versatile injectable chemistry for the development of highly potent biomimetic in situ forming scaffold. The scaffold design strategies have also evolved from single component to bi- or multilayered and graded constructs with osteogenic properties for deep subchondral regeneration. This review highlights the significance of polysaccharide structure-based functions in engineering cartilage tissue, injectable chemistries, strategies for combining analogous matrices with cells/stem cells and biomolecules and multicomponent approaches for osteochondral mimetic constructs. Further, the rheology and precise spatiotemporal positioning of cells in hydrogel bioink for rapid prototyping of complex three-dimensional anisotropic cartilage have also been discussed.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| |
Collapse
|
22
|
Preparation and characterization of chitosan based injectable hydrogels enhanced by chitin nano-whiskers. J Mech Behav Biomed Mater 2016; 65:466-477. [PMID: 27665082 DOI: 10.1016/j.jmbbm.2016.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022]
Abstract
The objective of current study was to prepare an injectable hydrogel with great mechanical properties and biological compatibility, which could be more suitable to be applied as tissue engineering scaffold. Chitin nano-whiskers (CNWs) were introduced into chitosan/β-glycerophosphate disodium salt (CS/GP) injectable hydrogel. The effects of CNWs contents and gelation temperatures on gelation speed and mechanical properties of the composite hydrogels were characterized and discussed. The maximum values of tensile strength and elongation at break were both more than 4 times larger than that of neat CS/GP hydrogel. The gelation time of injectable hydrogel with 5% CNWs content (formed at 37°C) was 25 seconds, which was much shorter than that (6038 seconds) of the neat CS/GP hydrogel. In combination with results of Fourier transform infrared spectroscopy (FT-IR), it was proved that CNWs functioned as a cross-linker through hydrogen bond interaction in the gel formation process, which might be the main reason for mechanical enhancement. Meanwhile, gels formed with higher CNWs content and gelation temperature had lower equilibrium swelling ratio and drug release rate. Cytotoxicity of hydrogel in vitro was studied by MTT method with a result of indicating a good biocompatibility of CNWs enhanced hydrogel.
Collapse
|
23
|
Puppi D, Migone C, Morelli A, Bartoli C, Gazzarri M, Pasini D, Chiellini F. Microstructured chitosan/poly(γ-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516631355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of additive manufacturing principles to hydrogel processing represents a powerful route to develop porous three-dimensional constructs with a variety of potential biomedical applications, such as scaffolds for tissue engineering and three-dimensional in vitro tissue models. The aim of this study was to develop novel porous hydrogels based on a microstructured polyelectrolyte complex between chitosan and poly(γ-glutamic acid) by applying a computer-aided wet-spinning technique. The developed fabrication process was used to build up three-dimensional porous hydrogels by collecting microstructured layers made of chitosan/poly(γ-glutamic acid) on top of the other. Microstructured polyelectrolyte complex hydrogels were characterized and compared to chitosan/poly(γ-glutamic acid) porous hydrogels with similar composition prepared by conventional freeze-drying technique. Fourier transform infrared analysis confirmed the formation of an electrostatic interaction between the two processed polymers in all the developed chitosan/poly(γ-glutamic acid) hydrogels. The composition of the porous constructs as well as the employed processing techniques had a significant influence on the resulting swelling, thermal, and mechanical properties. In particular, the combination of the ionic interaction between chitosan/poly(γ-glutamic acid) and the defined internal microarchitecture of microstructured polyelectrolyte complex hydrogels provided a significant improvement of the compressive mechanical properties. Preliminary in vitro biological investigations revealed that microstructured polyelectrolyte complex hydrogels were suitable for the adhesion and proliferation of Balb/3T3 clone A31 mouse embryo fibroblasts. The encouraging results in terms of cytocompatibility and stability of the microstructure in aqueous solutions due to the ionic crosslinking suggest the investigation of the developed microstructured polyelectrolyte complex hydrogels as suitable scaffolds for three-dimensional cells’ culture.
