1
|
Tunca N, Maral M, Yildiz E, Sengel SB, Erdem A. Synthesis and characterization of polysaccharide-cryogel and its application to the electrochemical detection of DNA. Mikrochim Acta 2024; 191:499. [PMID: 39088080 PMCID: PMC11294392 DOI: 10.1007/s00604-024-06550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
The main goal of our study is to demonstrate the applicability of the PPy-cryogel-modified electrodes for electrochemical detection of DNA. First, a polysaccharide-based cryogel was synthesized. This cryogel was then used as a template for chemical polypyrrole synthesis. This prepared polysaccharide-based conductive cryogel was used for electrochemical biosensing on DNA. Carrageenan (CG) and sodium alginate (SA) polysaccharides, which stand out as biocompatible materials, were used in cryogel synthesis. Electron transfer was accelerated by polypyrrole (PPy) synthesized in cryogel networks. A 2B pencil graphite electrode with a diameter of 2.00 mm was used as a working electrode. The prepared polysaccharide solution was dropped onto a working electrode as a support material to improve the immobilization capacity of biomolecules and frozen to complete the cryogelation step. PPy synthesis was performed on the electrodes whose cryogelation process was completed. In addition, the structures of cryogels synthesized on the electrode surface were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Surface characterization of the modified electrodes was performed by energy-dispersive X-ray spectroscopy (EDX) analysis. Electrochemical determination of fish sperm DNA (fsDNA) was performed using a PPy-cryogel-modified electrode. The use of a porous 3D cryogel intermediate material enhanced the signal by providing a large surface area for the synthesis of PPy and increasing the biomolecule immobilization capacity. The detection limit was 0.98 µg mL-1 in the fsDNA concentration range 2.5-20 µg mL-1. The sensitivity of the DNA biosensor was estimated to 14.8 µA mM-1 cm-2. The stability of the biosensor under certain storage conditions was examined and observed to remain 66.95% up to 45 days.
Collapse
Affiliation(s)
- Nilay Tunca
- The Institute of Natural and Applied Sciences, Biomedical Technologies Department, Ege University, Bornova, 35100, Izmir, Turkey
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| | - Meltem Maral
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
| | - Esma Yildiz
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
| | - Sultan Butun Sengel
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey.
| | - Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
2
|
Sonawane AV, Rikame S, Sonawane SH, Gaikwad M, Bhanvase B, Sonawane SS, Mungray AK, Gaikwad R. A review of microbial fuel cell and its diversification in the development of green energy technology. CHEMOSPHERE 2024; 350:141127. [PMID: 38184082 DOI: 10.1016/j.chemosphere.2024.141127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The advancement of microbial fuel cell technology is rapidly growing, with extensive research and well-established methodologies for enhancing structural performance. This terminology attracts researchers to compare the MFC devices on a technological basis. The architectural and scientific successes of MFCs are only possible with the knowledge of engineering and technical fields. This involves the structure of MFCs, using substrates and architectural backbones regarding electrode advancement, separators and system parameter measures. Knowing about the MFCs facilitates the systematic knowledge of engineering and scientific principles. The current situation of rapid urbanization and industrial growth is demanding the augmented engineering goods and production which results in unsolicited burden on traditional wastewater treatment plants. Consequently, posing health hazards and disturbing aquatic veracity due to partial and untreated wastewater. Therefore, it's sensible to evaluate the performance of MFCs as an unconventional treatment method over conventional one to treat the wastewater. However, MFCs some benefits like power generation, stumpy carbon emission and wastewater treatment are the main reasons behind the implementation. Nonetheless, few challenges like low power generation, scaling up are still the major areas needs to be focused so as to make MFCs sustainable one. We have focused on few archetypes which majorities have been laboratory scale in operations. To ensure the efficiency MFCs are needed to integrate and compatible with conventional wastewater treatment schemes. This review intended to explore the diversification in architecture of MFCs, exploration of MFCs ingredients and to provide the foreseen platform for the researchers in one source, so as to establish the channel for scaling up the technology. Further, the present review show that the MFC with different polymer membranes and cathode and anode modification presents significant role for potential commercial applications after change the system form prototype to pilot scale.
