1
|
Zhu L, Xu D, Wang Q. Fabrication of poly(vinyl alcohol)/sulfonated itaconic starch blend film with enhanced antibacterial performance and soil absorption capacity for environment-friendly packaging. Carbohydr Polym 2025; 357:123489. [PMID: 40159008 DOI: 10.1016/j.carbpol.2025.123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Plastic packaging is widely used due to its light weight, ease of processing, and cost-effectiveness, but improper disposal causes environmental pollution and resource waste. Developing environment-friendly packaging materials is urgent. Herein, a water-soluble poly(vinyl alcohol) (PVA)/starch blend film was proposed by combining modification and thermal processing, and its performance was evaluated. Starch was modified via a three-step process-acid hydrolysis, itaconic anhydride esterification, and sodium bisulfite sulfonation-to produce sulfonated itaconic starch. The introduction of carboxyl and sulfonic groups improved the hydrophilicity of PVA/starch blends. The water contact angle of the modified blend film was notably decreased in comparison to that unmodified one. The blend films also demonstrated an enhancement in UV shielding properties, effectively reducing rhodamine B photodegradation under extended UV exposure. Besides, the incorporated groups improved the antibacterial performance of the blend film, exhibiting the efficient enhancement on the antibacterial effects on both E. coli and S. aureus. Moreover, the film exhibited the good soil absorption capacity, dissolving completely in soil within 12 h, highlighting its potential for environment-friendly food packaging applications.
Collapse
Affiliation(s)
- Longji Zhu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Dawei Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China.
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China
| |
Collapse
|
2
|
Santos IA, do Lago RC, Pereira EP, Dos Santos WB, de Moraes LC, de Oliveira Meira ACF, Sampaio ICF, Bonomo RCF, de Resende JV, Tonoli GHD, de Barros Vilas Boas EV, Franco M. Enhanced physicochemical and antifungal properties of starch bionanocomposites reinforced with nanocellulose and functionalized with AgNPs derived from cocoa bean shell. Int J Biol Macromol 2025; 294:139262. [PMID: 39733908 DOI: 10.1016/j.ijbiomac.2024.139262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed. The morphological analysis indicated excellent interaction between the bionanocomposites constituents. The maximum NFC addition increased the tensile strength of the bionanocomposites by approximately 283.93 % (14.85 MPa) while Young's modulus also showed a significant increase of 303.03 % (417.14 MPa), indicating increased stiffness. Water vapor permeability of the materials decreased by approximately 47.89 %. The materials exhibited hydrophilic properties while maintaining low wettability. Furthermore, the bionanocomposites demonstrated pseudoplastic (Ȳ = 0.59) behavior and an inhibitory effect against fungal pathogens. In conclusion, these innovative materials have the potential to transform packaging technology by serving as sustainable alternatives to petroleum-derived polymers while simultaneously adding value to agro-industrial waste.
Collapse
Affiliation(s)
- Ingrid Alves Santos
- Department of Exact Sciences and Natural, State University of Southwest Bahia, 45700-000 Itapetinga, Brazil
| | | | | | | | | | | | - Igor Carvalho Fontes Sampaio
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil
| | | | | | | | | | - Marcelo Franco
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil.
| |
Collapse
|
3
|
Reda AT, Park JY, Park YT. Zinc Oxide-Based Nanomaterials for Microbiostatic Activities: A Review. J Funct Biomater 2024; 15:103. [PMID: 38667560 PMCID: PMC11050959 DOI: 10.3390/jfb15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The world is fighting infectious diseases. Therefore, effective antimicrobials are required to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials are known for their antimicrobial activities. Because of their distinctive physical and chemical characteristics, they can be used in medical and environmental applications. ZnO-based composites are among the leading sources of antimicrobial research. They are effective at killing (microbicidal) and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses, and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews on their microbiostatic effects. This review provides a detailed overview of available reports on the microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally, the factors that affect the efficacy of these materials, their time course, and a comparison of the available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges of working with microorganisms, and working mechanisms of microbiostatic activities are also examined. This review underscores the importance of further research to better understand ZnO-based nano-materials for controlling microbial growth.
Collapse
Affiliation(s)
| | | | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea; (A.T.R.)
| |
Collapse
|
4
|
Jaros SW, Florek M, Bażanów B, Panek J, Krogul-Sobczak A, Oliveira MC, Król J, Śliwińska-Hill U, Nesterov DS, Kirillov AM, Smoleński P. Silver Coordination Polymers Driven by Adamantoid Blocks for Advanced Antiviral and Antibacterial Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13411-13421. [PMID: 38456838 PMCID: PMC10958451 DOI: 10.1021/acsami.3c15606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
The development of sustainable biomaterials and surfaces to prevent the accumulation and proliferation of viruses and bacteria is highly demanded in healthcare areas. This study describes the assembly and full characterization of two new bioactive silver(I) coordination polymers (CPs) formulated as [Ag(aca)(μ-PTA)]n·5nH2O (1) and [Ag2(μ-ada)(μ3-PTA)2]n·4nH2O (2). These products were generated by exploiting a heteroleptic approach based on the use of two different adamantoid building blocks, namely 1,3,5-triaza-7-phosphaadamantane (PTA) and 1-adamantanecarboxylic (Haca) or 1,3-adamantanedicarboxylic (H2ada) acids, resulting in the assembly of 1D (1) and 3D (2). Antiviral, antibacterial, and antifungal properties of the obtained compounds were investigated in detail, followed by their incorporation as bioactive dopants (1 wt %) into hybrid biopolymers based on acid-hydrolyzed starch polymer (AHSP). The resulting materials, formulated as 1@AHSP and 2@AHSP, also featured (i) an exceptional antiviral activity against herpes simplex virus type 1 and human adenovirus (HAd-5) and (ii) a remarkable antibacterial activity against Gram-negative bacteria. Docking experiments, interaction with human serum albumin, mass spectrometry, and antioxidation studies provided insights into the mechanism of antimicrobial action. By reporting these new silver CPs driven by adamantoid building blocks and the derived starch-based materials, this study endows a facile approach to access biopolymers and interfaces capable of preventing and reducing the proliferation of a broad spectrum of different microorganisms, including bacteria, fungi, and viruses.
