1
|
Xu Y, Zhang R, Wang K, Chisoro P, Huang F, Wang J, Zhang C. Effect of carboxymethyl cellulose and/or wheat gluten on the pasting, rheological and quality properties of wheat starch-based batter for deep-fried products. Food Chem X 2025; 26:102262. [PMID: 40007517 PMCID: PMC11851186 DOI: 10.1016/j.fochx.2025.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to investigate the effects of the individual and synergistic addition of wheat gluten (WG) and carboxymethyl cellulose (CMC) on the wheat starch (WS)-based batter characteristics to determine the molecular basis of texture formation in the actual batter system. Results showed that adding WG and/or CMC significantly increased the viscosity of WS during pasting. The rheological behavior showed that the WG-treated and CMC-treated group had the highest and lowest viscoelasticity. The addition of WG-CMC helped the WS-based batter obtain moderate viscoelasticity. These outcomes could be attributed to the enhancement of hydrogen bonding. The microstructure suggested that the addition of WG-CMC increased the density and integrity of the gel network. Overall, CMC competed for the binding sites of WG on WS, reducing the increase in viscoelasticity caused by the interaction between WG and WS. This might alleviate the unwanted springiness of fried products.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ruishu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Kangyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Prince Chisoro
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural sciences, Changji 831100, China
| | - Jing Wang
- Xinjiang Uygur Autonomous Region Academy of Animal Sciences, Urumqi 830052, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural sciences, Changji 831100, China
| |
Collapse
|
2
|
Kuang J, Zhang W, Yang X, Ma P. Controlling pea starch gelatinization behavior and rheological properties by modulating granule structure change with pea protein isolate. Food Chem X 2025; 25:102218. [PMID: 39974531 PMCID: PMC11838124 DOI: 10.1016/j.fochx.2025.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
The purpose of this study was to investigate how the gelatinization behavior of pea starch (PS) was affected by pea protein isolate (PPI). The findings revealed that higher PPI levels decreased the swelling power of PS. Incorporating PPI raised the hot paste viscosity of PS, lowered the pasting temperature, and notably increased the gelatinization enthalpy according to differential scanning calorimetry analysis. Furthermore, the presence of PPI reduced the storage moduli of the starch paste, enhanced shear thinning behavior, and hindered starch molecular chain aggregation. With increasing PPI content from 0 to 12 %, amylose leaching and gel strength decreased by 25.6 % and 38.2 % respectively, indicating weak gel formation induced by PPI in PS. Confocal laser scanning microscopy confirmed that PPI envelopment of starch granules restricted their gelatinization by limiting granule swelling. These results carry significant implications for crafting pea-based foods with desired texture.
Collapse
Affiliation(s)
- Jiwei Kuang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, China
- Key Laboratory of Agricultural Product Processing on Qinghai-Tibetan Plateau, College of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810000, China
- Laboratory of Qinghai-Tibetan Plateau Germplasm Resources Research and Utilization, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai Province 810000, China
| | - Wengang Zhang
- Key Laboratory of Agricultural Product Processing on Qinghai-Tibetan Plateau, College of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810000, China
- Laboratory of Qinghai-Tibetan Plateau Germplasm Resources Research and Utilization, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai Province 810000, China
| | - Xijuan Yang
- Key Laboratory of Agricultural Product Processing on Qinghai-Tibetan Plateau, College of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810000, China
- Laboratory of Qinghai-Tibetan Plateau Germplasm Resources Research and Utilization, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai Province 810000, China
| | - Ping Ma
- Qinghai Tianyoude Technology Investment Management Group Co, Ltd, Xining, Qinghai Province 810016, China
| |
Collapse
|
3
|
Li S, Zheng Y, Chen Z, Xie W, Xiao L, Gao D, Zhao J. Effect of soluble dietary fiber from corn bran on pasting, retrogradation, and digestion characteristics of corn starch. Food Chem X 2024; 24:102013. [PMID: 39659676 PMCID: PMC11629195 DOI: 10.1016/j.fochx.2024.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
This study investigated the effect of twin-screw extruded-enzymatically prepared soluble dietary fibers (EESDF) on various properties of CS. Results showed that adding EESDF decreased the viscosity and crystallinity. Incorporating 10 % EESDF reduced the peak and final viscosities of CS by 323 cP and 380 cP, respectively. When stored for 14 d, EESDF reduced the relative crystallinity (RC) and enthalpy of retrogradation (ΔHr) of CS. The RC and the ΔHr were reduced by 4.83 % and 41.53 %, respectively, when adding 10 % EESDF. The resistant starch content was increased by 6.7 % when stored for 0 d with the addition of 10 % EESDF. The eGI value was decreased when adding 10 % EESDF. These findings showed that EESDF inhibited the retrogradation and digestion of CS. They will provide a basis for using EESDF as a quality control for starchy foods and for using starch in soft gels and foods for dysphagic categories.
Collapse
Affiliation(s)
- Sheng Li
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Yuqian Zheng
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Zhilong Chen
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Wenlong Xie
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Liping Xiao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Dengji Gao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
4
|
Zhou HB, Peng SH, Liu YM, Wang T, Weng XH, Liu G, Zhang JL. Structural changes of potato starch and activity inhibition of starch digestive enzymes by anthocyanin from lingonberry (Vaccinium uliginosum L.) retarded starch digestibility. Int J Biol Macromol 2024; 281:136673. [PMID: 39426763 DOI: 10.1016/j.ijbiomac.2024.136673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The effects of anthocyanins on in vitro and in vivo digestibility of potato starch were evaluated in this study. Then the influence of anthocyanins on physicochemical property of potato starch and the activity of starch digestive enzymes (α-amylase and α-glucosidase) were also investigated to understand the mechanism of anthocyanins on starch digestibility. Results have shown that dietary anthocyanins could effectively inhibit the biological activities of α-amylase and α-glucosidase to delay the peak of postprandial blood glucose. Characterization of physicochemical properties of potato starch indicates a structural change due to the presence of anthocyanins, hindering its access to starch digestive enzymes. Among all anthocyanins, lingonberry anthocyanin significantly promoted the retrogradation of potato starch (7.153 % to 25.913 %) and exert promising inhibition on α-amylase and α-glucosidase. Lingonberry anthocyanins mainly interacted with potato starch through hydrogen bonds, which reduce the amount of amylose molecules leached from potato starch and loosen the three-dimensional (3D) network structure of starch gel. This study could provide theoretical evidence for utilization of anthocyanins in diabetic-management function food.
