1
|
Sakaew W, Somintara S, Jongsomchai K, El-Abid J, Wongprasert K, Kovensky J, Rudtanatip T. Octanoyl esterification of low molecular weight sulfated galactan enhances the cellular uptake and collagen expression in fibroblast cells. Biomed Rep 2023; 19:99. [PMID: 37954636 PMCID: PMC10633818 DOI: 10.3892/br.2023.1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Low molecular weight sulfated galactan (LMSG) supplemented with octanoyl ester (Oct-LMSG) demonstrated superior wound healing activity compared to the unsupplemented LMSG in a fibroblast wound model. To test the hypothesis that the increased bioactivity of Oct-LMSG may depend on its penetration into the plasma membrane, its cellular uptake was investigated and collagen production in fibroblast cells was assessed for the first time. The cellular uptake of Oct-LMSG was examined using indirect immunofluorescence and a confocal laser scanning microscope. In addition, the degree of fibroblast activation associated with this uptake was evaluated. The results indicated increased LMSG internalization in fibroblasts treated with Oct-LMSG. Transmission electron micrographs revealed the ultrastructure of active protein production in fibroblasts upon treatment with Oct-LMSG. In addition, Oct-LMSG upregulated the expression of type I collagen mRNA and proteins, as well as related signaling molecules involved in collagen synthesis, including collagen type I α1 chain (Col1A1), Col1A2, phosphorylated (p)-Smad2/3 and p-Smad4. The current findings support the notion that the supplementation of LMSG with octanoyl enhanced its cellular uptake into fibroblasts and, as a result, regulated the expression of type I collagen in fibroblasts via the activation of the Smad signaling pathway. This study demonstrates the therapeutic potential of Oct-LMSG in promoting tissue regeneration.
Collapse
Affiliation(s)
- Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsuda Somintara
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kamonwan Jongsomchai
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Jamal El-Abid
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - José Kovensky
- Laboratory of Glycochemistry and Agroresources UR 7378, Picardie Institute of Chemistry FR 3085, University of Picardie Jules Verne, 80000 Amiens, France
| | - Tawut Rudtanatip
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Hülsmann J, Lindemann H, Wegener J, Kühne M, Godmann M, Koschella A, Coldewey SM, Heinze T, Heinzel T. Dually Modified Cellulose as a Non-Viral Vector for the Delivery and Uptake of HDAC3 siRNA. Pharmaceutics 2023; 15:2659. [PMID: 38140000 PMCID: PMC10747125 DOI: 10.3390/pharmaceutics15122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
RNA interference can be applied to different target genes for treating a variety of diseases, but an appropriate delivery system is necessary to ensure the transport of intact siRNAs to the site of action. In this study, cellulose was dually modified to create a non-viral vector for HDAC3 short interfering RNA (siRNA) transfer into cells. A guanidinium group introduced positive charges into the cellulose to allow complexation of negatively charged genetic material. Furthermore, a biotin group fixed by a polyethylene glycol (PEG) spacer was attached to the polymer to allow, if required, the binding of targeting ligands. The resulting polyplexes with HDAC3 siRNA had a size below 200 nm and a positive zeta potential of up to 15 mV. For N/P ratio 2 and higher, the polymer could efficiently complex siRNA. Nanoparticles, based on this dually modified derivative, revealed a low cytotoxicity. Only minor effects on the endothelial barrier integrity and a transfection efficiency in HEK293 cells higher than Lipofectamine 2000TM were found. The uptake and release of the polyplexes were confirmed by immunofluorescence imaging. This study indicates that the modified biopolymer is an auspicious biocompatible non-viral vector with biotin as a promising moiety.
Collapse
Affiliation(s)
- Juliana Hülsmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; (J.H.); (M.K.); (M.G.)
| | - Henry Lindemann
- Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; (H.L.); (A.K.); (T.H.)
| | - Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (J.W.); (S.M.C.)
- Septomics Research Center, Jena University Hospital, Albert-Einstein-Straße 10, 07745 Jena, Germany
| | - Marie Kühne
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; (J.H.); (M.K.); (M.G.)
| | - Maren Godmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; (J.H.); (M.K.); (M.G.)
| | - Andreas Koschella
- Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; (H.L.); (A.K.); (T.H.)