Collapse
Affiliation(s)
- Sabina W. Jaros
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Magdalena Florek
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Barbara Bażanów
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Jarosław Panek
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - M. Conceição Oliveira
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jarosław Król
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Urszula Śliwińska-Hill
- Faculty
of Pharmacy, Department of Basic Chemical Sciences, Wrocław Medical University, Borowska 211, 50-566 Wrocław, Poland
| | - Dmytro S. Nesterov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Piotr Smoleński
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
5
|
Popyrina TN, Demina TS, Akopova TA. Polysaccharide-based films: from packaging materials to functional food. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2736-2747. [PMID: 37711569 PMCID: PMC10497487 DOI: 10.1007/s13197-022-05595-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 09/16/2023]
Abstract
A wider application of naturally derived polysaccharides is of great interest as materials for food packaging industry. Biocompatibility and biodegradability of polysaccharide-based films and coatings ally with a shift from application of non-biodegradable petrochemical polymers to the more environmentally friendly ones. Due to a range of inherent features in chemical structure and bioactivity, the polysaccharide materials could bring additional functionality to food packaging. The chelating ability of the polysaccharides provides also their application as carriers of additional active components, such as nanoparticles, essential oils and polyphenols. The improved physicochemical, antibacterial and antioxidant properties of the filled films allows to consider the edible polysaccharide-based films as functional food products. This review is aimed at analysis of evolution of polysaccharide-based food packaging materials from inert one starting from cellophane to recent research works on development of multicomponent polysaccharide-based functional food films and coatings.
Collapse
Affiliation(s)
- Tatiana N. Popyrina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow, Russia 119991
- Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, Russia 125993
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
| |
Collapse
|
6
|
Trotta F, Da Silva S, Massironi A, Mirpoor SF, Lignou S, Ghawi SK, Charalampopoulos D. Silver Bionanocomposites as Active Food Packaging: Recent Advances & Future Trends Tackling the Food Waste Crisis. Polymers (Basel) 2023; 15:4243. [PMID: 37959923 PMCID: PMC10650736 DOI: 10.3390/polym15214243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Food waste is a pressing global challenge leading to over $1 trillion lost annually and contributing up to 10% of global greenhouse gas emissions. Extensive study has been directed toward the use of active biodegradable packaging materials to improve food quality, minimize plastic use, and encourage sustainable packaging technology development. However, this has been achieved with limited success, which can mainly be attributed to poor material properties and high production costs. In the recent literature, the integration of silver nanoparticles (AgNPs) has shown to improve the properties of biopolymer, prompting the development of bionanocomposites. Furthermore, the antibacterial properties of AgNPs against foodborne pathogens leads towards food shelf-life improvement and provides a route towards reducing food waste. However, few reviews have analyzed AgNPs holistically throughout a portfolio of biopolymers from an industrial perspective. Hence, this review critically analyses the antibacterial, barrier, mechanical, thermal, and water resistance properties of AgNP-based bionanocomposites. These advanced materials are also discussed in terms of food packaging applications and assessed in terms of their performance in enhancing food shelf-life. Finally, the current barriers towards the commercialization of AgNP bionanocomposites are critically discussed to provide an industrial action plan towards the development of sustainable packaging materials to reduce food waste.
Collapse
Affiliation(s)
- Federico Trotta
- Metalchemy Limited., 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Sidonio Da Silva
- Metalchemy Limited., 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Alessio Massironi
- Metalchemy Limited., 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Seyedeh Fatemeh Mirpoor
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK (S.L.); (S.K.G.); (D.C.)
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK (S.L.); (S.K.G.); (D.C.)
| | - Sameer Khalil Ghawi
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK (S.L.); (S.K.G.); (D.C.)
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK (S.L.); (S.K.G.); (D.C.)
| |
Collapse
|
7
|
Boetje L, Lan X, van Dijken J, Woortman AJJ, Popken T, Polhuis M, Loos K. Starch ester film properties: The role of the casting temperature and starch its molecular weight and amylose content. Carbohydr Polym 2023; 316:121043. [PMID: 37321736 DOI: 10.1016/j.carbpol.2023.121043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Oleic acid and 10-undecenoic acid were used to esterify corn, tapioca, potato and a waxy potato starch, with a maximum degree of substitution of 2.4 and 1.9 respectively. The thermal and mechanical properties were investigated as a function of the amylopectin content and Mw of starch, and by the fatty acid type. All starch esters had an improved degradation temperature regardless of their botanical origin. While the Tg did increase with increasing amylopectin content and Mw, it decreased with increasing fatty acid chain length. Moreover, films with different optical appearances were obtained by varying the casting temperature. SEM and polarized light microscopy showed that films cast at 20 °C had porous open structures with internal stress, which was absent when cast at higher temperatures. Tensile test measurements revealed that films had a higher Young's modulus when containing starch with a higher Mw and amylopectin content. Besides that, starch oleate films were more ductile than starch 10-undecenoate films. In addition, all films were resistant to water at least up to one month, while some light-induced crosslinking took place. Finally, starch oleate films showed antibacterial properties against Escherichia coli, whereas native starch and starch 10-undecenoate did not.
Collapse
Affiliation(s)
- Laura Boetje
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenbogh 4, 9747AG Groningen, the Netherlands.
| | - Xiaohong Lan
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenbogh 4, 9747AG Groningen, the Netherlands.
| | - Jur van Dijken
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenbogh 4, 9747AG Groningen, the Netherlands.
| | - Albert J J Woortman
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenbogh 4, 9747AG Groningen, the Netherlands.
| | - Thijs Popken
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenbogh 4, 9747AG Groningen, the Netherlands.
| | - Michael Polhuis
- Royal Avebe U.A., Zernikelaan 8, 9747AA Groningen, the Netherlands.
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenbogh 4, 9747AG Groningen, the Netherlands.
| |
Collapse
|
8
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
9
|
Fabrication of starch-based packaging materials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
This chapter aims to provide the reader with some information about the possibility of starch as a suitable substitute for synthetic polymers in biodegradable food packaging. This is due to the starch has good characteristics which are great biodegradability, low cost and also easy to gain from natural resources. However, some of technical challenges are also introduced before starch-based polymers can be used in more applications. These technical challenges involved preparation methods and incorporation of additives and these are being summarized in this topic. Hence, the enhancement of starch can be done in order to prepare innovative starch-based biodegradable materials.