Collapse
Affiliation(s)
- H B Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - S H Peng
- Wuhan Polytechnic University, College of Food Science and Engineering, Wuhan, China
| | - Y M Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - T Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - X H Weng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - G Liu
- Wuhan Polytechnic University, College of Food Science and Engineering, Wuhan, China
| | - J L Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Zhang Z, Liu Q, Zhang L, Liu W, Richel A, Zhao R, Hu H. Potato dietary fiber effectively inhibits structure damage and digestibility increase of potato starch gel due to freeze-thaw cycles. Int J Biol Macromol 2024; 279:135034. [PMID: 39182873 DOI: 10.1016/j.ijbiomac.2024.135034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Repeated freeze-thaw (FT) cycles damage the quality of frozen starch-based foods and accelerate the digestion rate of starch. This study investigated how potato soluble dietary fiber (PSDF) affects the physicochemical characteristics and digestibility of potato starch (PS) after repeated FT cycles. Results indicated that repeated FT cycles of potato starch resulted in the enlargement of gel pores, an increase in hardness (from 322.5 g to 579.5 g), and a decrease in gel porosity, leading to reduced water-holding capacity (from 94.2 % to 85.4 %). However, the addition of PSDF stabilized the 3D structure of the PS/PSDF gel, with minimal fluctuations in hardness (413.0-447.5 g) and water-holding capacity (94.4-93.6 %). Meanwhile, PSDF enhanced intramolecular hydrogen bonding within starch molecules and promoted molecular interactions, increasing the PS/PSDF gel's helix structure; therefore, PSDF effectively addressed the increase in rapidly digestible starch caused by repeated FT cycles. Furthermore, PSDF might attach to the surface of starch particles, so limiting starch granule expansion and decreasing the peak viscosity increase caused by repeated FT cycles. The findings suggest that PSDF could be an effective component for improving the quality of potato starch-based frozen food.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Department of Biomass and Green Technologies, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Aurore Richel
- Department of Biomass and Green Technologies, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
6
|
Pan W, Qi X, Huang Z, Shen M, Wen H, Xie J. Effect of three polysaccharides with different charge characteristics on the properties of highland barley starch gel. Int J Biol Macromol 2024; 281:136267. [PMID: 39366626 DOI: 10.1016/j.ijbiomac.2024.136267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Highland barley, a nutritious whole grain, faces limited market utilization due to the poor heating stability of its starch. The aim of this study was to investigate the effects of three differently charged ionic polysaccharides-guar gum (GG), xanthan gum (XG), and carboxymethyl chitosan (CMC)-on the gel properties of highland barley starch (HBS). GG and XG notably increased pasting viscosity, viscoelasticity, hardness, and strength of HBS gels. Conversely, CMC resulted in decreased gel properties. All three polysaccharides enhanced OH tensile vibration (3000-3800 cm-1), with GG and XG promoting denser honeycomb network structures and lower spin-spin relaxation time (T2), indicating improved structural integrity. In contrast, low concentrations of CMC led to disorder and loose structure. Hydrogen bonding and electrostatic interactions were the main forces by which polysaccharides influenced the properties of starch gels. This research contributes to enhancing the properties of HBS gel during heating and expanding its commercial applications. It also provides some insights to understand the interaction between different charged polysaccharides and starch.
Collapse
Affiliation(s)
- Wentao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Wang L, Huang Y, Ren Y, Wang H, Ding Y, Ren G, Wang T, Li Z, Qiu J. Effect of ethanol addition on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes. Food Chem 2024; 451:139350. [PMID: 38663246 DOI: 10.1016/j.foodchem.2024.139350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".
Collapse
Affiliation(s)
- Libo Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| | - Yilin Huang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yanjuan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haoran Wang
- College of Food Science and Engineering, Beijing University of Agriculture, Changping, Beijing 102206, China
| | - Yue Ding
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zaigui Li
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Ju Qiu
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| |
Collapse
|
8
|
Chen H, Wang X, Jin D, Wu X, Fang Y, Lin Q, Ding Y. Interactions between pectin, starch and linoleic acid and their effects on starch structure, digestion and release properties. Int J Biol Macromol 2024; 275:133255. [PMID: 38908630 DOI: 10.1016/j.ijbiomac.2024.133255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
This study aimed at gaining insight into the mechanism of interactions between pectin (PE), starch and unsaturated fatty acids (UFAs) in relation to structure, in vitro digestibility and release properties of starch. Due to the barrier and encapsulation effects of PE, the complexing behavior of potato starch (PtS) with linoleic acid (LOA) was enhanced, which increased the complexing index, the compactness of network structure, short-range ordered structure and relative crystallinity of PtS-LOA-PE films. These structural changes resulted in the increases of slowly digestible starch and resistant starch and in the decreases of first-order rate coefficient in PtS-LOA-PE films. Besides, the in vitro release results also showed that the release properties of PtS-LOA could be controlled by the PE addition with the decreases in LOA release rate and increase in LOA bioavailability under simulated gastrointestinal conditions. Notably, at different PtS-LOA:PE ratios, the PtS-LOA-PE film with the PtS-LOA:PE ratio of 5:1 showed the better complexing degree, structural order, anti-digestibility and colon-targeted release properties than other PtS-LOA-PE films. These results indicated that PE influenced the release properties of the PtS-LOA-PE films, which was closely related to their complexing degree, structural order, and digestibility. This study provided new insights into the design of resistant films for delivery of UFAs to colon.
Collapse
Affiliation(s)
- Huirong Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Danni Jin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023,China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
Zhu Y, Dong C, Chi F, Gu X, Liu L, Yang L. Effects of Cactus Polysaccharide on Pasting, Rheology, Structural Properties, In Vitro Digestibility, and Freeze-Thaw Stability of Rice Starch. Foods 2024; 13:2420. [PMID: 39123611 PMCID: PMC11311433 DOI: 10.3390/foods13152420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study combined rice starch (RS) with cactus polysaccharide (CP) at different composites (0.6%, 1.2%, 1.8%, 2.4%, and 3.0%, w/w), and analyzed the variations in the complex gelatinization properties, rheological properties, thermal properties, structural properties, digestibility, and freeze-thaw stability. As a result, the pasting parameters (p < 0.05) and storage modulus (G') together with the loss modulus (G″) decreased as the CP concentration increased; meanwhile, the RS and the CP-RS gels were pseudoplastic fluids. As revealed by differential scanning calorimetry (DSC), incorporating CP into the starch elevated the starch gelatinization temperature while decreasing gelatinization enthalpy, revealing that CP effectively retarded long-term retrogradation in RS. The gel microstructure and crystallization type altered after adding CP. Typically, CP inclusion could enhance the proportion of resistant starch and slowly digestible starch (SDS), thereby slowing RS hydrolysis. Concurrently, adding CP promoted the RS freeze-thaw stability. These findings could potentially aid in the innovation of CP-based food products.