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (J.W.); (S.M.C.)
- Septomics Research Center, Jena University Hospital, Albert-Einstein-Straße 10, 07745 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Thomas Heinze
- Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; (H.L.); (A.K.); (T.H.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; (J.H.); (M.K.); (M.G.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
3
|
Banerjee M, Devi Rajeswari V. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit Rev Oncol Hematol 2023; 182:103901. [PMID: 36584723 DOI: 10.1016/j.critrevonc.2022.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Triple-Negative Breast Cancer is the most aggressive form and accounts the 15%-25% of all breast cancer. Receptors are absent in triple-negative breast cancer, which makes them unresponsive to the current hormonal therapies. The patients with TNBC are left with the option of cytotoxic chemotherapy. The Wnt pathways are connected to cancer, and when activated, they result in mammary hyperplasia and tumors. The tumor suppressor microRNAs can block tumor cell proliferation, invasion, and migration, lead to cancer cell death, and are also known to down-regulate the WNT signaling. Nanoparticles with microRNA have been seen to be more effective when compared with their single release. In this review, we have tried to understand how Wnt signaling plays a crucial role in TNBC, EMT, metastasis, anti-drug resistance, and regulation of Wnt by microRNA. The role of nano-carriers in delivering micro-RNA. The clinical biomarkers, including the present state-of-the-art, involve novel pathways of Wnt.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Reis B, Gerlach N, Steinbach C, Haro Carrasco K, Oelmann M, Schwarz S, Müller M, Schwarz D. A Complementary and Revised View on the N-Acylation of Chitosan with Hexanoyl Chloride. Mar Drugs 2021; 19:md19070385. [PMID: 34356810 PMCID: PMC8303196 DOI: 10.3390/md19070385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The modification of the biobased polymer chitosan is a broad and widely studied field. Herein, an insight into the hydrophobization of low-molecular-weight chitosan by substitution of amino functionalities with hexanoyl chloride is reported. Thereby, the influence of the pH of the reaction media was investigated. Further, methods for the determination of the degree of substitution based on 1H-NMR, FTIR, and potentiometric titration were compared and discussed regarding their accuracy and precision. 1H-NMR was the most accurate method, while FTIR and the potentiometric titration, though precise and reproducible, underlie the influence of complete protonation and solubility issues. Additionally, the impact of the pH variation during the synthesis on the properties of the samples was investigated by Cd2+ sorption experiments. The adjusted pH values during the synthesis and, therefore, the obtained degrees of substitution possessed a strong impact on the adsorption properties of the final material.
Collapse
Affiliation(s)
- Berthold Reis
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (B.R.); (N.G.); (C.S.); (K.H.C.); (M.O.); (S.S.); (M.M.)
- Department Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Niklas Gerlach
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (B.R.); (N.G.); (C.S.); (K.H.C.); (M.O.); (S.S.); (M.M.)
| | - Christine Steinbach
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (B.R.); (N.G.); (C.S.); (K.H.C.); (M.O.); (S.S.); (M.M.)
| | - Karina Haro Carrasco
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (B.R.); (N.G.); (C.S.); (K.H.C.); (M.O.); (S.S.); (M.M.)
| | - Marina Oelmann
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (B.R.); (N.G.); (C.S.); (K.H.C.); (M.O.); (S.S.); (M.M.)
| | - Simona Schwarz
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (B.R.); (N.G.); (C.S.); (K.H.C.); (M.O.); (S.S.); (M.M.)
| | - Martin Müller
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (B.R.); (N.G.); (C.S.); (K.H.C.); (M.O.); (S.S.); (M.M.)
- Department Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Dana Schwarz
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (B.R.); (N.G.); (C.S.); (K.H.C.); (M.O.); (S.S.); (M.M.)