Collapse
|
10
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
11
|
Hou X, Wang H, Shi Y, Yue Z. Recent advances of antibacterial starch-based materials. Carbohydr Polym 2023; 302:120392. [PMID: 36604070 DOI: 10.1016/j.carbpol.2022.120392] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Starch has attracted a lot of attention because it is biodegradable, renewable, nontoxic and low cost. By adding antibacterial substances to starch, starch-based materials have antibacterial properties. The composite with other materials can improve the comprehensive performance of starch-based materials, thus broadening the application field of the material. In this paper, we focus on antibacterial starch-based materials and review their preparation and applications. It was found that antibacterial starch-based materials were most widely used in packaging, followed by medicine, and the research on smart starch-based materials was relatively less. This review may provide some reference value for subsequent studies of starch-based materials.
Collapse
Affiliation(s)
- Xiurong Hou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China.
| | - Yuting Shi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Zhouyao Yue
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
12
|
Proporties and Synthesis of Biosilver Nanofilms for Antimicrobial Food Packaging. Polymers (Basel) 2023; 15:polym15030689. [PMID: 36771990 PMCID: PMC9919760 DOI: 10.3390/polym15030689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In this original research, biodegradable corn starch (CS) and wheat gluten (wg)-based silver nanofilms were synthesized and analyzed by using goji berry extract taurine (ta), garlic extract (GC), whey powder (wh), and montmorillonite clay nanoparticles. Antibacterial-corn-starch-based nano films were analyzed by using the methods of high-performance liquid chromatography (HPLC), Fourier Transform infrared spectroscopy (FTIR-ATR), X-ray diffraction (XRD), dynamic and mechanical (DMA) analysis, and scanning electron microscopy (SEM). In addition, the antibacterial resistances of the corn starch nano films against the bacteria Salmonella and Staphylococcus aureus (S. aureus) and Listeria monocytogenes were examined and the migration assays were carried out. The migration analysis results of CS1, CS2, and CS3 nanocomposite films were found as 0.305, 0.297, and 0.297 mg/dm2, respectively. The inhibition zone of CS1, CS2, and CS3 nanocomposite films were found as 1547, 386, and 1884 mm2 against Salmonella bacteria. The results show that silver nanofilms are suitable as packaging films for the production of packaging in milk and dairy products, liquid foods, and acidic foods.
Collapse
|
13
|
das Neves MDS, Scandorieiro S, Pereira GN, Ribeiro JM, Seabra AB, Dias AP, Yamashita F, Martinez CBDR, Kobayashi RKT, Nakazato G. Antibacterial Activity of Biodegradable Films Incorporated with Biologically-Synthesized Silver Nanoparticles and the Evaluation of Their Migration to Chicken Meat. Antibiotics (Basel) 2023; 12:antibiotics12010178. [PMID: 36671379 PMCID: PMC9854460 DOI: 10.3390/antibiotics12010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
The food industry has been exploring the association of polymers with nanoparticles in packaging production, and active products are essential to increase the shelf life of food and avoid contamination. Our study developed starch-poly (adipate co-terephthalate butyl) films with silver nanoparticles produced with Fusarium oxysporum components (bio-AgNPs), intending to control foodborne pathogens. The bio-AgNPs showed activity against different Salmonella serotypes, including multidrug-resistant Salmonella Saint Paul and Salmonella Enteritidis, with minimum bactericidal concentrations ranging from 4.24 to 16.98 µg/mL. Biodegradable films with bio-AgNPs inhibited the growth of up to 106Salmonella isolates. Silver migration from the films to chicken was analyzed using electrothermal atomic absorption spectrophotometry, and the results showed migration values (12.94 mg/kg and 3.79 mg/kg) above the limits allowed by the European Food Safety Authority (EFSA) (0.05 mg/kg). Thus, it is necessary to improve the technique to avoid the migration of silver to chicken meat, since these concentrations can be harmful.
Collapse
Affiliation(s)
- Meiriele da S. das Neves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Giovana N. Pereira
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Jhonatan M. Ribeiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Amedea B. Seabra
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Adriana P. Dias
- Department of Food Science and Technology, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Fabio Yamashita
- Department of Food Science and Technology, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Claudia B. dos R. Martinez
- Laboratory of Animal Ecophysiology, Department of Physiological Science, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Renata K. T. Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: ; Tel.: +55-43-3371-4788
| |
Collapse
|
14
|
Gozukizil MF, Temel S, Yaman E, Gokmen FO. Nano SiO 2 doping effect on physicochemical properties of PVA-starch bionanocomposite films. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
| | - Sinan Temel
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Elif Yaman
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Fatma Ozge Gokmen
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
15
|
Sayed A, Safwat G, Abdel-raouf M, Mahmoud GA. Alkali-cellulose/ Polyvinyl alcohol biofilms fabricated with essential clove oil as a novel scented antimicrobial packaging material. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Active packaging film of chitosan and Santalum album essential oil: Characterization and application as butter sachet to retard lipid oxidation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Gutiérrez TJ, León IE, Ponce AG, Alvarez VA. Active and pH-Sensitive Nanopackaging Based on Polymeric Anthocyanin/Natural or Organo-Modified Montmorillonite Blends: Characterization and Assessment of Cytotoxicity. Polymers (Basel) 2022; 14:polym14224881. [PMID: 36433007 PMCID: PMC9697583 DOI: 10.3390/polym14224881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Polymeric anthocyanins are biologically active, pH-sensitive natural compounds and pigments with beneficial functional, pharmacological and therapeutic properties for consumer health. More recently, they have been used for the manufacture of active and pH-sensitive ("intelligent") food nanopackaging, due to their bathochromic effect. Nevertheless, in order for polymeric anthocyanins to be included either as a functional food or as a pharmacological additive (medicinal food), they inevitably need to be stabilized, as they are highly susceptible to environmental conditions. In this regard, nanopackaging has become a tool to overcome the limitations of polymeric anthocyanins. The objective of this study was to evaluate their structural, thermal, morphological, physicochemical, antioxidant and antimicrobial properties, as well as their responses to pH changes, and the cytotoxicity of blends made from polymeric anthocyanins extracted from Jamaica flowers (Hibiscus sabdariffa) and natural or organo-modified montmorillonite (Mt), as active and pH-sensitive nanopackaging. This study allowed us to conclude that organo-modified Mts are efficient pH-sensitive and antioxidant nanopackaging systems that contain and stabilize polymeric anthocyanins compared to natural Mt nanopackaging and stabilizing polymeric anthocyanins. However, the use of these polymeric anthocyanin-stabilizing organo-modified Mt-based nanopackaging systems are limited for food applications by their toxicity.