Collapse
Affiliation(s)
- Yahui Zhu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Chuang Dong
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Fumin Chi
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Lei Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Lin Yang
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| |
Collapse
|
10
|
Kumar R, Kumar KJ. Exploring effect of uniform dry ball-milling duration on pasting and rheological properties of pink potato and maize starch mixtures. Int J Biol Macromol 2024; 273:132900. [PMID: 38838891 DOI: 10.1016/j.ijbiomac.2024.132900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
This study examined the potential effect of ball milling on maize starch (MS), pink potato starch (PPS), and their blends in various ratios (90:10, 80:20, and 70:30) on the pasting and rheological properties. Ball-milling led to changes in the particle size, ranging from 652.9 to 6488 nm, and a decrease in relative crystallinity (RC), as confirmed by XRD. Ball-milling increased amylose concentration in blend with the ratio of 90:10 up to 32.53 %, indicating structural alterations and molecular interactions. FESEM analysis confirms significant changes in the surface and particle sizes and starch gels with honeycomb structures. FTIR and Raman spectroscopy revealed a decrease in the intensity of the 1044 cm-1 and 480 cm-1 bands, respectively, signifying structural changes. Pasting parameters like peak viscosity and gelatinization behavior varied with PPS incorporation. The 80:20 blend had the highest viscosity, demonstrating PPS's capacity for high-viscosity starch paste. Rheological measurements of starch blends exhibited shear-thinning behavior, whereas the viscoelastic properties of the blends are influenced by particle size and the ratio of pink potato starch. Ball-milling treatment affects the granules and causes molecular-level interactions between the particles. This results in unique rheological properties of the starch blends, making them suitable for various applications.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - K Jayaram Kumar
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
11
|
Li T, Huang J, Yu J, Tian X, Zhang C, Pu H. Effects of soaking glutinous sorghum grains on physicochemical properties of starch. Int J Biol Macromol 2024; 267:131522. [PMID: 38614175 DOI: 10.1016/j.ijbiomac.2024.131522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Glutinous sorghum grains were soaked (60-80 °C, 2-8 h) to explore the effects of soaking, an essential step in industrial processing of brewing, on starch. As the soaking temperature increased, the peak viscosity and crystallinity of starch gradually decreased, while the enzymatic hydrolysis rate and storage modulus first increased and then decreased. At 70 °C, the content of amylose, the enzymatic hydrolysis rate of starch, and the final viscosity first increase and then decrease with the increase of soaking time, reaching their maximum at 6 h, increased by 53.1 %, 11.0 %, and 10.4 %, respectively, as compared with the non-soaked sample. At 80 °C (4 h), the laser confocal microscopy images showed a network structure formed between the denatured protein chains and the leached-out amylose chains. The molecular weights of starch before and after soaking were all in the range of 3.82-8.98 × 107 g/mol. Since 70 °C is lower than that of starch gelatinization and protein denaturation, when soaking for 6 h, the enzymatic hydrolysis rate of starch is the highest, and the growth of miscellaneous bacteria is inhibited, which is beneficial for subsequent processing technology. The result provides a theoretical basis for the intelligent control of glutinous sorghum brewing.
Collapse
Affiliation(s)
- Tao Li
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Junrong Huang
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Jing Yu
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xiaodong Tian
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chong Zhang
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Huayin Pu
- School of Food Science and Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
12
|
Hung SH, Lai LS. Changes in the pasting and rheological properties of wheat, corn, water caltrop and lotus rhizome starches by the addition of Annona montana mucilage. Int J Biol Macromol 2024; 265:131009. [PMID: 38513905 DOI: 10.1016/j.ijbiomac.2024.131009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Annona montana mucilage (AMM) is a novel mucilage with unique but limited information. This study investigated the effects of AMM addition on the pasting and rheological properties of wheat starch (WS), corn starch (CS), water caltrop starch (WCS), and lotus rhizome starch (LRS). The addition of AMM generally increased the pasting temperature and peak viscosity, but reduced the setback value of all starches to varying degrees, and the initiation of viscosity-increase for cereal starch/AMM systems during pasting occurred at lower temperatures, accompanied with a distinctive two-stage swelling process as well as lower peak and final hot paste viscosity at 50 °C. AMM significantly increased the pseudoplasticity and entanglement of the systems to varying degrees (LRS > WS > WCS > CS). Under a constant shear rate of 50 s-1, the consistency level was found to fall in honey-like for cereal starch/AMM groups, and honey-like to extremely thick levels for WCS and LRS/AMM groups. Except for the WCS/AMM systems, the storage and loss modulus as well as tan increased with increasing AMM concentration. Short-term retrogradation of starch at 4 °C was pronouncedly retarded by the addition of AMM for WS, CS and WCS groups, but was less affected for LRS group.
Collapse
Affiliation(s)
- Shao-Hua Hung
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Lih-Shiuh Lai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
13
|
Yousefi A, Ako K, Jekle M. Incorporation of Lepidium perfoliatum seed gum into wheat starch affects its physicochemical, viscoelastic, pasting and freeze-thaw syneresis properties. Int J Biol Macromol 2024; 259:129344. [PMID: 38218282 DOI: 10.1016/j.ijbiomac.2024.129344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
This study aimed to investigate the influence of incorporating Lepidium perfoliatum seed gum (LPSG) into wheat starch (WS) at various mixing ratios on its FTIR, DSC, steady and dynamic rheological properties, pasting attributes, syneresis, and particle size distributions characteristics. The interaction between WS and LPSG was purely based on hydrogen-bonding. It was found that the onset (To) and peak (Tp) temperatures of the LPSG-rich mixtures increased by 10 % and 8 %, respectively, while the enthalpy (ΔH) decreased by 70 % compared to WS. A higher LPSG ratio led to a decrease in the frequency dependence of storage modulus (G'), as well as an increase in the pseudoplasticity of the mixtures. The in-shear structural recovery test showed that the rate of recovery (R, %) increased with an increasing LPSG ratio. The pasting results demonstrated that the 9/1 ratio had the highest final viscosity and the lowest relative breakdown. Applying 1 to 5 freeze-thaw cycles resulted in a 50 % to 70 % decrease in syneresis for the 9/1 mixing ratio in comparison to WS, respectively. The incorporation of LPSG into WS resulted in higher static and dynamic magnitudes of yield stress, as well as an increase in particle size when compared to WS.