- Correspondence: ; Tel.: +49-351-46-58-542
| |
Collapse
|
5
|
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021; 13:cancers13112680. [PMID: 34072348 PMCID: PMC8198729 DOI: 10.3390/cancers13112680] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer is a complex disease associated with deregulation of numerous genes. In addition, redundant cellular pathways limit efficiency of monotarget drugs in cancer therapy. MicroRNAs are a class of gene expression regulators, which often function by targeting multiple genes. This feature makes them a double-edged sword (a) as attractive targets for anti-tumor therapy and concomitantly (b) as risky targets due to their potential side effects on healthy tissues. As for conventional antitumor drugs, nanocarriers have been developed to circumvent the problems associated with miRNA delivery to tumors. In this review, we highlight studies that have established the pre-clinical proof-of concept of miRNAs as relevant therapeutic targets in oncology. Particular attention was brought to new strategies based on nanovectorization of miRNAs as well as to the perspectives for their applications. Abstract The discovery of microRNAs (miRNAs) in 1993 has challenged the dogma of gene expression regulation. MiRNAs affect most of cellular processes from metabolism, through cell proliferation and differentiation, to cell death. In cancer, deregulated miRNA expression leads to tumor development and progression by promoting acquisition of cancer hallmark traits. The multi-target action of miRNAs, which enable regulation of entire signaling networks, makes them attractive tools for the development of anti-cancer therapies. Hence, supplementing downregulated miRNA by synthetic oligonucleotides or silencing overexpressed miRNAs through artificial antagonists became a common strategy in cancer research. However, the ultimate success of miRNA therapeutics will depend on solving pharmacokinetic and targeted delivery issues. The development of a number of nanocarrier-based platforms holds significant promises to enhance the cell specific controlled delivery and safety profile of miRNA-based therapies. In this review, we provide among the most comprehensive assessments to date of promising nanomedicine platforms that have been tested preclinically, pertaining to the treatment of selected solid tumors including lung, liver, breast, and glioblastoma tumors as well as endocrine malignancies. The future challenges and potential applications in clinical oncology are discussed.
Collapse
Affiliation(s)
- Soha Reda El Sayed
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Justine Cristante
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Laurent Guyon
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Josiane Denis
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Olivier Chabre
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Nadia Cherradi
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Correspondence: ; Tel.: +33-(0)4-38783501; Fax: +33-(0)4-38785058
| |
Collapse
|
6
|
Sharma D, Arora S, Banerjee A, Singh J. Improved insulin sensitivity in obese-diabetic mice via chitosan Nanomicelles mediated silencing of pro-inflammatory Adipocytokines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102357. [PMID: 33460779 DOI: 10.1016/j.nano.2020.102357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Obesity induced chronic low-level inflammation is strongly associated with the development of insulin resistance and progression of type-2 diabetes. Systemic treatment with anti-inflammatory therapeutics requires high doses and is associated with serious adverse effects owing to generalized suppression of the immune system. Here we study localized knockdown of pro-inflammatory adipocytokines in adipose tissue macrophages (ATMs) and adipocytes using RNA interference for the treatment of insulin resistance. Chitosan nanomicelles conjugated to ATM and adipocyte targeting ligands were used to transfect short hairpin RNA (shRNA) against tumor necrosis factor-α (TNFα) and monocyte chemoattractant protein-1 (MCP-1). Subcutaneous administration of nanomicellar/pDNA polyplexes in obese-diabetic mice resulted in decreased concentration of pro-inflammatory cytokines TNFα, MCP-1, IL-6, and IL-1β along with increased concentration of insulin-sensitizing adipokine adiponectin. Downregulation of inflammatory cytokines resulted in improved insulin sensitivity and glucose tolerance for up to six-weeks following single dose, compared to untreated obese-diabetic mice.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
7
|
Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol Biosci 2020; 21:e2000312. [PMID: 33016007 DOI: 10.1002/mabi.202000312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/26/2022]
Abstract
Chitosan-based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate-labeled chitosan-based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico-chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug-delivery systems.