Collapse
Affiliation(s)
- Amol V Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Satish Rikame
- Department of Chemical Engineering, K.K.Wagh Polytechnic Nashik, Maharashtra, India.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Mahendra Gaikwad
- Department of Chemical Engineering, National Institute of Technology, Raipur, 492010, Chhattisgarh, India.
| | - Bharat Bhanvase
- Department of Chemical Engineering, Laxminarayan Innovation Technological University, Nagpur, 440033, Maharashtra, India.
| | - Shriram S Sonawane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, Maharashtra, India.
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Ravindra Gaikwad
- Department of Chemical Engineering, Ravindra W. Gaikwad, Jawaharlal Nehru Engineering College, Chatrapati Sambhaji Nagar, 431003, Maharashtra, India.
| |
Collapse
|
3
|
Dhilllon SK, Kundu PP, Jain R. Catalytic advancements in carbonaceous materials for bio-energy generation in microbial fuel cells: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24815-24841. [PMID: 34993799 DOI: 10.1007/s11356-021-17529-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) are a sustainable alternative for wastewater treatment and clean energy generation. The efficiency of the technology is dependent on the cathodic oxygen reduction reaction, where the sluggish reaction kinetics hampers its propensity. Carbonaceous materials with high electrical conductivity have been widely explored for oxygen reduction reaction (ORR) catalysts. Here, incorporating transition metal (TM) and heteroatom into carbon could further enhance the ORR activity and power generation in MFCs. Nitrogen (N)-doped carbons have also been a popular research hotspot due to abundant active sites formed, resulting in superior conductivity, stability, and catalytic activity over carbons. This review summarizes the progress in the carbon-based materials (primary focus on the cathode) for ORR and their utilization in MFCs. Furthermore, we discussed the conceptualization of MFCs and carbonaceous materials to instigate the ORR kinetics and power generation in MFC. Furthermore, prospects of carbon-based materials for actual application in bio-energy generation have been discussed. Carbonaceous catalysts and biomass-derived carbons exhibit good potential to replace precious Pt catalysts for ORR. M-N-C catalysts were found to be the most suitable catalysts. Electrocatalysts with MNx sites are able to achieve excellent activity and high-power output by taking advantage of the active site exposure and rapid mass transfer rate. Moreover, the use of biomass-derived carbons/self-doped carbons could further reduce the overall cost of catalysts. It is anticipated that the research gaps and future perspectives discussed will show new avenues to develop excellent electrocatalysts for better performance and transformation of technology to industrial applications.
Collapse
Affiliation(s)
- Simran Kaur Dhilllon
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| | - Rahul Jain
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
4
|
Antipova CG, Parunova YM, Vishnevskaya MV, Krasheninnikov SV, Lukanina KI, Grigoriev TE, Chvalun SN, Gotovtsev PM. Biomechanical behaviour of PEDOT:PSS-based hydrogels as an electrode for stent integrated enzyme biofuel cells. Heliyon 2022; 8:e09218. [PMID: 35368535 PMCID: PMC8971615 DOI: 10.1016/j.heliyon.2022.e09218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022] Open
Abstract
The possibility of creating a biofuel cell based on a metal stent was shown in this study. Given the existing stent implantation approaches, the integration of a biofuel cell into a stent naturally entails capacity for biofuel cells to be installed into a human body. As a counter electrode, a hydrogel based on iota-carrageenan, polyvinyl alcohol, and PEDOT:PSS, with an immobilized glucose oxidase enzyme, was proposed. Tension tests demonstrated that the hydrogel mechanical behavior resembles that of a bovine's vein. To obtain an analytical description, the deformation curves were fitted using Gent and Ogden models, prompting the fitting parameters which can be useful in further investigations. During cyclic biaxial studies the samples strength was shown to decreases insignificantly in the first 50 cycles and, further, remains stable up to more than 100 cycles. The biofuel cell was designed with the PEDOT:PSS based material as an anode and a Co–Cr self-expanding stent as a cathode. The maximum biofuel cell power density with a glucose concentration of 5 mM was 7.87 × 10−5 W in phosphate buffer and 3.98 × 10−5 W in blood mimicking buffer. Thus, the biofuel cell integration in the self-expanding stent was demonstrated.