Collapse
Affiliation(s)
- Alireza Yousefi
- Department of Plant-based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Komla Ako
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France
| | - Mario Jekle
- Department of Plant-based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
14
|
Zhang Y, Zeng J, Jie Z, Gao H, Su T, Li Z, Zhang Q, Liu F. Development and characterization of an active starch-based film as a chlorogenic acid delivery system. Int J Biol Macromol 2024; 255:128055. [PMID: 37956804 DOI: 10.1016/j.ijbiomac.2023.128055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Given its health benefits for the human body, chlorogenic acid (CA) offers promising applications in the food industry. However, the instability and low bioavailability of CA remain to be solved. In this paper, a starch-based film prepared by the homogenization and solution-casting method was used as an effective carrier to alleviate these problems. Homogenization (10-50 MPa) reduced the starch paste viscosity and its particle sizes from 21.64 to 7.68 μm, which promoted the starch recrystallization and induced chemical cross-links between starch-CA, as confirmed by the FTIR result with an appearance of a new CO peak at about 1716 cm-1. Accordingly, the rapidly digestible starch content of the film was reduced to 27.83 % and the CA encapsulation efficiency was increased to 99.08 % (from 65.88 %). As a result, the film system extended CA's release time beyond 4 h and significantly increased the heat-treated CA's antioxidant activity. Besides, the tensile strength and elastic modulus of the film were also improved to 6.29 MPa (from 1.63 MPa) and 160.98 MPa (from 12.02 MPa), respectively, by homogenization. In conclusion, the developed active starch-based film could be used as an edible film for the production of functional food or active food packaging.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Jingjing Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zeng Jie
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongchao Su
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ziheng Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qi Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
15
|
Gao Y, Nie P, Yang X, Ma Z, Du S, Huang Z, Jiang S, Zheng Z. Conjugation of soymilk protein and arabinoxylan induced by peroxidase to improve the gel properties of tofu. Food Chem 2024; 430:137034. [PMID: 37542969 DOI: 10.1016/j.foodchem.2023.137034] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/02/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Arabinoxylan (AX) can form stable covalent bonds with protein to improve gel properties. We aimed to prepare a conjugate between soymilk protein (SMP) and AX by peroxidase, followed by the addition of transglutaminase (TG) to prepare tofu gels. The conjugate's properties and their effects on the mechanical properties, rheological properties, and microstructure of tofu gels were evaluated. Results revealed that the α-helix content decreased, the β-sheet content increased, and the surface hydrophobicity reduced from 1.60 × 105 to 1.27 × 105. The optimal amount of AX required to improve the properties of tofu gel was 1.0%. The tofu gel showed better hardness (118.44 g), water holding capacity (WHC) (86.17%), and higher storage modulus (G') and loss modulus (G″). Low-Field NMR (LF-NMR) showed that the water was evenly distributed. Scanning electron microscopy (SEM) revealed a denser and more regular three-dimensional gel network.
Collapse
Affiliation(s)
- Yue Gao
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Peng Nie
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xuefei Yang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhigang Ma
- Jincaidi Food Co. LTD, Maanshan 243000, China
| | - Shizhou Du
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230601, China
| | - Zhiping Huang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230601, China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
16
|
Xu L, Ren J, Wang X, Bai Z, Chai S, Wang X. Effects of sugar beet pectin on the pasting, rheological, thermal, and microstructural properties of wheat starch. Int J Biol Macromol 2023; 253:127328. [PMID: 37820921 DOI: 10.1016/j.ijbiomac.2023.127328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The effects of addition of sugar beet pectin (SBP) on the pasting, rheological, thermal, and microstructural properties of wheat starch (WS) were investigated. Results revealed that SBP addition significantly increased the peak viscosity, trough viscosity, breakdown value, final viscosity, and setback value of WS, whereas decreased the pasting temperature. SBP raised the swelling power (from 13.44 to 21.32 g/g) and endothermic enthalpy (ΔH, from 8.17 to 8.98 J/g), but decreased the transparency (from 9.70 % to 1.37 %). Regarding rheological properties, WS-SBP mixtures exhibited a pseudo-plastic behavior, and SBP enhanced the viscoelasticity, but decreased the deformability. Particle size distribution analysis confirmed that SBP promoted the swelling of WS granules. Fourier-transform infrared spectroscopy results suggested that the interactions between SBP and WS did not involve covalent bonding, and the formation of ordered structure was inhibited by SBP addition. Additionally, scanning electron microscopy observation found that the gel network of WS-SBP mixtures became more irregular, pore size gradually decreased, and the wall became thinner as the SBP concentration increased. These results indicated that SBP is a promising non-starch polysaccharide that can enhance the processing properties of WS.
Collapse
Affiliation(s)
- Lei Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China.
| | - Jinyun Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Zhaoliang Bai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Shihao Chai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xiaole Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| |
Collapse
|
17
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
18
|
Deokar GS, Deokar AM, Kshirsagar SJ, Buranasompob A, Nirmal NP. Extraction, physicochemical characterization, functionality, and excipient ability of corn fiber gum-starch isolate from corn milling industry waste. Int J Pharm 2023; 645:123401. [PMID: 37696343 DOI: 10.1016/j.ijpharm.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Corn processing industries generate an extensive fibrous byproduct consisting of corn fiber gum (CFG) and residual starch (S). The present study hypothesized that CFG and S could be isolated as a single crosslinked conjugate. The isolated CFG-S conjugate was acidic, with a pKa value of 11.49, and a swelling index of 99.60%. Henderson-Hasselbalch equation predicted negligible ionization throughout the gastrointestinal pH range. The DSC thermogram highlights glass transition and temperature-specific structure stabilization through the exothermic crystallization domain. FTIR, SEM & XRD confirmed the structural conjugation and integrity of the conjugate. Tablets containing Venlafaxine hydrochloride as a model drug were prepared using CFG-S (14 and 57%) as excipient by wet granulation method. Percentage cumulative drug release with low concentration was up to 99.67175 ± 0.09 % in 5 h whereas with high concentration, it was extended to 12 h (P < 0.05). Korsemayer-Peppas release exponent indicates zero order (R2 = 0.9935) kinetics with super case-II anomalous transport showing diffusion and erosion as drug release mechanisms. The results confirmed that CFG-S isolate could act as a good binding agent at low concentrations and release extending cross-linked matrix former at a higher concentration for release retardant excipient.
Collapse
Affiliation(s)
- Gitanjali Sambhajirao Deokar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Archana Maruti Deokar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sanjay Jayprakash Kshirsagar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Athisaya Buranasompob
- Center for Innovation and Reference on Food for Nutrition, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Deaprtment of Food Science, Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
19
|
Rostamabadi H, Bajer D, Demirkesen I, Kumar Y, Su C, Wang Y, Nowacka M, Singha P, Falsafi SR. Starch modification through its combination with other molecules: Gums, mucilages, polyphenols and salts. Carbohydr Polym 2023; 314:120905. [PMID: 37173042 DOI: 10.1016/j.carbpol.2023.120905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Chunyan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
20
|
Xiao W, Shen M, Li J, Li Y, Qi X, Rong L, Liu W, Xie J. Preparation and characterization of curcumin-loaded debranched starch/Mesona chinensis polysaccharide microcapsules: Loading levels and in vitro release. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Zhang S, Yue M, Wang S, Zhang J, Zhang D, Wang C, Chen S, Ma C. Insights into the modification of physicochemical properties and digestibility of pea starch gels with barley β-glucan. J Food Sci 2023; 88:2833-2844. [PMID: 37219380 DOI: 10.1111/1750-3841.16615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
The influences of barley β-glucan (BBG) on the physicochemical properties and in vitro digestibility of pea starch were investigated. BBG was found to decrease pasting viscosity in a concentration dependent manner and inhibited the aggregation of pea starch. After the presence of BBG, the gelatinization enthalpy of pea starch was decreased (from 7.83 ± 0.03 to 5.55 ± 0.22 J/g), whereas the gelatinization temperature was enhanced (from 62.64 ± 0.01 to 64.52 ± 0.14°C) according to the differential scanning calorimeter results. In addition, BBG inhibited the swelling of pea starch and amylose leaching. When amylose leached out from pea starch to form a BBG-amylose barrier, starch gelatinization was inhibited. The starch gels exhibited weak gels and shear thinning behaviors by rheological tests results. The interaction between BBG and amylose led to lower viscoelasticity and texture parameters in pea starch gels. The structure analysis results unveiled that the force between BBG and amylose was mainly hydrogen bonds. Pea starch hydrolysis was inhibited when BBG was present in the system, which was connected with the restricted starch gelatinization. These results obtained in the study would supply insights into incorporating BBG into various food systems.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Minghui Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Sihua Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Jing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
22
|
Ma C, Tan C, Xie J, Yuan F, Tao H, Guo L, Cui B, Yuan C, Gao W, Zou F, Wu Z, Liu P, Lu L. Effects of different ratios of mannitol to sorbitol on the functional properties of sweet potato starch films. Int J Biol Macromol 2023:124914. [PMID: 37217055 DOI: 10.1016/j.ijbiomac.2023.124914] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Sorbitol as a plasticizer is easily crystallized from starch film, resulting in the reduction in plasticizing effect. To improve the plasticizing performance of sorbitol in starch films, mannitol, an acyclic hexahydroxy sugar alcohol, was used to cooperate with sorbitol. The effects of different ratios of mannitol (M) to sorbitol (S) as a plasticizer on mechanical properties, thermal properties, water resistance and surface roughness of sweet potato starch films were investigated. The results showed that the surface roughness of starch film with M:S (60:40) was the smallest. The number of hydrogen bonds between plasticizer and starch molecule was proportional to the mannitol content starch film. With the decrease of mannitol contents, the tensile strength of starch films gradually decreased except for M:S (60:40). Moreover, the transverse relaxation time value of starch film with M:S (100:0) was the lowest, indicating that it had the lowest degree of freedom of water molecules. Starch film with M:S (60:40) is the most effective in delaying the retrogradation of starch film. This study offered a new theoretical basis that different ratios of mannitol to sorbitol improve different performances of starch films.