Collapse
Affiliation(s)
- Anna E Caprifico
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Elena Polycarpou
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Peter J S Foot
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gianpiero Calabrese
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
8
|
Banerjee A, Sharma D, Trivedi R, Singh J. Treatment of insulin resistance in obesity-associated type 2 diabetes mellitus through adiponectin gene therapy. Int J Pharm 2020; 583:119357. [PMID: 32334065 DOI: 10.1016/j.ijpharm.2020.119357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/30/2022]
Abstract
Global rise in obesity-associated type 2 diabetes mellitus (T2DM) has led to a major healthcare crisis. Development of efficient treatments to treat the underlying chronic inflammation in obesity-associated T2DM, is an unmet medical need. To this end, we have developed a plasmid adiponectin (pADN) based nanomedicine for the treatment of insulin resistance in type 2 diabetes mellitus. Adiponectin is a potent anti-inflammatory/anti-diabetic adipokine, which is downregulated in obesity. In this study, nanomicelles comprising chitosan conjugated to oleic acid and adipose homing peptide (AHP) were developed to deliver pADN to adipocytes. Cationic chitosan-oleic-AHP micelles were 112 nm in size, encapsulated 93% of pADN and protected gene cargo from DNase I mediated enzymatic degradation. In vitro, the nanomicellar formulation significantly increased adiponectin production compared to free plasmid as well as standard transfecting agent FuGENE®HD. Single dose subcutaneous administration of pADN-chitosan-oleic-AHP to obese-diabetic rats, resulted in improved insulin sensitivity for up to 6 weeks, which matched the glucose disposal ability of healthy rats. Serum adiponectin level in pADN-chitosan-oleic-AHP treated rats was comparable to healthy rats for up to 3 weeks post treatment. Overall, the results indicate that pADN-chitosan-oleic-AHP based therapy is a promising treatment approach for obesity-associated T2DM.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Riddhi Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
9
|
Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R. The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson's Disease. Cells 2020; 9:cells9040841. [PMID: 32244357 PMCID: PMC7226753 DOI: 10.3390/cells9040841] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small double-stranded RNAs that exert a fine-tuning sequence-specific regulation of cell transcriptome. While one unique miRNA regulates hundreds of mRNAs, each mRNA molecule is commonly regulated by various miRNAs that bind to complementary sequences at 3’-untranslated regions for triggering the mechanism of RNA interference. Unfortunately, dysregulated miRNAs play critical roles in many disorders, including Parkinson’s disease (PD), the second most prevalent neurodegenerative disease in the world. Treatment of this slowly, progressive, and yet incurable pathology challenges neurologists. In addition to L-DOPA that restores dopaminergic transmission and ameliorate motor signs (i.e., bradykinesia, rigidity, tremors), patients commonly receive medication for mood disorders and autonomic dysfunctions. However, the effectiveness of L-DOPA declines over time, and the L-DOPA-induced dyskinesias commonly appear and become highly disabling. The discovery of more effective therapies capable of slowing disease progression –a neuroprotective agent–remains a critical need in PD. The present review focus on miRNAs as promising drug targets for PD, examining their role in underlying mechanisms of the disease, the strategies for controlling aberrant expressions, and, finally, the current technologies for translating these small molecules from bench to clinics.
Collapse
Affiliation(s)
- Simoneide S. Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, FAV, University of Brasilia, Brasília 70910-900, Brazil;
| | - Cristina Soto-Sánchez
- Neuroprosthetics and Visual Rehabilitation Research Unit, Bioengineering Institute, Miguel Hernández University, 03202 Alicante, Spain; (C.S.-S.); (E.F.)
| | - Eduardo Fernandez
- Neuroprosthetics and Visual Rehabilitation Research Unit, Bioengineering Institute, Miguel Hernández University, 03202 Alicante, Spain; (C.S.-S.); (E.F.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine—CIBER-BBN, 28029 Madrid, Spain
| | - James B. Koprich
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada; (J.B.K.); (J.M.B.)
| | - Jonathan M. Brotchie
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada; (J.B.K.); (J.M.B.)
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, FAV, University of Brasilia, Brasília 70910-900, Brazil;
- Correspondence: ; Tel.: +55-61-3107-7222
| |
Collapse
|
10
|
Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C, Chiono V. MicroRNA delivery through nanoparticles. J Control Release 2019; 313:80-95. [PMID: 31622695 PMCID: PMC6900258 DOI: 10.1016/j.jconrel.2019.10.007] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine.