Collapse
Affiliation(s)
- Tomy J. Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, Mar del Plata B7608FLC, Argentina
- Correspondence: ; Tel.: +54-223-6260627; Fax: +54-223-481-0046
| | - Ignacio E. León
- Centro de Química Inorgánica “Dr. Pedro J. Aymonino” (CEQUINOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Blvd. 120 No. 1465, La Plata 1900, Argentina
| | - Alejandra G. Ponce
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de Alimentos y Ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, Mar del Plata B7602AYL, Argentina
| | - Vera A. Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, Mar del Plata B7608FLC, Argentina
| |
Collapse
|
18
|
Li L, Wang W, Zheng M, Sun J, Chen Z, Wang J, Ma Q. Nanocellulose-enhanced smart film for the accurate monitoring of shrimp freshness via anthocyanin-induced color changes. Carbohydr Polym 2022; 301:120352. [DOI: 10.1016/j.carbpol.2022.120352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
19
|
Thajai N, Rachtanapun P, Thanakkasaranee S, Chaiyaso T, Phimolsiripol Y, Leksawasdi N, Sommano SR, Sringarm K, Chaiwarit T, Ruksiriwanich W, Jantrawut P, Kodsangma A, Ross S, Worajittiphon P, Punyodom W, Jantanasakulwong K. Antimicrobial thermoplastic starch reactive blend with chlorhexidine gluconate and epoxy resin. Carbohydr Polym 2022; 301:120328. [DOI: 10.1016/j.carbpol.2022.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
20
|
Choque-Quispe D, Choque-Quispe Y, Ligarda-Samanez CA, Peralta-Guevara DE, Solano-Reynoso AM, Ramos-Pacheco BS, Taipe-Pardo F, Martínez-Huamán EL, Aguirre Landa JP, Agreda Cerna HW, Loayza-Céspedes JC, Zamalloa-Puma MM, Álvarez-López GJ, Zamalloa-Puma A, Moscoso-Moscoso E, Quispe-Quispe Y. Effect of the Addition of Corn Husk Cellulose Nanocrystals in the Development of a Novel Edible Film. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3421. [PMID: 36234547 PMCID: PMC9565820 DOI: 10.3390/nano12193421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The cellulose from agroindustrial waste can be treated and converted into nanocrystals or nanofibers. It could be used to produce biodegradable and edible films, contributing to the circular economy and being environmentally friendly. This research aimed to develop an edible film elaborated with activated cellulose nanocrystals, native potato starch, and glycerin. The activated cellulose nanocrystals were obtained by basic/acid digestion and esterification with citric acid from corn husks. The starch was extracted from the native potato cultivated at 3500 m of altitude. Four film formulations were elaborated with potato starch (2.6 to 4.4%), cellulose nanocrystals (0.0 to 0.12%), and glycerin (3.0 to 4.2%), by thermoforming at 60 °C. It was observed that the cellulose nanocrystals reported an average size of 676.0 nm. The films mainly present hydroxyl, carbonyl, and carboxyl groups that stabilize the polymeric matrix. It was observed that the addition of cellulose nanocrystals in the films significantly increased (p-value < 0.05) water activity (0.409 to 0.447), whiteness index (96.92 to 97.27), and organic carbon content. In opposition to gelatinization temperature (156.7 to 150.1 °C), transparency (6.69 to 6.17), resistance to traction (22.29 to 14.33 N/mm), and solubility in acidic, basic, ethanol, and water media decreased. However, no significant differences were observed in the thermal decomposition of the films evaluated through TGA analysis. The addition of cellulose nanocrystals in the films gives it good mechanical and thermal resistance qualities, with low solubility, making it a potential food-coating material.
Collapse
Affiliation(s)
- David Choque-Quispe
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yudith Choque-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Tecnológica de los Andes, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Fredy Taipe-Pardo
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Edgar L. Martínez-Huamán
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - John Peter Aguirre Landa
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Henrry W. Agreda Cerna
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Julio C. Loayza-Céspedes
- Departamento de Ingeniería Agropecuaria, Universidad Nacional de San Antonio Abad del Cusco, Andahuaylas 03701, Peru
| | | | | | - Alan Zamalloa-Puma
- Department of Physics, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Elibet Moscoso-Moscoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yadyra Quispe-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| |
Collapse
|
21
|
Nanoarchitectonics of Starch Nanoparticles Rosin Catalyzed by Algerian Natural Montmorillonite (Maghnite-H+) for Enhanced Antimicrobial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Liu X, Chen L, Dong Q, Wang Z, Zhang D, He J, Ye Y, Zhou J, Zhu W, Hu Z, Din ZU, Ma T, Ding W, Cai J. Emerging starch composite nanofibrous films for food packaging: Facile construction, hydrophobic property, and antibacterial activity enhancement. Int J Biol Macromol 2022; 222:868-879. [PMID: 36167104 DOI: 10.1016/j.ijbiomac.2022.09.187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
Polymers synthesized from green resources have many advantages in food packaging and hence their development is very important. Herein, starch/polyvinyl alcohol (PVA) nanofibrous composite films were fabricated by electrospinning technology. Steam-induced cross-linking reaction with glutaraldehyde (GTA) and silver sodium zirconium phosphate (Ag-ZrP) was employed to improve the hydrophobic and antibacterial properties of the constructed nanofibrous films, respectively. The effects of starch/PVA ratio on the micro-morphology and mechanical properties of the binary composite film were investigated. The composite film showed optimal uniformity, bead-free electrospun nanofibers, with enhanced mechanical strength for the 60/40 (v/v) starch/PVA composite. Moreover, the crystallinity of PVA was reduced during the electrospinning process, whereas the introduction of PVA strengthened the hydrogen interactions and improved the thermal stability of the composite films. After the cross-linking with GTA, the starch/PVA films became more hydrophobic. Furthermore, the starch/PVA films embedded with Ag-ZrP had outstanding antibacterial property against both Gram-negative and Gram-positive bacteria. This work demonstrated the potential prospects of electrospun starch nanofibrous films in the food packaging field.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Qi Dong
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhijing Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Die Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jiangling He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Yuanyuan Ye
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jiaojiao Zhou
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Weijia Zhu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhongze Hu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Agriculture, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Tiezheng Ma
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
23
|
Hakke VS, Landge VK, Sonawane SH, Uday Bhaskar Babu G, Ashokkumar M, M M Flores E. The physical, mechanical, thermal and barrier properties of starch nanoparticle (SNP)/polyurethane (PU) nanocomposite films synthesised by an ultrasound-assisted process. ULTRASONICS SONOCHEMISTRY 2022; 88:106069. [PMID: 35751937 PMCID: PMC9240861 DOI: 10.1016/j.ultsonch.2022.106069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 mol L-1 H2SO4 was carried out to the starch dispersion for the preparation of SNPs. The synthesized SNPs were blended uniformly within the PU matrix using ultrasonic irradiation (20 kHz, 220 W pulse mode). The temperature was kept constant during the synthesis (4 °C). The nanocomposite coating films were made with a regulated thickness using the casting method. The effect of SNP content (wt%) in nanocomposite coating films on various properties such as morphology, water vapour permeability (WVP), glass transition temperature (Tg), microbial barrier, and mechanical properties was studied. The addition of SNP to the PU matrix increased the roughness of the surface, and Tg by 7 °C, lowering WVP by 60% compared to the PU film without the addition of SNP. As the SNP concentration was increased, the opacity of the film increased. The reinforcement of the SNP in the PU matrix enhanced the microbial barrier of the film by 99.9%, with the optimal content of SNP being 5%. Improvement in the toughness and barrier properties was observed with an increase in the SNP content of the film.