Collapse
Affiliation(s)
- Chenyu Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Jixun Xie
- School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353.
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353.
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, No.3501, Daxue Rd., Changqing District, Jinan, Shandong Province, China, 250353
| |
Collapse
|
23
|
Hu N, Zhao C, Li S, Qi W, Zhu J, Zheng M, Cao Y, Zhang H, Xu X, Liu J. Postharvest ripening of newly harvested corn: Structural, rheological, and digestive characteristics of starch. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
24
|
Qadir N, Wani IA. Extrusion assisted interaction of rice starch with rice protein and fibre: Effect on physicochemical, thermal and in-vitro digestibility characteristics. Int J Biol Macromol 2023; 237:124205. [PMID: 36972820 DOI: 10.1016/j.ijbiomac.2023.124205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Rice starch has high digestibility due to its large carbohydrate content. Macromolecular enrichment of starch has the tendency to retard rate of starch hydrolysis. Hence, the current investigation was aimed to check the combined effect of extrusion assisted addition of rice protein (0, 10, 15 and 20 %) and fibre (0, 4, 8 and 12 %) to rice starch on physico-chemical and in-vitro digestibility characteristics of starch extrudates. It was observed from the study that 'a' and 'b' values, pasting temperature and resistant starch of starch blends and extrudates increased with the addition of protein and fibre. However, lightness value, swelling index, pasting properties and relative crystallinity of blends and extrudates decreased with the addition of protein and fibre. Maximum increase in thermal transition temperatures was observed for ESP3F3 extrudates due to absorption capacity of protein molecules which led to late onset of gelatinization. Therefore, enrichment of protein and fibre to rice starch during extrusion can be considered as a novel approach to reduce rate of rice starch digestion for catering nutritional requirements of diabetic population.
Collapse
Affiliation(s)
- Nafiya Qadir
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, India.
| | - Idrees Ahmed Wani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, India
| |
Collapse
|
25
|
Pan W, Liu W, Li J, Chen Y, Yu Q, Xie J. The role of guar gum in improving the gel and structural characteristics of germinated highland barley starch. Int J Biol Macromol 2023; 238:124052. [PMID: 36931483 DOI: 10.1016/j.ijbiomac.2023.124052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Germinated highland barley has been shown to have many health benefits, but the weakening of the starch gel properties during the germination limits its further application. In this study, germinated highland barley starch (GBS) was obtained after germination treatment. Guar gum (GG) was added to explore the effects of gelatinization on the rheology, gel and structural characteristics of GBS, and the potential of preparing gel-based products was also evaluated. The results showed that the addition of GG significantly increased the viscosity, gel strength and viscoelasticity of GBS, which was beneficial to the formation of gel, and promoted its formation of an ordered and compact gel network structure. The study provides a theoretical reference for the preparation of gel-based food with highland barley starch, and increases the application range of highland barley.
Collapse
Affiliation(s)
- Wentao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; China-Canada Joint Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Wenmeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; China-Canada Joint Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Jinwang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; China-Canada Joint Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; China-Canada Joint Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; China-Canada Joint Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; China-Canada Joint Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
26
|
Chai Z, Yin X, Zheng Y, Ye X, Tian J. Effects of hawthorn addition on the physicochemical properties and hydrolysis of corn starch. Food Chem X 2022; 16:100478. [PMID: 36299864 PMCID: PMC9589023 DOI: 10.1016/j.fochx.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022] Open
Abstract
Hawthorn powder were mixed with corn starch and heated in water to make corn starch-hawthorn mixtures (CS-Haw) and then the physicochemical properties and hydrolysis characteristics of the mixtures were measured. Results showed that the addition of hawthorn powder decreased the viscosity of corn starch, and prolonged the pasting temperature, while the microstructure analysis indicated that hawthorn particles aggregated on the surfaces of starch granules, reducing the chance of starch contacting with water, then delayed the starch gelatinization. The presence of hawthorn powder also reduced the G' value to varying degrees and the loss tangent of CS-Haw was significantly higher than that of corn starch. The addition of hawthorn powder in large amounts also increased the rapidly digestible starch, while decrease the slowly digestible starch and resistant starch. The present research will provide basic theoretical support for the application of hawthorn in healthy starch food processing.