Collapse
Affiliation(s)
- Christina G Antipova
- National Research Centre "Kurchatov Institute", Department of Nanobiomaterials and Structures, Akademika Kurchatova pl., 1, 123182, Moscow, Russia
| | - Yulia M Parunova
- National Research Centre "Kurchatov Institute", Biotechnology and Bioenergy Department, Akademika Kurchatova pl., 1, 123182, Moscow, Russia
| | - Maria V Vishnevskaya
- National Research Centre "Kurchatov Institute", Biotechnology and Bioenergy Department, Akademika Kurchatova pl., 1, 123182, Moscow, Russia
| | - Sergey V Krasheninnikov
- National Research Centre "Kurchatov Institute", Department of Nanobiomaterials and Structures, Akademika Kurchatova pl., 1, 123182, Moscow, Russia
| | - Ksenia I Lukanina
- National Research Centre "Kurchatov Institute", Department of Nanobiomaterials and Structures, Akademika Kurchatova pl., 1, 123182, Moscow, Russia
| | - Timofei E Grigoriev
- National Research Centre "Kurchatov Institute", Department of Nanobiomaterials and Structures, Akademika Kurchatova pl., 1, 123182, Moscow, Russia.,Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Sergei N Chvalun
- National Research Centre "Kurchatov Institute", Department of Nanobiomaterials and Structures, Akademika Kurchatova pl., 1, 123182, Moscow, Russia
| | - Pavel M Gotovtsev
- National Research Centre "Kurchatov Institute", Biotechnology and Bioenergy Department, Akademika Kurchatova pl., 1, 123182, Moscow, Russia.,Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
5
|
DNA mediated graphene oxide (GO)-nanosheets dispersed supramolecular GO-DNA hydrogel: An efficient soft-milieu for simplistic synthesis of Ag-NPs@GO-DNA and Gram + ve/-ve bacteria-based Ag-NPs@GO-DNA-bacteria nano-bio composites. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Performance of Yeast Microbial Fuel Cell Integrated with Sugarcane Bagasse Fermentation for COD Reduction and Electricity Generation. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.9739.446-458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the integration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation (S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of +0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive potential after an effective integration of the LF and MFC systems in the handling of waste. The product is then simultaneously converted into electrical energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
7
|
Sustainable Syntheses and Sources of Nanomaterials for Microbial Fuel/Electrolysis Cell Applications: An Overview of Recent Progress. Processes (Basel) 2021. [DOI: 10.3390/pr9071221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.
Collapse
|
8
|
Mohammed MA, Basirun WJ, Rahman NMMA, Salleh NM. Electrochemical applications of nanocellulose. NANOCELLULOSE BASED COMPOSITES FOR ELECTRONICS 2021:313-335. [DOI: 10.1016/b978-0-12-822350-5.00013-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
A Review of Property Enhancement Techniques for Carrageenan-based Films and Coatings. Carbohydr Polym 2019; 216:287-302. [DOI: 10.1016/j.carbpol.2019.04.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022]
|
10
|
Hassan SH, el Nasser A. Zohri A, Kassim RM. Electricity generation from sugarcane molasses using microbial fuel cell technologies. ENERGY 2019; 178:538-543. [DOI: 10.1016/j.energy.2019.04.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Rangraz Y, Nemati F, Elhampour A. Magnetic chitosan composite as a green support for anchoring diphenyl diselenide as a biocatalyst for the oxidation of sulfides. Int J Biol Macromol 2018; 117:820-830. [DOI: 10.1016/j.ijbiomac.2018.05.207] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 12/23/2022]
|
12
|
Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96:282-301. [DOI: 10.1016/j.ijbiomac.2016.11.095] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023]
|
13
|
Li S, Qian K, Wang S, Liang K, Yan W. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020113. [PMID: 28125030 PMCID: PMC5334667 DOI: 10.3390/ijerph14020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation), the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Keke Qian
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kaiqiang Liang
- Research Institute of Yanchang Petroleum (GROUP) Co. Ltd., Xi'an 710075, China.