Collapse
Affiliation(s)
- Vikas S Hakke
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana State, India
| | - Vividha K Landge
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana State, India
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana State, India.
| | - G Uday Bhaskar Babu
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana State, India
| | | | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
24
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
25
|
Kadirvel V, Raja K, Mithulesh TV, Guru Raj PN, Kulathooran R. Development of Bioactive Film from Fruit Seed Waste for Shelf Life Extension of Tomato (
Solanum lycopersicum). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Kamalesh Raja
- Department of Biotechnology Rajalakshmi Engineering College Chennai
| | - T. V. Mithulesh
- Department of Food Technology Rajalakshmi Engineering College Chennai
| | - P. N. Guru Raj
- Department of Food Technology Rajalakshmi Engineering College Chennai
| | | |
Collapse
|
26
|
Ortega F, Sobral P, Jios JL, Arce VB, García MA. Starch Nanocomposite Films: Migration Studies of Nanoparticles to Food Simulants and Bio-Disintegration in Soil. Polymers (Basel) 2022; 14:polym14091636. [PMID: 35566806 PMCID: PMC9099942 DOI: 10.3390/polym14091636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, films containing AgNPs were obtained by different green synthesis techniques (AgNP in situ and AgNP L). The inclusion of nanoparticles in the starch matrix improved both mechanical and barrier properties. The migration of AgNPs from the nanocomposite material to three food simulants (water, 3% v/v acetic acid and 15% v/v ethanol) was studied. The experimental data were fitted by using different widely accepted mathematical models (Fickian, Ritger and Peppas, and Weibull), indicating that the AgNP migration followed a complex mechanism. The silver concentration (mg Ag per kg of simulant) that was released from the nanocomposite films was higher for the samples with AgNPs in situ than for those containing AgNP L. Likewise, the maximum release value (0.141 mg/dm2 for AgNPs in situ in acetic acid simulant) was lower than the limits proposed by the legislation (European Commission and MERCOSUR; 10 and 8 mg/dm2, respectively). The replacement of conventional plastic materials by biodegradable ones requires the evaluation of bio-disintegration tests in soil. In this sense, a period of 90 days was necessary to obtain ≥50% weight loss in both nanocomposite films. Additionally, the bio-disintegration of the samples did not contribute with phytotoxic compounds to the soil, allowing the germination of fast-growing seeds.
Collapse
Affiliation(s)
- Florencia Ortega
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET La Plata, 47 y 116 S/N°, La Plata 1900, Argentina;
| | - Pablo Sobral
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina; (P.S.); (J.L.J.); (V.B.A.)
- Laboratorio UPL (UNLP-CIC), Campus Tecnológico Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Cno. Centenario entre 505 y 508, Manuel B. Gonnet 1897, Argentina
| | - Jorge L. Jios
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina; (P.S.); (J.L.J.); (V.B.A.)
- Laboratorio UPL (UNLP-CIC), Campus Tecnológico Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Cno. Centenario entre 505 y 508, Manuel B. Gonnet 1897, Argentina
| | - Valeria B. Arce
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina; (P.S.); (J.L.J.); (V.B.A.)
- CIOp (Centro de Investigaciones Ópticas), (UNLP)-CICPBA Universidad Nacional de La Plata, Camino Centenario e/505 y 508, Gonnet 1897, Argentina
| | - María Alejandra García
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET La Plata, 47 y 116 S/N°, La Plata 1900, Argentina;
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina; (P.S.); (J.L.J.); (V.B.A.)
- Correspondence:
| |
Collapse
|
27
|
Mesgari M, Aalami AH, Sathyapalan T, Sahebkar A. A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg Chem Appl 2022; 2022:7557825. [PMID: 35287316 PMCID: PMC8917952 DOI: 10.1155/2022/7557825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers' mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets' quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
Collapse
Affiliation(s)
- Mohammad Mesgari
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Khurshid S, Arif S, Ali TM, Iqbal HM, Shaikh M, Khurshid H, Akber Q, Yousaf S. Effect of Silver Nanoparticles Prepared from
Saraca asoca
Leaf Extract on Morphological, Functional, Mechanical and Antibacterial Properties of Rice Starch Films. STARCH-STARKE 2022. [DOI: 10.1002/star.202100228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Salman Khurshid
- Food Quality & Safety Research Institute PARC, SARC, University of Karachi Karachi Pakistan
| | - Saqib Arif
- Food Quality & Safety Research Institute PARC, SARC, University of Karachi Karachi Pakistan
| | - Tahira Mohsin Ali
- Department of Food Science & Technology University of Karachi Karachi Pakistan
| | - Hafiza Mehwish Iqbal
- Food Quality & Safety Research Institute PARC, SARC, University of Karachi Karachi Pakistan
| | - Marium Shaikh
- Department of Food Science & Technology University of Karachi Karachi Pakistan
| | | | - Qurrat‐ul‐Ain Akber
- Food Quality & Safety Research Institute PARC, SARC, University of Karachi Karachi Pakistan
| | - Shahid Yousaf
- Food Science Research Institute PARC, NARC Islamabad Pakistan
| |
Collapse
|
29
|
Tan SX, Andriyana A, Ong HC, Lim S, Pang YL, Ngoh GC. A Comprehensive Review on the Emerging Roles of Nanofillers and Plasticizers towards Sustainable Starch-Based Bioplastic Fabrication. Polymers (Basel) 2022; 14:polym14040664. [PMID: 35215577 PMCID: PMC8874690 DOI: 10.3390/polym14040664] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Petroleum-based plastics are associated with environmental pollution problems owing to their non-biodegradable and toxic properties. In this context, renewable and biodegradable bioplastics possess great potential to replace petroleum-based plastics in mitigating these environmental issues. Fabrication of bioplastic films involves a delicate mixture of the film-forming agent, plasticizer and suitable solvent. The role of the plasticizer is to improve film flexibility, whereas the filler serves as a reinforcement medium. In recent years, much research attention has been shifted toward devising diverse methods for enhancing the performance of bioplastics, particularly in the utilization of environmentally benign nanoparticles to displace the conventional hazardous chemicals. Along this line, this paper presents the emergence of nanofillers and plasticizers utilized in bioplastic fabrication with a focus on starch-based bioplastics. This review paper not only highlights the influencing factors that affect the optical, mechanical and barrier properties of bioplastics, but also revolves around the proposed mechanism of starch-based bioplastic formation, which has rarely been reviewed in the current literature. To complete the review, prospects and challenges in bioplastic fabrication are also highlighted in order to align with the concept of the circular bioplastic economy and the United Nations’ Sustainable Development Goals.