Collapse
Affiliation(s)
- Ziqi Chai
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Center of Food & Health, The Rural Development Academy of Zhejiang University, Zhejiang University, Hangzhou 310058, China
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xiuxiu Yin
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuxue Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Center of Food & Health, The Rural Development Academy of Zhejiang University, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Center of Food & Health, The Rural Development Academy of Zhejiang University, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Hao Z, Han S, Xu H, Li C, Wang Y, Gu Z, Hu Y, Zhang Q, Deng C, Xiao Y, Liu Y, Liu K, Zheng M, Zhou Y, Yu Z. Insights into the rheological properties, multi-scale structure and in vitro digestibility changes of starch-β-glucan complex prepared by ball milling. Int J Biol Macromol 2022; 224:1313-1321. [DOI: 10.1016/j.ijbiomac.2022.10.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
28
|
Luo Y, Li Y, Li L, Xie X. Physical modification of maize starch by gelatinizations and cold storage. Int J Biol Macromol 2022; 217:291-302. [PMID: 35835304 DOI: 10.1016/j.ijbiomac.2022.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/07/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
The effects of gelatinization at three selected temperatures (DSC characteristic peaks temperature: TO, TP, and TC) and subsequent cold storage (CS) treatment on structural characteristics, pasting, and rheological properties of maize starch (MS) were investigated. The pasting, rheological properties of MS was changed with the increase of gelatinization temperature from TO to TC, but were not further significantly changed if the gelatinization temperature was higher than TC. Pasting and thermal properties analysis suggested that gelatinization at TC (TC treatment) significantly increased the gelatinization and pasting temperature of MS. Moreover, TC treatment decreased breakdown viscosity by 8.49 times and setback viscosity by 2.53 times. Dynamic rheological measurements revealed that the TC treatment caused the lower G' and G" of MS, and decreased the thickening coefficient by 55.17 %. These results indicated that TC treatment could enhance the thermal stability properties of MS, inhibiting the shear and short-term retrogradation, the shear-thinning behavior of MS. Interestingly, the CS treatment further inhibited the shear and short-term retrogradation and the shear-thinning behavior of MS. The leaked starch molecules aggregate to form a harder structure after gelatinization and starch molecules were further aggregated after CS treatment, these all were hypothesized to be responsible for these results.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
The Synthesis, Characterization, and Protein-Release Properties of Hydrogels Composed of Chitosan-Zingiber offcinale Polysaccharide. Foods 2022; 11:foods11182747. [PMID: 36140875 PMCID: PMC9497755 DOI: 10.3390/foods11182747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Most proteins given orally have low bioavailability and are easily eliminated by rapid metabolism in vivo. In order to immobilize the drug at the site of administration and delay its release, a natural, gentle release system was designed. In this study, a heteropolysaccharide (ZOP) was isolated from Zingiber officinale using an ultrasonic assisted extraction method. ZOP Ara = 1.97: 1.15: 94.33: 1.48: 1.07. The ZOP/Chitosan (CS) composite hydrogel was synthesized using epichlorohydrin (ECH) as a cross-linking agent. The structure, morphology, and water-holding capacity of the composite hydrogel were characterized. The data showed that the addition of ZOP improved the hardness and water-holding capacity of the material. A swelling ratio test showed that the prepared hydrogel was sensitive to pH and ionic strength. In addition, the degradation rate of the hydrogel in a phosphate-buffered saline (PBS) solution with a pH value of 1.2 was higher than that in PBS with pH value of 7.4. Similarly, the release kinetics of Bovine serum albumin (BSA) showed higher release in an acidic system by the hydrogel composed of ZOP/CS. The hydrogel prepared by this study provided a good microenvironment for protein delivery. In summary, this composite polysaccharide hydrogel is a promising protein-drug-delivery material.
Collapse
|
30
|
Yan W, Zhang M, Zhang M, Yadav MP, Jia X, Yin L. Effect of wheat bran arabinoxylan on the gelatinization and long-term retrogradation behavior of wheat starch. Carbohydr Polym 2022; 291:119581. [DOI: 10.1016/j.carbpol.2022.119581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
31
|
Xie H, Ying R, Huang M. Effect of arabinoxylans with different molecular weights on the gelling properties of wheat starch. Int J Biol Macromol 2022; 209:1676-1684. [PMID: 35487381 DOI: 10.1016/j.ijbiomac.2022.04.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
The addition of arabinoxylans (AXs) is important for improving the structure of wheat starch-AX gels, which further influences the functionality of starch-based products. The properties of wheat starch-AX gels (including rheology, texture, water distribution, microstructure, and degree of crystallinity) were studied. AX with high molecular weight (Mw) significantly decreased the swelling and leached amylose, while increasing the solubility of amylose. The AX with high Mw also clearly reduced the apparent viscosity, elasticity, and viscosity of wheat starch-AX gels. The Mw of AX was positively correlated to the hardness of the gels and negatively correlated to adhesiveness to a certain extent. The spin-spin relaxation time of the gels increased with an increase in Mw, which resulted in more free water. Scanning electron microscopy showed that AX with high Mw clearly reduced the degree of starch gelatinization while forming a fragile gel structure. In summary, AX with high Mw from natural wheat grains can effectively affect wheat starch gelling properties. These results may be useful for the application of natural AXs in wheat starch-based functional foods.
Collapse
Affiliation(s)
- Hui Xie
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Jia Z, Luo Y, Barba FJ, Wu Y, Ding W, Xiao S, Lyu Q, Wang X, Fu Y. Effect of β-cyclodextrins on the physical properties and anti-staling mechanisms of corn starch gels during storage. Carbohydr Polym 2022; 284:119187. [DOI: 10.1016/j.carbpol.2022.119187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
33
|
Xiao W, Shen M, Ren Y, Wen H, Li J, Rong L, Liu W, Xie J. Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Xu N, Zhang Y, Zhang G, Tan B. Effects of insoluble dietary fiber and ferulic acid on rheological and thermal properties of rice starch. Int J Biol Macromol 2021; 193:2260-2270. [PMID: 34793812 DOI: 10.1016/j.ijbiomac.2021.11.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the effects of insoluble dietary fiber (IDF) and ferulic acid (FA) on the properties of rice starch (RS), including gelatinization, thermodynamic, rheological parameters, and freeze-thaw stability. Rapid viscosity analysis (RVA), differential scanning calorimetry (DSC), rheological analysis, and freeze-thaw stability analysis were performed. The results showed that the presence of IDF and FA could significantly delay the short-term retrogradation of RS, especially at high FA concentrations. Rheological tests showed that IDF was not conducive for the elasticity, viscosity enhancement, and system stability of the starch gels. However, FA could offset the deterioration of the system caused by IDF and further improve the gel properties. The presence of IDF and FA weakened the freeze-thaw stability of the starch gel, unlike their single action on the starch gel, correspondingly. The results show that FA could alleviate the degradation of RS gel performance caused by IDF in the ternary system. The findings provide potential possibilities for improvements in the quality of rice starch gel-based products.
Collapse
Affiliation(s)
- Ning Xu
- College of Food Science and Engineering, Henan University of Technology, No.100 Lianhua Street, Zhengzhou, 450001, Henan Province, China; Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing, 100037, China
| | - Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghuadong Road, Haidian District, Beijing, 100083, China
| | - Guozhi Zhang
- College of Food Science and Engineering, Henan University of Technology, No.100 Lianhua Street, Zhengzhou, 450001, Henan Province, China.