Collapse
Affiliation(s)
- Dario Puppi
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Chiara Migone
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Andrea Morelli
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Cristina Bartoli
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Matteo Gazzarri
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Federica Chiellini
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Wang Q, Chen D. Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel. Carbohydr Polym 2015; 136:1228-37. [PMID: 26572466 DOI: 10.1016/j.carbpol.2015.10.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 01/18/2023]
Abstract
The aim of the current study was to enhance the mechanical property of chitosan/β-glycerophosphate disodium salt (CS/GP) injectable hydrogels. A novel nanocomposite injectable hydrogel was prepared by introducing attapulgite (ATP) nano particles into the CS/GP hydrogels. The mechanical properties of the composite hydrogels with two different water contents were characterized by tensile test, the results shown that the tensile strength and elongation at break of composite hydrogels both increased obviously with increasing of ATP content. And, in our testing range, the maximum values of tensile strength and elongation at break were both more than 5 times larger than that of neat CS/GP hydrogel. We discussed this enhancement effect in detail by Scanning electron microscope observations (SEM) and Fourier transform infrared spectroscopy testing (FT-IR). The SEM images of composite hydrogels shown quite different from the neat CS/GP hydrogel, where the pores were more tightly and with some uniform and smaller holes dispersed on the wall. FT-IR test results revealed that the introduction of ATP increased the cross-link density because of the hydrogen bonds formation between ATP nanoparticles and CS molecules. Also, we studied the impact of ATP introduction on gelation speed through tracking the dynamic process of the sol-gel transition by means of rheological measurement, and the results shown that the reaction rate increased significantly with the increase of ATP concentration.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Dajun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
25
|
Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS. Stimuli-Responsive InjectableIn situ-Forming Hydrogels for Regenerative Medicines. POLYM REV 2015. [DOI: 10.1080/15583724.2014.983244] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Hozumi T, Ohta S, Ito T. Analysis of the Calcium Alginate Gelation Process Using a Kenics Static Mixer. Ind Eng Chem Res 2015. [DOI: 10.1021/ie5044693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuro Hozumi
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Mekhail M, Tabrizian M. Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater 2014; 3:1529-45. [PMID: 24616443 DOI: 10.1002/adhm.201300586] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/19/2014] [Indexed: 12/17/2022]
Abstract
Injectable scaffolds (IS) are polymeric solutions that are injected in vivo and undergo gelation in response to physiological or non-physiological stimuli. Interest in using IS in regenerative medicine has been increasing this past decade. IS are administered in vivo using minimally invasive surgery, which reduces hospitalization time and risk of surgical wound infection. Here, chitosan is explored as an excellent candidate for developing IS. A literature search reveals that 27% of IS publications in the past decade investigated injectable chitosan scaffolds (ICS). This increasing interest in chitosan stems from its many desirable physicochemical properties. The first section of this Progress Report is a comprehensive study of all physical, chemical, and biological stimuli that have been explored to induce ICS gelation in vivo. Second, the use of ICS is investigated in four major regenerative medicine applications, namely bone, cartilage, cardiovascular, and neural regeneration. Finally, an overall critique of the ICS literature in light of clinical translatability is presented. Even though ICS have been widely explored in the literature, very few have progressed to clinical trials. The authors discuss the current barriers to moving ICS into the clinic and provide suggestions regarding what is needed to overcome those challenges.
Collapse
Affiliation(s)
- Mina Mekhail
- Biomedical Engineering, Duff Medical Building; Room 313, McGill; Montreal H3A 2B4 Canada
| | - Maryam Tabrizian
- Biomedical Engineering, Duff Medical Building; Room 313, McGill; Montreal H3A 2B4 Canada
| |
Collapse
|
28
|
Liu T, An QF, Wang XS, Zhao Q, Zhu BK, Gao CJ. Preparation and properties of PEC nanocomposite membranes with carboxymethyl cellulose and modified silica. Carbohydr Polym 2014; 106:403-9. [DOI: 10.1016/j.carbpol.2014.01.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 11/30/2022]
|
29
|
Fang J, Zhang Y, Yan S, Liu Z, He S, Cui L, Yin J. Poly(L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater 2014; 10:276-88. [PMID: 24025620 DOI: 10.1016/j.actbio.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/07/2013] [Accepted: 09/03/2013] [Indexed: 12/30/2022]
Abstract
