1
|
Hong JS, Huber KC, Goderis B, Delcour JA. Hydrothermal treatments of starch impact reaction patterns during subsequent chemical derivatization. Int J Biol Macromol 2023; 253:127426. [PMID: 37838115 DOI: 10.1016/j.ijbiomac.2023.127426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Differences in derivatization patterns (using a fluorescent reagent, fluorescein isothiocyanate) of wheat, pea, and potato starches between native granular (NAT) starches and their respective annealed (ANN) and heat-moisture treated (HMT) starches were investigated to reveal structural changes associated with starch hydrothermal treatments. Size-exclusion chromatography with fluorescence and refractive index detection assessed the reactivity of amylose (AM), intermediate chains (IM1 and IM2), and amylopectin branch chains (AP1, AP2, and AP3) within the different starches. Shifts in X-ray diffraction patterns of HMT starches and in the gelatinization properties of both ANN and HMT starches confirmed molecular rearrangement. The reaction homogeneity (wheat and pea) and the overall extent of reaction (pea and potato) increased for HMT starches compared to other starches. The lower reactivities of IM2 chains (HMT starch) and AP3 chains (ANN starch) relative to NAT starches, indicated their involvement in molecular rearrangements and improved double helical order. IM2 and AP branch chains in ANN pea starch also were less reacted than NAT starch chains, suggesting their co-crystallization. Molecular rearrangements in ANN and HMT starches led to altered swelling and pasting viscosities. Thus, changes in the relative crystallinity of individual starch branch chains induced by hydrothermal processing impact the final physical properties.
Collapse
Affiliation(s)
- Jung Sun Hong
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Kerry C Huber
- Animal and Food Science, Brigham Young University-Idaho, Rexburg, ID 83460-1405, USA.
| | - Bart Goderis
- Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
2
|
Formation of debranched wheat starch-fatty acid inclusion complexes using saturated fatty acids with different chain length. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Impact of granule hydration on maize and wheat starch chemical reactivity at the granular and molecular levels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Hong JS, Chung HJ, Lee BH, Kim HS. Impact of static and dynamic modes of semi-dry heat reaction on the characteristics of starch citrates. Carbohydr Polym 2020; 233:115853. [PMID: 32059904 DOI: 10.1016/j.carbpol.2020.115853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The objective of this study was to demonstrate the validity of dynamic semi-dry heat reaction (SDHR) by investigating the effects of static and dynamic SDHR on the characteristics of starch citrates. The starch (normal and waxy corn)-citric acid (CA) mixture was heated in a convection oven (static mode) or a twin-screw extruder without a die (dynamic mode). The ester bonds of starch citrates were confirmed by FT-IR, and their molar degree of substitution did not differ between the reaction modes for the tested starch genotypes. Starch citrates by dynamic SDHR exhibited higher relative crystallinity, resistant starch content, solubility, swelling power, and gelatinization compared to those by static SDHR. Although static SDHR did not show a viscosity development during pasting, dynamic SDHR increased their pasting viscosities. Overall, these results suggest that dynamic SDHR could improve the defects (i.e., lack of solubility, swelling, and pasting attributes) of the traditional starch citrates.
Collapse
Affiliation(s)
- Jung Sun Hong
- Research Group of Food Processing, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju, Jeollabuk, 55365, Republic of Korea.
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Hyun-Seok Kim
- Major of Food Science and Biotechnology, Division of Bio-convergence, Kyonggi University, Suwon, 16227, Republic of Korea.
| |
Collapse
|
5
|
Dong Q, Xu Q, Kong J, Peng X, Zhou W, Chen L, Wu J, Xiang Y, Jiang H, Cheng B. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:407-415. [PMID: 31128711 DOI: 10.1016/j.plantsci.2019.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Starch content and composition are major determinants of yield and quality in maize. In recent years, the major genes for starch metabolism have been cloned in this species. However, the role of transcription factors in regulating the starch metabolism pathway remains unclear. The ZmbZIP22 gene encodes a bZIP transcription factor. In our study, plants overexpressing ZmbZIP22 showed reductions in the size of starch granules, the size and weight of seeds, reduced amylose content, and alterations in the chemical structure of starch granules. Also, overexpression of ZmbZIP22 resulted in increases in the contents of soluble sugars and reducing sugars in transgenic rice and maize. ZmbZIP22 promotes the transcription of starch metabolism genes by binding to their promoters. Screening by yeast one-hybrid assays indicated a possible interaction between ZmbZIP22 and the promoters of eight key starch enzyme genes. Collectively, our results indicated that ZmbZIP22 functions as a negative regulator of starch synthesis, and suggest that this occurs through the regulation of key sugar and starch metabolism genes in maize.
Collapse
Affiliation(s)
- Qing Dong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China; Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Qianqian Xu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Kong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Zhou
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Wu J, Chen L, Chen M, Zhou W, Dong Q, Jiang H, Cheng B. The DOF-Domain Transcription Factor ZmDOF36 Positively Regulates Starch Synthesis in Transgenic Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:465. [PMID: 31031791 PMCID: PMC6474321 DOI: 10.3389/fpls.2019.00465] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/28/2019] [Indexed: 05/06/2023]
Abstract
Starch synthesis is a complex process that influences crop yield and grain quality in maize. Many key enzymes have been identified in starch biosynthesis; however, the regulatory mechanisms have not been fully elucidated. In this study, we identified a DOF family gene, ZmDOF36, through transcriptome sequencing analysis. Real-time PCR indicated that ZmDOF36 was highly expressed in maize endosperm, with lower expression in leaves and tassels. ZmDOF36 is a typical DOF transcription factor (TF) that is localized to the nucleus and possesses transcriptional activation activity, and its transactivation domain is located in the C-terminus (amino acids 227-351). Overexpression of ZmDOF36 can increase starch content and decrease the contents of soluble sugars and reducing sugars. In addition, abnormal starch structure in transgenic maize was also observed by scanning electron microscopy (SEM). Furthermore, the expression levels of starch synthesis-related genes were up-regulated in ZmDOF36-expressing transgenic maize. ZmDOF36 was also shown to bind directly to the promoters of six starch biosynthesis genes, ZmAGPS1a, ZmAGPL1, ZmGBSSI, ZmSSIIa, ZmISA1, and ZmISA3 in yeast one-hybrid assays. Transient expression assays showed that ZmDOF36 can activate the expression of ZmGBSSI and ZmISA1 in tobacco leaves. Collectively, the results presented here suggest that ZmDOF36 acts as an important regulatory factor in starch synthesis, and could be helpful in devising strategies for modulating starch production in maize endosperm.
Collapse
|
7
|
Hong JS, Gomand SV, Huber KC, Delcour JA. Comparison of maize and wheat starch chain reactivity in relation to uniform versus surface oriented starch granule derivatization patterns. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Impact of reagent infiltration time on reaction patterns and pasting properties of modified maize and wheat starches. Carbohydr Polym 2016; 151:851-861. [DOI: 10.1016/j.carbpol.2016.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022]
|
9
|
Hong JS, Huber KC. Derivatization patterns among starch chain populations assessed by ion-exchange chromatography: A model system approach. Carbohydr Polym 2015; 122:446-55. [DOI: 10.1016/j.carbpol.2015.01.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|