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
35
|
Lin Z, Liu L, Qin W, Wang A, Nie M, Xi H, Chen Z, He Y, Wang F, Tong L. Changes in the quality and
in vitro
digestibility of brown rice noodles with the addition of ultrasound‐assisted enzyme‐treated red lentil protein. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zexue Lin
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Lu Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Wanyu Qin
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Aixia Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Mengzi Nie
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Huihan Xi
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Zhiying Chen
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Yue He
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Fengzhong Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Li‐Tao Tong
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| |
Collapse
|
36
|
Ji X, Luo Y, Shen M, Yang J, Han X, Xie J. Effects of carboxymethyl chitosan on physicochemical, rheological properties and in vitro digestibility of yam starch. Int J Biol Macromol 2021; 192:537-545. [PMID: 34655578 DOI: 10.1016/j.ijbiomac.2021.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
The effects of carboxymethyl chitosan (CMCS) on the pasting, rheological, and physical properties of yam starch (YS) were investigated. Different concentrations of CMCS were added to the YS, followed by heating paste treatment at 95 °C. Then the blends were subjected to the determination of physicochemical, rheological properties and in vitro digestibility. Our results showed that CMCS reduced the paste viscosity of YS and the addition of CMCS did not effectively inhibit the movement of water molecules. Rheological measurements results showed that YS-CMCS blends exhibited shear thinning behavior. Furthermore, because of the presence of amylose inhibited the swelling of the starch and leaching of amylose, the addition of CMCS had no significant difference between solubility and swelling power of YS.
Collapse
Affiliation(s)
- Xiaoyao Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiuying Han
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
37
|
Han L, Qiu S, Cao S, Yu Y, Yu S, Liu Y. Molecular characteristics and physicochemical properties of very small granule starch isolated from Agriophyllum squarrosum seeds. Carbohydr Polym 2021; 273:118583. [PMID: 34560985 DOI: 10.1016/j.carbpol.2021.118583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
Novel starch resources isolated from accessible botanical origins are of special interest to food scientists in the context of food security. In this study, Agriophyllum squarrosum starches (AS-1, AS-2, and AS-3) were isolated from three ecotypes of A. squarrosum seeds and compared with quinoa starch (QS). The mean particle diameter of AS granules ranged from 1.12 to 1.15 μm, and AS amylopectin had a significantly higher Mw than QS (p < 0.05). Compared with QS, AS samples had more branching and substitution of amylopectin structures. The peak viscosity, breakdown viscosity, and swelling degree of the AS samples were significantly lower than those of QS (p < 0.05). AS showed a lower crystalline degree and higher gelatinization temperatures, and the freshly cooked AS showed a slower digestibility rate than QS. The physicochemical properties and chain profiles of AS facilitate the application of AS and the domestication of A. squarrosum crops.
Collapse
Affiliation(s)
- Lihong Han
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Ningxia Ruichun Coarse Cereals Co., Ltd., Guyuan, Ningxia 756500, China.
| | - Shuang Qiu
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Shaopan Cao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Yingtao Yu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Shukun Yu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Yuxin Liu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
38
|
Yan W, Yin L, Zhang M, Zhang M, Jia X. Gelatinization, Retrogradation and Gel Properties of Wheat Starch-Wheat Bran Arabinoxylan Complexes. Gels 2021; 7:gels7040200. [PMID: 34842677 PMCID: PMC8628794 DOI: 10.3390/gels7040200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Gelatinization, retrogradation and gel properties of wheat starch–wheat bran arabinoxylan (WS–WBAX) complexes have been evaluated. The results of rapid viscosity analyzer (RVA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) confirmed that WBAX samples with larger Mw and branching degree (HWBAX) significantly impeded gelatinization process of starch by effectively reducing the amount of water available for starch gelatinization. DSC analysis showed that both molecular characteristics and additive amount of WBAX samples have an effect on the long-term retrogradation behavior of starch. For the rheological studies of WS–WBAX mixed gels, the elastic moduli (G’) and shear viscosity of WS–WBAX mixed gels increased with the increase in additive amount of WBAX. WS–HWBAX mixed gels exhibited the lower G’ compared with starch gels containing WBAX with lower Mw and branching degree (LWBAX) at the same amount. The scanning electron micrographs (SEM) revealed that the microstructures of WS–WBAX mixed gels were mainly affected by the amount of WBAX, but hardly by the molecular characteristics of WBAX. Texture profile analysis (TPA) showed that the cohesiveness of fresh WS–WBAX mixed gels became larger with an increase in the WBAX addition amount. The hardness of WS–WBAX mixed gels tended to increase over the 14-day storage.
Collapse
Affiliation(s)
- Wenjia Yan
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Y.); (L.Y.); (M.Z.); (M.Z.)
| | - Lijun Yin
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Y.); (L.Y.); (M.Z.); (M.Z.)
| | - Minghao Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Y.); (L.Y.); (M.Z.); (M.Z.)
| | - Meng Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Y.); (L.Y.); (M.Z.); (M.Z.)
| | - Xin Jia
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Y.); (L.Y.); (M.Z.); (M.Z.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-62737424
| |
Collapse
|
39
|
Kuang J, Ma W, Pu H, Huang J, Xiong YL. Control of wheat starch rheological properties and gel structure through modulating granule structure change by reconstituted gluten fractions. Int J Biol Macromol 2021; 193:1707-1715. [PMID: 34742838 DOI: 10.1016/j.ijbiomac.2021.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
Reconstituted gluten fractions (RGF) varying in glutenin/gliadin (glu/gli) ratios was applied to change the property of wheat starch. The addition of RGF, irrespective of glu/gli ratio, significantly decreased the gelatinization enthalpy, viscosity, storage modulus (G'), and gel strength of starch. Starch particle size and leached amylose decreased by 4.5% and 22.2%, respectively, as the ratio of glu/gli changed from 1:0 to 0:1, indicating that the increase in gliadin ratio could inhibit swelling and rupturing of starch granules to a larger extent. Confocal laser scanning micrographs showed that gliadin could surround starch granules more effectively, thereby stabilizing the granule structure better than glutenin. With the increasing of gliadin ratio, the storage modulus (G') and loss modulus (G″) of the starch paste declined, accompanied by more loose gel structure and weaker gel strength. By varying the ratios of glu/gli in RGF, the change of wheat starch granule structure could be modulated, and therefore the rheological properties and gel structure could be regulated.
Collapse
Affiliation(s)
- Jiwei Kuang
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wenhui Ma
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Huaying Pu
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Junrong Huang
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Youling L Xiong
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
40
|
Liu W, Wang R, Li J, Xiao W, Rong L, Yang J, Wen H, Xie J. Effects of different hydrocolloids on gelatinization and gels structure of chestnut starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Miao WB, Ma SY, Peng XG, Qin Z, Liu HM, Cai XS, Wang XD. Effects of various roasting temperatures on the structural and functional properties of starches isolated from tigernut tuber. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Renzetti S, van den Hoek IA, van der Sman RG. Mechanisms controlling wheat starch gelatinization and pasting behaviour in presence of sugars and sugar replacers: Role of hydrogen bonding and plasticizer molar volume. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Fan X, Li X, Hu J, Cheng Z, Wang X, Hu X. Physicochemical and in vitro digestibility properties on complexes of fermented wheat starches with konjac gum. Int J Biol Macromol 2021; 188:197-206. [PMID: 34358604 DOI: 10.1016/j.ijbiomac.2021.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
In this study, the wheat starch with natural fermentation for 72 h was combined with konjac gum (KGM) at different concentrations (0, 0.1, 0.3, 0.5%, w/w), and the changes in physicochemical and digestible characteristics of the complexes were investigated. The results showed that KGM clumped fermented starch (FS) granules together and caused the FS gels to form a close network structure. The addition of KGM significantly decreased the amylose content and swelling power, and reduced peak viscosity, final viscosity, and setback value (SB), which indicated that FS-KGM complexes possessed soft gel structure and could resist the short-term retrogradation. KGM impeded the increase of relative crystallinity, retrogradation enthalpy and gel firmness of FS during storage, suggesting the long-term retrogradation of FS was retarded by KGM. All starch pastes had a weak gel-like structure, and higher storage modulus (G') and loss tangent (tan δ) values obtained after the addition of KGM. In vitro digestion results showed that KGM could slow the hydrolysis of FS, resulting in the increase of slowly digested starch (SDS) and resistant starch (RS). In particularly, the FS-0.3KGM showed the ideal structure, the best anti-retrogradation effected, and slowest the hydrolysis.