Collapse
Affiliation(s)
- Shiou Xuan Tan
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.X.T.); (A.A.)
| | - Andri Andriyana
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.X.T.); (A.A.)
- Center of Advanced Materials, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan;
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Correspondence: (S.L.); (G.C.N.)
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.L.); (G.C.N.)
| |
Collapse
|
30
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
31
|
Romainor AN, Chin SF, Lihan S. Antimicrobial Starch‐Based Film for Food Packaging Application. STARCH-STARKE 2021. [DOI: 10.1002/star.202100207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ain Nadirah Romainor
- School of Liberal Arts, Science and Technology (PUScLST) Perdana University Suite 9.2, 9th Floor Wisma Chase Perdana, Jalan Semantan Damansara Heights Kuala Lumpur 50490 Malaysia
| | - Suk Fun Chin
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| | - Samuel Lihan
- Institute of Biodiversity and Environmental Conservation Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| |
Collapse
|
32
|
Preparation and functional properties of poly(vinyl alcohol)/ethyl cellulose/tea polyphenol electrospun nanofibrous films for active packaging material. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Li T, Liu Y, Qin Q, Zhao L, Wang Y, Wu X, Liao X. Development of electrospun films enriched with ethyl lauroyl arginate as novel antimicrobial food packaging materials for fresh strawberry preservation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Abstract
In 2018, the worldwide consumption of meat was 346.14 million tonnes, and this is expected to increase in the future. As meat consumption increases, the use of packaging materials is expected to increase along with it. Petrochemical packaging materials which are widely used in the meat processing industry, take a long time to regenerate and biodegrade, thus they adversely affect the environment. Therefore, the necessity for the development of eco-friendly packaging materials for meat processing, which are easily degradable and recyclable, came to the fore. The objective of this review is to describe the application of natural compound-derived edible films with their antioxidant and antibacterial activities in meat and meat products. For several decades, polysaccharides (cellulose, starch, pectin, gum, alginate, carrageenan and chitosan), proteins (milk, collagen and isolated soy protein) and lipids (essential oil, waxes, emulsifiers, plasticizers and resins) were studied as basic materials for edible films to reduce plastic packaging. There are still high consumer demands for eco-friendly alternatives to petrochemical-based plastic packaging, and edible films can be used in a variety of ways in meat processing. More efforts to enhance the physiological and functional properties of edible films are needed for commercial application to meat and meat products.
Collapse
|
35
|
Glaskova-Kuzmina T, Starkova O, Gaidukovs S, Platnieks O, Gaidukova G. Durability of Biodegradable Polymer Nanocomposites. Polymers (Basel) 2021; 13:3375. [PMID: 34641189 PMCID: PMC8512741 DOI: 10.3390/polym13193375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Biodegradable polymers (BP) are often regarded as the materials of the future, which address the rising environmental concerns. The advancement of biorefineries and sustainable technologies has yielded various BP with excellent properties comparable to commodity plastics. Water resistance, high dimensional stability, processability and excellent physicochemical properties limit the reviewed materials to biodegradable polyesters and modified compositions of starch and cellulose, both known for their abundance and relatively low price. The addition of different nanofillers and preparation of polymer nanocomposites can effectively improve BP with controlled functional properties and change the rate of degradation. The lack of data on the durability of biodegradable polymer nanocomposites (BPN) has been the motivation for the current review that summarizes recent literature data on environmental ageing of BPN and the role of nanofillers, their basic engineering properties and potential applications. Various durability tests discussed thermal ageing, photo-oxidative ageing, water absorption, hygrothermal ageing and creep testing. It was discussed that incorporating nanofillers into BP could attenuate the loss of mechanical properties and improve durability. Although, in the case of poor dispersion, the addition of the nanofillers can lead to even faster degradation, depending on the structural integrity and the state of interfacial adhesion. Selected models that describe the durability performance of BPN were considered in the review. These can be applied as a practical tool to design BPN with tailored property degradationand durability.
Collapse
Affiliation(s)
| | - Olesja Starkova
- Institute for Mechanics of Materials, University of Latvia, LV-1004 Riga, Latvia;
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P.Valdena 3/7, LV-1048 Riga, Latvia; (S.G.); (O.P.)
| | - Oskars Platnieks
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P.Valdena 3/7, LV-1048 Riga, Latvia; (S.G.); (O.P.)