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
14
|
An eco-friendly and magnetized biopolymer cellulose-based heterogeneous acid catalyst for facile synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2752-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Masoumi S, Rahimi K, Towfighi J. Investigation of Key Factors and Their Interactions in MTO Reaction by Statistical Design of Experiments. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2016. [DOI: 10.1515/ijcre-2015-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The effects of templating agent [i. e., tetraethyl ammonium hydroxide (TEAOH), triethylamine (TEA) and morpholine (MOR)] and molar ratio of SiO2/Al2O3 and H2O/Al2O3 over SAPO-34 catalysts in methanol to olefin (MTO) reaction were studied systematically. The exact effect of main factors and their interaction were studied by response surface methodology (RSM) applying central composite design (CCD). Two empirical models for two systems, based on these preparation variables for the yield of ethylene and propylene were constructed in two CCD studies and ultimately these models showed as counter and three-dimensional (3D) diagrams. Analysis of Variance (ANOVA) applied for investigating the significance of the variables indicated that TEA and SiO2/Al2O3 content were the most significant variables in the case (1) and case (2), respectively. The maximum predicted ethylene and propylene yield was 58.57 wt. % and 30.22 wt. %, for catalyst with TEA = 0.2, TEAOH = 0.38 in case (1). For case (2), catalyst with SiO2/Al2O3 = 0.17, H2O/Al2O3 = 101.18 showed the maximum ethylene and propylene yield of 49.87 wt. % and 20.58 wt. %, respectively.
Collapse
|
16
|
Mekonnen BT, Ragothaman M, Kalirajan C, Palanisamy T. Conducting collagen-polypyrrole hybrid aerogels made from animal skin waste. RSC Adv 2016. [DOI: 10.1039/c6ra08876g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animal skin wastes were converted into a biocompatible and conducting collagen-polypyrrole hybrid aerogels through in situ oxidative polymerization for a wide range of applications.
Collapse
Affiliation(s)
- Berhanu Telay Mekonnen
- Advanced Materials Laboratory
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai
- India
- Academy of Scientific and Innovative Research
| | - Murali Ragothaman
- Advanced Materials Laboratory
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai
- India
| | - Cheirmadurai Kalirajan
- Advanced Materials Laboratory
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai
- India
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
17
|
Ghasemi Z, Shojaei S, Shahrisa A. Copper iodide nanoparticles supported on magnetic aminomethylpyridine functionalized cellulose: a new heterogeneous and recyclable nanomagnetic catalyst for facile access to N-sulfonylamidines under solvent free conditions. RSC Adv 2016. [DOI: 10.1039/c6ra13251k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly active catalyst based on CuI nanoparticles supported on magnetic aminomethylpyridine functionalized cellulose has been synthesized. It well catalyzes the multicomponent synthesis of N-sulfonylamidines under solvent free conditions.