Collapse
Affiliation(s)
- Xin Fan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Jingwei Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Zhiyuan Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
44
|
|
45
|
Zhang Y, Zhao X, Bao X, Xiao J, Liu H. Effects of pectin and heat-moisture treatment on structural characteristics and physicochemical properties of corn starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106664] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Yang K, Luo X, Zhai Y, Liu J, Chen K, Shao X, Wu X, Li Y, Chen Z. Influence of sodium alginate on the gelatinization, rheological, and retrogradation properties of rice starch. Int J Biol Macromol 2021; 185:708-715. [PMID: 34224756 DOI: 10.1016/j.ijbiomac.2021.06.207] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022]
Abstract
Adding hydrocolloids into native starch is a secure and effective method of physical modification. In this study, the effect of sodium alginate (AG) on the gelatinization, rheological, and retrogradation properties of rice starch (RS) was investigated by measuring the pasting parameters, melting enthalpy (ΔH), rheological characteristic parameters, intensity ratio of 1047 cm-1 to 1022 cm-1 (R1047/1022), and relative crystallinity (RC) of RS-AG blends. Rapid visco analysis shows that AG could significantly change the gelatinization parameters of RS. Differential scanning calorimetry results show that the ΔH values of RS initially decreased in the low AG concentration range (0.10%-0.30%), but increased in the high AG concentration range (0.30%-0.50%). Dynamic rheological analysis reveals that the modulus (G', G'') and the loss tangent (tan δ) increased with the rise of the AG concentration from 0.10% to 0.50%. Fourier transform infrared spectroscopy and X-ray diffraction patterns collectively prove that the crystallinity of RS decreased with the addition of AG during the retrogradation periods. The interactions between AG and starch molecules in RS-AG blends were hypothesized to correlate with the aforementioned results.
Collapse
Affiliation(s)
- Kai Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiaohu Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Ningbo Gang Yagou Food Co., Ltd, Chenshen Road 188, Ningbo 315205, China; College of Food and Pharmaceutical Sciences, Ningbo University, Meishan Island, Ningbo 315211, China.
| | - Yuheng Zhai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Jie Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Kaihe Chen
- Ningbo Gang Yagou Food Co., Ltd, Chenshen Road 188, Ningbo 315205, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Meishan Island, Ningbo 315211, China
| | - Xiping Wu
- Department of Neurology, Ningbo Medical Center Li-Huili Hospital, 1111 Jiangnan Road, Ningbo 315040, China
| | - Yanan Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhengxing Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
47
|
Guo J, Yang L, Wang D, Lian X, Liu C. Research on the influences of two alcohol soluble glutenins on the retrogradation of wheat amylopectin/amylose. Int J Biol Macromol 2021; 183:463-472. [PMID: 33932417 DOI: 10.1016/j.ijbiomac.2021.04.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Two alcohol soluble glutenins (ASGLUs) were extracted from gluten and further separated by column chromatography. The ASGLUs with Mw lower than 20,000 (ASGLU 1) and Mw higher than 70,000 (ASGLU 2) show the total amino acid contents of 86.71 g/100 g and 62.847 g/100 g respectively. Both of them are rich in Glu (45.574% and 43.224%) and Pro (15.447% and 16.370%) while poor in cys-s, met and lys (less than 1%). When wheat amylopectin/amylose retrogrades with those ASGLUs, the retrogradation rate of amylopectin with ASGLU 1 enhances significantly. UV-Vis, X-ray diffraction, FT-IR, DSC, CD and solid 13C NMR suggest that the double helixes of amylopectin short-chain branching are unwound during gelatinization. The hydrogen bonds of ASGLU 1 between amide and carbonyl oxygen are destroyed, meanwhile, β-sheets are unfolded. During retrogradation, ASGLU 1 with less steric hindrance gets into the crevice of amylopectin and combines with the short-chain branching by hydrogen bond. The retrogradation dynamics show that the nucleation type of amylopectin-ASGLU 1 changes from instantaneous to rod-like growth during the process of retrogradation. β-sheet of ASGLU 1 changes to β-turn and random conformations at the meantime. The results provide a key targeting to control retrogradation of dough.
Collapse
Affiliation(s)
- Junjie Guo
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Lu Yang
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Danli Wang
- School of Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Xijun Lian
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China.
| | - Cheng Liu
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| |
Collapse
|
48
|
Retrogradation inhibition of rice starch with dietary fiber from extruded and unextruded rice bran. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Odunlami YO, Sobukola OP, Adebowale AA, Sanni SA, Sanni LO, Ajayi FF, Faloye OR, Tomslin K. Effect of Ingredient combination and post frying centrifugation on oil uptake and associated quality attributes of a fried snack. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1885000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Y. O. Odunlami
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | - O. P. Sobukola
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A. A. Adebowale
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | - S. A. Sanni
- Department of Nutrition and Dietetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - L. O. Sanni
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | - F. F. Ajayi
- Department of Home Science, Federal University, Gashua, Nigeria
| | - O. R. Faloye
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | - K. Tomslin
- Natural Resources Institute, University of Greenwich, Kent, UK
| |
Collapse
|
50
|
Changes in the Glutinous Rice Grain and Physicochemical Properties of Its Starch upon Moderate Treatment with Pulsed Electric Field. Foods 2021; 10:foods10020395. [PMID: 33670300 PMCID: PMC7918287 DOI: 10.3390/foods10020395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Pulsed electric field (PEF) processing is an emerging non-thermal technology that shows potential to improve food quality and to maintain stability. Glutinous rice is composed mainly of amylopectin and has low amylose content. This study investigated the effect of PEF treatment at 3 kV/cm field strength for 50 to 300 pulses on whole, water-soaked glutinous rice grains. Micro-pores were created at the surface of PEF treated rice grains, increasing grain porosity from 7.3% to 9.8%. Peak viscosity of PEF treated rice flour decreased, and breakdown, final and setback viscosities increased as the number of PEF treating pulses increased, indicating that the swelling degree of rice starch was promoted after PEF treatment. Lower values of gelatinization enthalpy and lower crystalline degree of PEF treated glutinous rice flour were also observed. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) studies confirmed the secondary structure changes in rice protein and partial gelatinization of rice starch after PEF treatment.
Collapse
|