1
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Cai D, Bian Y, Wu S, Ding K. Conformation-Controlled Hydrogen-Bond-Mediated Aglycone Delivery Method for α-Xylosylation. J Org Chem 2021; 86:9945-9960. [PMID: 34292734 DOI: 10.1021/acs.joc.1c00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Xylosylated glycans and xylosyl derivatives are biomedically important molecules which show numerous bioactivities against infection, cancer, inflammation, and so on. Lacking an efficient α-xylosylation method, the synthesis of α-xyloside-containing molecules was full of challenges. Herein, a robust method is presented for selective α-xylosylation via combination of a rare conformation-controlled strategy and the hydrogen-bond-mediated aglycone delivery method. Various native branched α-xyloside structures necessitate an orthogonally protected xyloside, and a three-pot preparation method of the xylosyl donor was developed for this novel α-xylosylation method, which was further applied in the first synthesis of the side chain N of xyloglucan. This work provides an efficient α-xylosylation method which would make various α-xyloside structures achievable. The conformation-controlled strategy also has important reference to the chemistry of five-carbon pyranose.
Collapse
Affiliation(s)
- Deqin Cai
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ya Bian
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengjie Wu
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kan Ding
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Li Y, Xu J, Zhang L, Ding Z, Gu Z, Shi G. Investigation of debranching pattern of a thermostable isoamylase and its application for the production of resistant starch. Carbohydr Res 2017; 446-447:93-100. [PMID: 28554014 DOI: 10.1016/j.carres.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/10/2017] [Accepted: 05/19/2017] [Indexed: 11/30/2022]
Abstract
Debranching enzymes contribute to the enzymatic production of resistant starch (RS) by reducing substrate molecular weight and increasing amylose yield. In the present study, the action pattern of a thermostable isoamylase-type debranching enzyme on different types of starch was investigated. The molecular weight distribution, glycosidic bond composition and contents of oligosaccharides released were monitored by various liquid chromatography techniques and nuclear magnetic resonance spectroscopy (NMR). These analyses showed that the isoamylase could specifically and efficiently attack α-1,6-glucosidic linkages at branch points, leaving the amylose favored by other amylolytic enzymes. Its ability to attack side chains composed of 1-3 glucose residues differentiates it from other isoamylases, a property which is also ideal for the RS preparation process. The enzyme was used as an auxiliary enzyme in the hydrolytic stage. The highest RS yield (53.8%) was achieved under the optimized conditions of 70 °C and pH 5.0, using 7 U isoamylase per g starch and 2 NU amylase per g starch. These data also help us better understand the application of isoamylase for preparation of other products from highly branched starch materials.
Collapse
Affiliation(s)
- Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Jingjing Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
5
|
Guillon F, Moïse A, Quemener B, Bouchet B, Devaux MF, Alvarado C, Lahaye M. Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:48-62. [PMID: 28224918 DOI: 10.1016/j.plantsci.2017.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 05/06/2023]
Abstract
Tomato fruit texture depends on histology and cell wall architecture, both under genetic and developmental controls. If ripening related cell wall modifications have been well documented with regard to softening, little is known about cell wall construction during early fruit development. Identification of key events and their kinetics with regard to tissue architecture and cell wall development can provide new insights on early phases of texture elaboration. In this study, changes in pectin and hemicellulose chemical characteristics and location were investigated in the pericarp tissue of tomato (Solanum lycopersicon var Levovil) at four stages of development (7, 14 and 21day after anthesis (DPA) and mature green stages). Analysis of cell wall composition and polysaccharide structure revealed that both are continuously modified during fruit development. At early stages, the relative high rhamnose content in cell walls indicates a high synthesis of rhamnogalacturonan I next to homogalacturonan. Fine tuning of rhamnogalacturonan I side chains appears to occur from the cell expansion phase until prior to the mature green stage. Cell wall polysaccharide remodelling also concerns xyloglucans and (galacto)glucomannans, the major hemicelluloses in tomato cell walls. In situ localization of cell wall polysaccharides in pericarp tissue revealed non-ramified RG-I rich pectin and XyG at cellular junctions and in the middle lamella of young fruit. Blocks of non-methyl esterified homogalacturonan are detected as soon as 14 DPA in the mesocarp and remained restricted to cell corner and middle lamella whatever the stages. These results point to new questions about the role of pectin RGI and XyG in cell adhesion and its maintenance during cell expansion.
Collapse
Affiliation(s)
- Fabienne Guillon
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Adeline Moïse
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Bernard Quemener
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Brigitte Bouchet
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Marie-Françoise Devaux
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Camille Alvarado
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France
| | - Marc Lahaye
- INRA, UR1268 Biopolymères, Interactions et Assemblages, BP 71627, F-44316 Nantes, France.
| |
Collapse
|
6
|
Lahaye M, Falourd X, Quemener B, Devaux MF, Audergon JM. Histological and cell wall polysaccharide chemical variability among apricot varieties. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Arab-Jaziri F, Bissaro B, Dion M, Saurel O, Harrison D, Ferreira F, Milon A, Tellier C, Fauré R, O’Donohue MJ. Engineering transglycosidase activity into a GH51 α-l-arabinofuranosidase. N Biotechnol 2013; 30:536-44. [DOI: 10.1016/j.nbt.2013.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/17/2022]
|
8
|
Assor C, Quemener B, Vigouroux J, Lahaye M. Fractionation and structural characterization of LiCl-DMSO soluble hemicelluloses from tomato. Carbohydr Polym 2013; 94:46-55. [PMID: 23544508 DOI: 10.1016/j.carbpol.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/21/2012] [Accepted: 01/01/2013] [Indexed: 11/30/2022]
Abstract
To prepare and explore the structure of native hemicellulose from tomato, extraction of the natively acetylated polysaccharides was achieved from partially depectinated cell walls by DMSO doped with LiCl. DEAE anion exchange chromatography of the LiCl-DMSO extract allowed the removal of residual acidic pectin and the isolation of acetylated glucuronoxylan. The hemicellulose neutral fraction from the anion exchanger was fractionated by size exclusion chromatography into xyloglucan (XyG) and galactoglucomannan (GgM) either as single major constituents or as mixtures of both. Residual hemicellulose in the cell wall was extracted by 4.0 M and not 1.0 M KOH. The fine structure of all LiCl-DMSO fractions and alkali extracts was assessed by coupling β-glucanase, β-mannanase and β-xylanase enzymatic degradations to the analysis of the resulting fragments by HPAEC and MALDI-TOF mass spectrometry. This approach revealed substitutions in part of the GgM fractions by pentose residues, presumably arabinose and/or xylose occurring in highly substituted block domains. It also demonstrated a different glucanase hydrolysis profile from 4.0 M KOH compared to LiCl-DMSO soluble fractions. The present extraction and purification scheme allow the recovery of several populations of acetylated hemicellulose families which emphasize the structural diversity and complexity of these polysaccharides.
Collapse
Affiliation(s)
- Carole Assor
- INRA, UR 1268 Biopolymers, Interactions and Assemblies, rue de la Géraudière, F-44316 Nantes, France.
| | | | | | | |
Collapse
|
9
|
Hemicellulose fine structure is affected differently during ripening of tomato lines with contrasted texture. Int J Biol Macromol 2012; 51:462-70. [DOI: 10.1016/j.ijbiomac.2012.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 11/20/2022]
|