Collapse
Affiliation(s)
- Sharon Wei Ling Lee
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; Singapore-MIT Alliance for Research & Technology (SMART), BioSystems and Micromechanics (BioSyM), Singapore, Singapore(3); Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore(3); Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore, Singapore(3)
| | - Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan(3)
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore, Singapore(3); Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research & Technology (SMART), BioSystems and Micromechanics (BioSyM), Singapore, Singapore(3); Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
11
|
Bravo-Anaya LM, Fernández-Solís KG, Rosselgong J, Nano-Rodríguez JLE, Carvajal F, Rinaudo M. Chitosan-DNA polyelectrolyte complex: Influence of chitosan characteristics and mechanism of complex formation. Int J Biol Macromol 2019; 126:1037-1049. [PMID: 30615969 DOI: 10.1016/j.ijbiomac.2019.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 01/30/2023]
Abstract
Polyelectrolyte complexes formed between DNA and chitosan present different and interesting physicochemical properties combined with high biocompatibility; they are very useful for biomedical applications. DNA in its double helical structure is a semi-rigid polyelectrolyte chain. Chitosan, an abundant polysaccharide in nature, is considered as one of the most attractive vectors due to its biocompatibility and biodegradability. Here we study chitosan/DNA polyelectrolyte complex formation mechanism and the key factors of their stability. Compaction process of DNA with chitosan was monitored in terms of the ζ-potential and hydrodynamic radius variation as a function of charge ratios between chitosan and DNA. The influence of chitosan degree of acetylation (DA) and its molecular weight on the stoichiometry of chitosan/DNA complexes characteristics was also studied. It is shown that the isoelectric point of chitosan/DNA complexes, as well as their stability, is directly related to the degree of protonation of chitosan (depending on pH), to the DA and to the external salt concentration. It is demonstrated that DNA compaction process corresponds to an all or nothing like-process. Finally, since an important factor in cell travelling is the buffering effect of the vector used, we demonstrated the essential role of free chitosan on the proton-sponge effect.
Collapse
Affiliation(s)
- Lourdes Mónica Bravo-Anaya
- Universidad de Guadalajara, Departamento de Ingeniería Química, Blvd. M. García Barragán #1451, 44430 Guadalajara, Jalisco, Mexico; University of Bordeaux/Bordeaux INP, ENSCBP and CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France.
| | - Karla Gricelda Fernández-Solís
- Universidad de Guadalajara, Departamento de Ingeniería Química, Blvd. M. García Barragán #1451, 44430 Guadalajara, Jalisco, Mexico; Centro Universitario UTEG, Departamento de Investigación, Héroes Ferrocarrileros #1325, Guadalajara, Jalisco 44460, Mexico
| | - Julien Rosselgong
- University of Bordeaux/Bordeaux INP, ENSCBP and CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Jesrael Luz Elena Nano-Rodríguez
- Universidad de Guadalajara, Departamento de Ingeniería Química, Blvd. M. García Barragán #1451, 44430 Guadalajara, Jalisco, Mexico; Centro Universitario UTEG, Departamento de Investigación, Héroes Ferrocarrileros #1325, Guadalajara, Jalisco 44460, Mexico
| | - Francisco Carvajal
- CUTonalá, Departamento de Ingenierías, Universidad de Guadalajara, Nuevo Periférico # 555 Ejido San José Tatepozco, 45425, Jalisco, Mexico
| | | |
Collapse
|
12
|
Abstract
Gene therapy has emerged as an alternative in the treatment of cancer, particularly in cases of resistance to chemo and radiotherapy. Different approaches to deliver genetic material to tumor tissues have been proposed, including the use of small non-coding RNAs due to their multiple mechanisms of action. However, such promise has shown limits in in vivo application related to RNA's biological instability and stimulation of immunity, urging the development of systems able to overcome those barriers. In this review, we discuss the use of RNA interference in cancer therapy with special attention to the role of siRNA and miRNA and to the challenges of their delivery in vivo. We introduce a promising class of drug delivery system known as micelle-like nanoparticles and explore their synthesis and advantages for gene therapy as well as the recent findings in in vitro, in vivo and clinical studies.