Collapse
Affiliation(s)
- Zarrin Ghasemi
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Salman Shojaei
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Aziz Shahrisa
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| |
Collapse
|
18
|
Cetinkaya AY, Ozdemir OK, Koroglu EO, Hasimoglu A, Ozkaya B. The development of catalytic performance by coating Pt-Ni on CMI7000 membrane as a cathode of a microbial fuel cell. BIORESOURCE TECHNOLOGY 2015; 195:188-193. [PMID: 26116447 DOI: 10.1016/j.biortech.2015.06.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
Performance of cathode materials in microbial fuel cell (MFC) from dairy wastewater has been investigated in laboratory tests. Both cyclic voltammogram experiments and MFC tests showed that Pt-Ni cathode much better than pure Pt cathode. MFC with platinum cathode had the maximum power density of 0.180 W m(-2) while MFC with Pt:Ni (1:1) cathode produced the maximum power density of 0.637 W m(-2), even if the mass mixing ratio of Pt is lower in the alloy were used. The highest chemical oxygen demand (COD) removal efficiency was around 82-86% in both systems. The cyclic voltammogram (CV) analyses show that Pt:Ni (1:1) offers higher specific surface area than Pt alone does. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) results showed that entire Pt:Ni (1:1) alloys can reduce the oxygen easily than pure platinum, even though less precious metal amount. The main outcome of this study is that Pt-Ni, may serve as a alternative catalyst in MFC applications.
Collapse
Affiliation(s)
- Afsin Y Cetinkaya
- Yildiz Technical University, Department of Environmental Engineering, Istanbul, Turkey.
| | - Oguz Kaan Ozdemir
- Yildiz Technical University, Department of Metallurgical and Material Engineering, Istanbul, Turkey
| | - Emre Oguz Koroglu
- Yildiz Technical University, Department of Environmental Engineering, Istanbul, Turkey
| | - Aydin Hasimoglu
- Nanotechnology Research Center, Gebze Institute of Technology, Istanbul, Turkey
| | - Bestami Ozkaya
- Yildiz Technical University, Department of Environmental Engineering, Istanbul, Turkey
| |
Collapse
|
19
|
Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose. SENSORS 2015; 15:24681-97. [PMID: 26404269 PMCID: PMC4634436 DOI: 10.3390/s151024681] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 11/17/2022]
Abstract
Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM−1), with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%.
Collapse
Affiliation(s)
- Chakavak Esmaeili
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Malaysia.
| | - Mahnaz M Abdi
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Malaysia.
- Institute of Tropical Forestry and Forest Products, University Putra Malaysia, 43400 Serdang, Malaysia.
| | - Aji P Mathew
- Division of Materials Science, Composite Centre Sweden, Lulea University of Technology, 97187 Lulea, Sweden.
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, P.O. Box 31585-4313, 31587-77871 Karaj, Iran.
| | - Kristiina Oksman
- Division of Materials Science, Composite Centre Sweden, Lulea University of Technology, 97187 Lulea, Sweden.
| | - Majid Rezayi
- Chemistry Department, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Akerboom S, Pujari SP, Turak A, Kamperman M. Controlled Fabrication of Polypyrrole Surfaces with Overhang Structures by Colloidal Templating. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16507-17. [PMID: 26151156 DOI: 10.1021/acsami.5b03903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here we present the fabrication of polypyrrole (PPy) surfaces with a controlled overhang structure. Regularly structured PPy films were produced using interfacial polymerization around a sacrificial crystalline colloidal monolayer at the air/water interface. The morphology of the final inverse colloidal PPy film is controlled by the amount of monomer, the monomer: oxidant ratio and polymerization time. The PPy films exhibit an overhang structure due to depth of particle immersion in the water phase. As a result of the overhang structure, the PPy films are made hydrophobic, although the material itself is hydrophilic. The apparent contact angle of water on the structured surfaces is 109.5°, which is in agreement with the predicted contact angle using the Cassie-Baxter equation for air-filled cavities. This fabrication technique is scalable and can be readily extended to other systems where controlled wettability is required.
Collapse
Affiliation(s)
- Sabine Akerboom
- †Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Sidharam P Pujari
- ‡Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Ayse Turak
- §Department of Engineering, Physics McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Marleen Kamperman
- †Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
21
|
The use of κ-carrageenan/Fe3O4 nanocomposite as a nanomagnetic catalyst for clean synthesis of rhodanines. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Antolini E. Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 2015; 69:54-70. [DOI: 10.1016/j.bios.2015.02.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/27/2015] [Accepted: 02/07/2015] [Indexed: 12/30/2022]
|