In this study a novel kind of porous poly(l-glutamic acid) (PLGA)/chitosan polyelectrolyte complex (PEC) microsphere was developed through electrostatic interaction between PLGA and chitosan. By adjusting the formula parameters chitosan microspheres with an average pore size of 47.5 ± 5.4 μm were first developed at a concentration of 2 wt.% and freeze temperature of -20 °C. For self-assembly of the PEC microspheres porous chitosan microspheres were then incubated in PLGA solution at 37 °C. Due to electrostatic interaction a large amount of PLGA (110.3 μg mg(-1)) was homogeneously absorbed within the chitosan microspheres. The developed PEC microspheres retained their original size, pore diameters and interconnected porous structure. Fourier transform infrared spectroscopy, thermal gravimetric analysis and zeta potential analysis revealed that the PEC microspheres were successfully prepared through electrostatic interaction. Compared with microspheres fabricated from chitosan, the porous PEC microspheres were shown to efficiently promote chondrocyte attachment and proliferation. After injection subcutaneously for 8 weeks PEC microspheres loaded with chondrocytes were found to produce significant more cartilaginous matrix than chitosan microspheres. These results indicate that these novel fabricated porous PLGA/chitosan PEC microspheres could be used as injectable cell carriers for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jianjun Fang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Polyák A, Hajdu I, Bodnár M, Trencsényi G, Pöstényi Z, Haász V, Jánoki G, Jánoki GA, Balogh L, Borbély J. 99mTc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities. Int J Pharm 2013; 449:10-7. [DOI: 10.1016/j.ijpharm.2013.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 01/29/2023]
|
31
|
|
32
|
Casettari L, Vllasaliu D, Lam JK, Soliman M, Illum L. Biomedical applications of amino acid-modified chitosans: A review. Biomaterials 2012; 33:7565-83. [DOI: 10.1016/j.biomaterials.2012.06.104] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/30/2012] [Indexed: 11/27/2022]
|
33
|
Jafarkhani M, Fazlali A, Moztarzadeh F, Mozafari M. Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. IRANIAN POLYMER JOURNAL 2012. [DOI: 10.1007/s13726-012-0079-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
A novel injectable chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue augmentation. Carbohydr Polym 2012; 89:1123-30. [PMID: 24750923 DOI: 10.1016/j.carbpol.2012.03.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 11/21/2022]
Abstract
This study demonstrated a chitosan (CS)/polyglutamate (PG) polyelectrolyte complex (PEC) hydrogel combined with spherical hydroxyapatite (HAp) particles as an injectable dermal filler for soft-tissue augmentation. The CS/PG PEC hydrogel with oppositely charged ionic cross-linking, a high gel content, and low degradation rate was introduced as a carrier to achieve high shape and volume stability. An MTT assay indicated that the CS/PG PEC had satisfactory cell biocompatibility. This PEC/HAp hydrogel showed good structural integrity in a PBS solution for up to 60 days. Clinical manageability was indexed by an injection force measurement through sterile 27-gauge needles using a texture analyzer. In an animal study, 0.2 mL of the PEC and PEC/hydroxyapatite (HAp) were implanted within the dorsal dermis of a swine ear. Injected tissue areas were biopsied 2 weeks, and 2 and 6 months after the injection. According to the histomorphometric results, the PEC and PEC/HAp groups showed percentages of retention of the maximum height of the cross-section of about 44% and 73% at 6 months. New collagen was observed in the central position indicating a possible collagenesis effect. These results suggest that this PEC/HAp system can be used as an alternative for soft-tissue augmentation.
Collapse
|
35
|
Wu HD, Ji DY, Chang WJ, Yang JC, Lee SY. Chitosan-based polyelectrolyte complex scaffolds with antibacterial properties for treating dental bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
36
|
Zhang LL, Li P, Li YM, Wang AQ. Preparation and characterization of magnetic alginate-chitosan hydrogel beads loaded matrine. Drug Dev Ind Pharm 2011; 38:872-82. [PMID: 22092063 DOI: 10.3109/03639045.2011.630397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study was to use alginate-chitosan (Alg-CS) hydrogel beads for developing an oral water-soluble drug delivery system, occupying pH-sensitive property and superparamagnetic. Matrine as a model drug was loaded in Alg-CS hydrogel beads to study the release character of the delivery system. The amount of matrine released from the beads was relatively low in pH 2.5 over 8 h (34.90%), but nearly all of the initial drug content was released in simulated intestinal fluid (SIF, pH 6.8) within 8 h. The results demonstrated that Alg-CS hydrogel beads possess unique pH-dependent swelling behaviors. In addition, the magnetic beads were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffractometry and vibrating-sample magnetometry. Magnetometer measurements data suggested that Alg-CS beads also had superparamagnetic property as well as fast magnetic response. It can be expected that the beads can deliver and release encapsulated anticancer agent at the tumor by the weak magnetic field, and hence could be potential candidates as an orally administered drug delivery system.
Collapse
|