| | | |
Collapse
|
36
|
Babaei-Ghazvini A, Acharya B, Korber DR. Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers (Basel) 2021; 13:2790. [PMID: 34451327 PMCID: PMC8402091 DOI: 10.3390/polym13162790] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Finding a practical alternative to decrease the use of conventional polymers in the plastic industry has become an acute concern since industrially-produced plastic waste, mainly conventional food packaging, has become an environmental crisis worldwide. Biodegradable polymers have attracted the attention of researchers as a possible alternative for fossil-based plastics. Chitosan-based packaging materials, in particular, have become a recent focus for the biodegradable food packaging sector due to their biodegradability, non-toxic nature, and antimicrobial properties. Chitosan, obtained from chitin, is the most abundant biopolymer in nature after cellulose. Chitosan is an ideal biomaterial for active packaging as it can be fabricated alone or combined with other polymers as well as metallic antimicrobial particles, either as layers or as coacervates for examination as functional components of active packaging systems. Chitosan-metal/metal oxide bio-nanocomposites have seen growing interest as antimicrobial packaging materials, with several different mechanisms of inhibition speculated to include direct physical interactions or chemical reactions (i.e., the production of reactive oxygen species as well as the increased dissolution of toxic metal cations). The use of chitosan and its metal/metal oxide (i.e., titanium dioxide, zinc oxide, and silver nanoparticles) bio-nanocomposites in packaging applications are the primary focus of discussion in this review.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Darren R. Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
37
|
Yahia R, Owda ME, Abou‐Zeid RE, Abdelhai F, Gad ES, Saleh AK, El‐Gamil HY. Synthesis and characterization of thermoplastic starch/
PVA
/cardanol oil composites loaded with in‐situ silver nanoparticles. J Appl Polym Sci 2021. [DOI: 10.1002/app.51511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ramadan Yahia
- Chemistry Department Faculty of Science, Al‐Azhar University, Nasr City Cairo Egypt
| | - Medhat E. Owda
- Chemistry Department Faculty of Science, Al‐Azhar University, Nasr City Cairo Egypt
| | - Ragab E. Abou‐Zeid
- Cellulose and Paper Department National Research Centre, Dokki Giza Egypt
| | - Farag Abdelhai
- Chemistry Department Faculty of Science, Al‐Azhar University, Nasr City Cairo Egypt
| | - Ehab S. Gad
- Chemistry Department Faculty of Science, Al‐Azhar University, Nasr City Cairo Egypt
| | - Ahmed K. Saleh
- Cellulose and Paper Department National Research Centre, Dokki Giza Egypt
| | | |
Collapse
|
38
|
Olson E, Liu F, Blisko J, Li Y, Tsyrenova A, Mort R, Vorst K, Curtzwiler G, Yong X, Jiang S. Self-assembly in biobased nanocomposites for multifunctionality and improved performance. NANOSCALE ADVANCES 2021; 3:4321-4348. [PMID: 36133470 PMCID: PMC9418702 DOI: 10.1039/d1na00391g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/26/2021] [Indexed: 06/16/2023]
Abstract
Concerns of petroleum dependence and environmental pollution prompt an urgent need for new sustainable approaches in developing polymeric products. Biobased polymers provide a potential solution, and biobased nanocomposites further enhance the performance and functionality of biobased polymers. Here we summarize the unique challenges and review recent progress in this field with an emphasis on self-assembly of inorganic nanoparticles. The conventional wisdom is to fully disperse nanoparticles in the polymer matrix to optimize the performance. However, self-assembly of the nanoparticles into clusters, networks, and layered structures provides an opportunity to address performance challenges and create new functionality in biobased polymers. We introduce basic assembly principles through both blending and in situ synthesis, and identify key technologies that benefit from the nanoparticle assembly in the polymer matrix. The fundamental forces and biobased polymer conformations are discussed in detail to correlate the nanoscale interactions and morphology with the macroscale properties. Different types of nanoparticles, their assembly structures and corresponding applications are surveyed. Through this review we hope to inspire the community to consider utilizing self-assembly to elevate functionality and performance of biobased materials. Development in this area sets the foundation for a new era of designing sustainable polymers in many applications including packaging, construction chemicals, adhesives, foams, coatings, personal care products, and advanced manufacturing.
Collapse
Affiliation(s)
- Emily Olson
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Fei Liu
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Jonathan Blisko
- Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Yifan Li
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Ayuna Tsyrenova
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Rebecca Mort
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Xin Yong
- Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Shan Jiang
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| |
Collapse
|
39
|
Gujral H, Sinhmar A, Nehra M, Nain V, Thory R, Pathera AK, Chavan P. Synthesis, characterization, and utilization of potato starch nanoparticles as a filler in nanocomposite films. Int J Biol Macromol 2021; 186:155-162. [PMID: 34229021 DOI: 10.1016/j.ijbiomac.2021.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
The nanoparticles for the preparation of nanocomposite starch films were synthesized from potato starch using the acid hydrolysis method. The films were prepared by incorporating starch nanoparticles into the film formulation at 0.5, 1, 2, 5, and 10% level of total starch. The control starch film was prepared without the incorporation of starch nanoparticles (SNPs) in film formulation. The starch and SNPs were analyzed for physicochemical and morphological properties. The absorption capacity of SNPs for water and oil was significantly (p < 0.05) lower as compared to native starch. Whereas, the swelling power and solubility of SNPs were significantly (p < 0.05) higher than the swelling power and solubility of starch, respectively. The starch granules were oval and spherical with regular surfaces whereas the SNPs had irregular cracked exteriors spaces. The water vapor transmission rate (WVTR) from nanocomposite starch films was significantly (p < 0.05) lower than the control starch film. The burst strength of films was increased significantly (p < 0.05) with an increased level of SNPs incorporation in film formulation. The incorporation of SNPs increased film thickness and biodegradability. Thus, the present study revealed that the incorporation of SNPs in film formulation resulted in improved film properties.
Collapse
Affiliation(s)
- Harleen Gujral
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan 173229, HP, India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan 173229, HP, India
| | - Manju Nehra
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Vikash Nain
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Rahul Thory
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan 173229, HP, India.
| | - Ashok Kumar Pathera
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan 173229, HP, India
| | - Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan 173229, HP, India
| |
Collapse
|
40
|
Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv Colloid Interface Sci 2021; 293:102440. [PMID: 34022748 DOI: 10.1016/j.cis.2021.102440] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/08/2023]
Abstract
Employing new strategies to develop novel composite systems has become a popular area of interest among researchers. Raising people's awareness and their attention to the health and safety issues are key parameters to achieve this purpose. One of the recommended strategies is the utilization of nanoparticles within the matrix of composite materials to improve their physical, mechanical, structural and antimicrobial characteristics. Silver nanoparticles (Ag NPs) have attracted much attention for nanocomposite applications mainly due to their antimicrobial characteristics. Herein, the current review will focus on the different methods for preparing antimicrobial nanocomposites loaded with Ag NPs, the release of Ag NPs from these nanostructures in different media, analyzing techniques for the evaluation of Ag release from nanocomposites, potential applications, and safety issues of nanocomposites containing Ag NPs. The applications of Ag NPs-loaded nanocomposites have been extensively established in food, biomedical, textile, environmental and pharmacological areas mainly due to their antibacterial attributes. Several precautions should be addressed before implementation of Ag NPs in nanocomposites due to the health and safety issues.