Collapse
|
13
|
Sharma D, Singh J. Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymer and Their Nanomicelles for Nonviral Gene Delivery Applications. Bioconjug Chem 2017; 28:2772-2783. [PMID: 29040803 DOI: 10.1021/acs.bioconjchem.7b00505] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to synthesize and characterize fatty acid-grafted-chitosan (fatty acid-g-CS) polymer and their nanomicelles for use as carriers for gene delivery. CS was hydrophobically modified using saturated fatty acids of increasing fatty acyl chain length. Carbodiimide along with N-hydroxysuccinimide was used for coupling carboxyl group of fatty acids with amine groups of CS. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy were used to quantify fatty acyl substitution onto CS backbone. The molecular weight distribution of the synthesized polymers was determined using size exclusion high performance liquid chromatography and was found to be in range of the parent CS polymer (∼50 kDa). The critical micelle concentration (cmc) of the polymers was determined using pyrene as a fluorescent probe. The cmc was found to decrease with an increase in fatty acyl chain length. The amphiphilic fatty acid-g-CS polymers self-assembled in an aqueous environment to form nanomicelles of ∼200 nm particle size and slightly positive net charge due to the cationic nature of free primary amino groups on CS molecule. These polymeric nanomicelles exhibited excellent hemo- and cytocompatibility, as evaluated by in vitro hemolysis and MTT cell viability assay, respectively, and showed superior transfection efficiency compared to unmodified chitosan and naked DNA. The surface of these nanomicelles can be further modified with ligands allowing for selective targeting, enhanced cell binding, and internalization. These nanomicelles can thus be exploited as potential nonviral gene delivery vectors for safe and efficient gene therapy.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University , Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University , Fargo, North Dakota 58105, United States
| |
Collapse
|
14
|
Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid. Int J Mol Sci 2015; 16:28912-30. [PMID: 26690119 PMCID: PMC4691089 DOI: 10.3390/ijms161226142] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023] Open
Abstract
Gene therapy is an emerging therapeutic strategy for the cure or treatment of a spectrum of genetic disorders. Nevertheless, advances in gene therapy are immensely reliant upon design of an efficient gene carrier that can deliver genetic cargoes into the desired cell populations. Among various nonviral gene delivery systems, chitosan-based carriers have gained increasing attention because of their high cationic charge density, excellent biocompatibility, nearly nonexistent cytotoxicity, negligible immune response, and ideal ability to undergo chemical conjugation. However, a major shortcoming of chitosan-based carriers is their poor cellular uptake, leading to inadequate transfection efficiency. The intrinsic feature of cell penetrating peptides (CPPs) for transporting diverse cargoes into multiple cell and tissue types in a safe manner suggests that they can be conjugated to chitosan for improving its transfection efficiency. In this review, we briefly discuss CPPs and their classification, and also the major mechanisms contributing to the cellular uptake of CPPs and cargo conjugates. We also discuss immense improvements for the delivery of nucleic acids using CPP-conjugated chitosan-based carriers with special emphasis on plasmid DNA and small interfering RNA.
Collapse
|
15
|
Santos JCC, Moreno PMD, Mansur AAP, Leiro V, Mansur HS, Pêgo AP. Functionalized chitosan derivatives as nonviral vectors: physicochemical properties of acylated N,N,N-trimethyl chitosan/oligonucleotide nanopolyplexes. SOFT MATTER 2015; 11:8113-8125. [PMID: 26335751 DOI: 10.1039/c5sm01403d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cationic polymers have recently attracted attention due to their proven potential for nonviral gene delivery. In this study, we report novel biocompatible nanocomplexes produced using chemically functionalized N,N,N-trimethyl chitosan (TMC) with different N-acyl chain lengths (C5-C18) associated with single-stranded oligonucleotides. The TMC derivatives were synthesized by covalent coupling reactions of quaternized chitosan with n-pentanoic (C5), n-decanoic (C10), and n-octadecanoic (C18) fatty acids, which were extensively characterized by Fourier transform-infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance ((1)H NMR). These N-acylated TMC derivatives (TMCn) were used as cationic polymeric matrices for encapsulating anionic 18-base single-stranded thiophosphorylated oligonucleotides (ssONs), leading to the formation of polyplexes further characterized by zeta potential (ZP), dynamic light scattering (DLS), binding affinity, transfection efficiency and in vitro cytotoxicity assays. The results demonstrated that the length of the grafted hydrophobic N-acyl chain and the relative amino:phosphate groups ratio (N/P ratio) between the TMC derivatives and ssON played crucial roles in determining the physicochemical properties of the obtained nanocomplexes. While none of the tested derivatives showed appreciable cytotoxicity, the type of acyl chain had a remarkable influence on the cell transfection capacity of TMC-ssON nanocomplexes with the derivatives based on stearic acid showing the best performance based on the results of in vitro assays using a model cell line expressing luciferase (HeLa/Luc705).
Collapse
Affiliation(s)
- Joyce C C Santos
- Center of Nanoscience, Nanotechnology and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627 - Escola de Engenharia - Bloco 2 - sala 2233, Pampulha, Belo Horizonte/MG 31.270-901, Brazil.
| | | | | | | | | | | |
Collapse
|
16
|
Du X, Zhang J, Zhang Y, Li S, Lin X, Tang X, Zhang Y, Wang Y. Decanoic acid grafted oligochitosan nanoparticles as a carrier for insulin transport in the gastrointestinal tract. Carbohydr Polym 2014; 111:433-41. [DOI: 10.1016/j.carbpol.2014.04.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
17
|
Wang L, Sun Y, Shi C, Li L, Guan J, Zhang X, Ni R, Duan X, Li Y, Mao S. Uptake, transport and peroral absorption of fatty glyceride grafted chitosan copolymer-enoxaparin nanocomplexes: influence of glyceride chain length. Acta Biomater 2014; 10:3675-85. [PMID: 24814881 DOI: 10.1016/j.actbio.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023]
Abstract
The objective of this paper is to elucidate the influence of fatty glyceride chain length in chitosan copolymers on the peroral absorption of enoxaparin. First of all, a series of chitosan copolymers with glyceryl monocaprylate (GM8), glyceryl monolaurate (GM12) and glyceryl monostearate (GM18) as the hydrophobic part were synthesized. The structure of the copolymers was characterized using proton nuclear magnetic resonance. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that all the copolymers were non-toxic. Enoxaparin nanocomplexes were prepared by self-assembly. Mucoadhesion of the nanocomplexes was characterized using the mucin particle method. Nanocomplex uptake and transport were quantified in Caco-2 cells and cellular localization was visualized by confocal laser scanning microscopy. Enoxaparin uptake was enhanced by nanocomplex formation, and was dependent on incubation time, concentration, temperature and glyceride chain length. The GM8 grafted chitosan-enoxaparin nanocomplex exhibited the strongest bioadhesion and the best uptake and transport in both cell culture and in vivo absorption in rats. The uptake mechanism was assumed to be adsorptive endocytosis via clathrin- and caveolae-mediated processes. In conclusion, oral absorption of enoxaparin can be further enhanced by using GM8 grafted chitosan copolymer as the carrier to form nanocomplexes.
Collapse
|
18
|
Preparation of a novel organo-soluble chitosan grafted polycaprolactone copolymer for drug delivery. Int J Biol Macromol 2014; 65:21-7. [DOI: 10.1016/j.ijbiomac.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/15/2013] [Accepted: 01/05/2014] [Indexed: 11/21/2022]
|
19
|
Layek B, Haldar MK, Sharma G, Lipp L, Mallik S, Singh J. Hexanoic acid and polyethylene glycol double grafted amphiphilic chitosan for enhanced gene delivery: influence of hydrophobic and hydrophilic substitution degree. Mol Pharm 2014; 11:982-94. [PMID: 24499512 DOI: 10.1021/mp400633r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gene therapy holds immense potential as a future therapeutic strategy for the treatment of numerous genetic diseases which are incurable to date. Nevertheless, safe and efficient gene delivery remains the most challenging aspects of gene therapy. To overcome this difficulty a series of hexanoic acid (HA) and monomethoxy poly(ethylene glycol) (mPEG) double grafted chitosan-based (HPC) nanomicelles were developed as nonviral gene carrier. HPC polymers with various HA and mPEG substitution degrees were synthesized, and their chemical structures were confirmed by (1)H NMR spectroscopy. HPC nanomicelles exhibited excellent blood compatibility and cell viability, as demonstrated by in vitro hemolysis and MTT assay, respectively. The cationic HPC nanomicelles retained the plasmid DNA (pDNA) binding capacity of chitosan and formed stable HPC/pDNA polyplexes with diameters below 200 nm. Both hydrophobic and hydrophilic substitution resulted in suppressed nonspecific protein adsorption on HPC/pDNA polyplexes and increased pDNA dissociation. However, resistance against DNase I degradation was enhanced by HA conjugation while being inhibited by mPEG substitution. Amphiphilic modification resulted in 3-4.5-fold higher cellular uptake in human embryonic kidney 293 cells (HEK 293) mainly through clathrin-mediated pathway. The optimal HPC/pDNA polyplexes displayed 50-fold and 1.2-fold higher gene transfection compared to unmodified chitosan and Fugene, respectively, in HEK 293 cells. Moreover, both the cellular uptake and in vitro transfection study suggested a clear dependence of gene expression on the extent of HA and mPEG substitution. These findings demonstrate that amphiphilic HPC nanomicelles with the proper combination of HA and mPEG substitution could be used as a promising gene carrier for efficient gene therapy.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University , Fargo, North Dakota 58105, United States
| | | | | | | | | | | |
Collapse
|
20
|
Priya S, Rekha M, Sharma CP. Pullulan–protamine as efficient haemocompatible gene delivery vector: Synthesis and in vitro characterization. Carbohydr Polym 2014; 102:207-15. [DOI: 10.1016/j.carbpol.2013.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
|
21
|
Layek B, Singh J. Cell penetrating peptide conjugated polymeric micelles as a high performance versatile nonviral gene carrier. Biomacromolecules 2013; 14:4071-81. [PMID: 24083483 DOI: 10.1021/bm401204n] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The major goal of this study is to design, synthesize, and evaluate linoleic acid and penetratin dual-functionalized chitosan (CS-Lin-Pen) as a nonviral gene carrier. The amphiphilic CS-Lin-Pen self-assembles to form cationic micelles in an aqueous environment. These polymeric micelles exhibited excellent hemocompatibility and cell viability, as evaluated by in vitro hemolysis and MTT assay, respectively. When CS-Lin-Pen micelles were added to plasmid DNA (pDNA) solution, the electrostatic interaction between the cationic micelles and anionic pDNA led to the formation of stable CS-Lin-Pen/pDNA polyplexes with ~100 nm in size. The resultant polyplexes demonstrated ~5-fold higher cellular uptake as compared to unmodified chitosan. Furthermore, CS-Lin-Pen micelles showed efficient protection of pDNA from DNase I attack and exhibited ~34-40-fold higher transfection in comparison with unmodified chitosan in HEK 293, CHO, and HeLa cells. These findings illustrate that the CS-Lin-Pen micelles could be exploited as a potential nonviral vector for efficient gene therapy.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University , Fargo, North Dakota 58105, United States
| | | |
Collapse
|
22
|
Layek B, Singh J. Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: Effect of degree of substitution. Int J Pharm 2013; 447:182-91. [DOI: 10.1016/j.ijpharm.2013.02.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/28/2013] [Accepted: 02/22/2013] [Indexed: 11/26/2022]
|
23
|
Layek B, Singh J. Amino Acid Grafted Chitosan for High Performance Gene Delivery: Comparison of Amino Acid Hydrophobicity on Vector and Polyplex Characteristics. Biomacromolecules 2013; 14:485-94. [DOI: 10.1021/bm301720g] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, North Dakota
58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, North Dakota
58105, United States
| |
Collapse
|