Collapse
|
41
|
Multifunctional antibacterial films with silver nanoparticles reduced in situ by lemon juice. Food Chem 2021; 365:130517. [PMID: 34252625 DOI: 10.1016/j.foodchem.2021.130517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022]
Abstract
Microorganisms contribute to deterioration of garden stuff after picking. Antibacterial films consisting of polyvinyl alcohol (PVA), soluble starch (SS), and silver nanoparticles (AgNPs) with AgNPs in situ reduced from AgNO3 by lemon juice (LJ) were developed to combat microbial corruption. PVA/SS/LJ/AgNPs films have better tensile strength and elongation at break, but lower water vapor permeability, moisture absorption, and transmittance compared to PVA/SS and PVA/SS/LJ films. Silver released from PVA/SS/LJ/AgNPs films were 13.55, 18.97, 19.55, 20.19, 20.47, and 20.82 mg/g after submerging samples in water for three seconds and soaking for 1, 2, 3, 4, and 5 days, respectively. PVA/SS/LJ/AgNPs films had good bacteriostatic effects on Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Salmonella, as the average diameter of the inhibition circle was 12.12 ± 0.01, 13.04 ± 0.02, 14.79 ± 0.01, 14.20 ± 0.01, and 12.68 ± 0.01 mm, respectively. Therefore, PVA/SS/LJ/AgNPs film has a wide application prospect.
Collapse
|
42
|
Omo-Okoro PN, Curtis CJ, Marco AM, Melymuk L, Okonkwo JO. Removal of per- and polyfluoroalkyl substances from aqueous media using synthesized silver nanocomposite-activated carbons. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:217-236. [PMID: 34150231 PMCID: PMC8172664 DOI: 10.1007/s40201-020-00597-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/14/2020] [Indexed: 05/03/2023]
Abstract
PURPOSE Per- and polyfluoroalkyl substances (PFAS) have been found to be widespread, extremely persistent and bioaccumulative with toxicity tendencies. Pre-synthesized nanocomposite-activated carbons, referred to, as physically activated maize tassel silver (PAMTAg) and chemically activated maize tassel silver (CAMTAg) were utilized in the present study. They were used for the removal of 10 PFAS from aqueous solutions. METHODS The nanocomposite-activated carbons were characterized via scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer Emmett Teller (BET) and other techniques. Batch equilibrium experiments were conducted in order to investigate the effects of solution pH, adsorbent dosage, initial PFAS concentration and temperature on the removal of PFAS using PAMTAg and CAMTAg. Langmuir and Freundlich adsorption isotherm models were used to analyse the equilibrium data obtained. RESULTS Maximum adsorption capacities of 454.1 mg/g (0.91 mmol/g) and 321.2 mg/g (0.78 mmol/g) were recorded for perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), respectively using CAMTAg. The values recorded for the Gibbs' free energy (ΔG°) for the adsorption of PFOS and PFOA onto PAMTAg and CAMTAg were negative; PFOS (-9.61, -9.99 and - 10.39), PFOA (-8.77, -9.76 and - 10.21) using PAMTAg; and PFOS (-13.70, -12.70 and - 12.37), PFOA (-12.86, -12.21 and - 11.17) using CAMTAg. Therefore, the adsorption processes were spontaneous and feasible. The values recorded for enthalpy (ΔH°) (kJ/mol) for the adsorption of PFOS (-26.15) and PFOA (-35.86) onto CAMTAg were negative, indicating that the adsorption mechanism is exothermic in nature. Positive values were recorded for ΔH° for the adsorption of PFOS (2.32) and PFOA (12.69) onto PAMTAg, indicative of an endothermic adsorption mechanism. Positive entropy (ΔS°) values (0.04 and 0.07) were recorded for PFOS and PFOA using PAMTAg; whereas negative values (-0.04 and - 0.08) were recorded for ΔS° using CAMTAg. A positive ΔS° indicates an increase in randomness of the adsorbate at the solid-solution interface and the reverse is the case for a negative ΔS°. CONCLUSION The interplay of electrostatic attraction and hydrophobic interactions enabled the removal of PFAS using PAMTAg and CAMTAg. Findings suggest that PAMTAg and CAMTAg are effective for the removal of PFAS from aqueous media and are good alternatives to commercially available activated carbons. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-020-00597-3.
Collapse
Affiliation(s)
- Patricia N. Omo-Okoro
- Department of Geography, Environmental Management and Energy Studies (GEMES), Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria, 0001 South Africa
| | - Christopher J. Curtis
- Department of Geography, Environmental Management and Energy Studies (GEMES), Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| | | | - Lisa Melymuk
- RECETOX, Masaryk University, Brno, 62500 Czech Republic
| | - Jonathan O. Okonkwo
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
43
|
Nanostructured Palladacycle and its Decorated Ag-NP Composite: Synthesis, Morphological Aspects, Characterization, Quantum Chemical Calculation and Antimicrobial Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Liu H, Guo L, Tao S, Huang Z, Qi H. Freely Moldable Modified Starch as a Sustainable and Recyclable Plastic. Biomacromolecules 2021; 22:2676-2683. [PMID: 34043319 DOI: 10.1021/acs.biomac.1c00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficiently preparing a starch-based plastic with moisture insensitivity and toughness is a challenge to improve the high-value utilization of polysaccharide resources. Herein, a sustainable, recyclable starch-based plastic was prepared in a facile and eco-friendly way. First, starch acetoacetate (SAA) with different degrees of substitution (DSs) was synthesized by transesterification. Then, the SAA film was obtained through a solvent-free hot-pressing method. Notably, SAA with different DSs exhibited various glass transition temperatures (109-140 °C), and SAA with high DS (>0.84) was insoluble even after boiling in water for 1 h. Also, the maximum fracture strength of SAA film up to 15.5 MPa and a maximum elongation at break up to 30% were reached . In addition, the starch-based plastic film retained the original mechanical properties after three cycles of hot processing. In consideration of the facile preparation process, this protocol provided a new avenue for developing sustainable and recyclable starch-based plastics.
Collapse
Affiliation(s)
- Hongchen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Lei Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shenming Tao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhongyuan Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
45
|
Babutan I, Lucaci AD, Botiz I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers (Basel) 2021; 13:1552. [PMID: 34066135 PMCID: PMC8150949 DOI: 10.3390/polym13101552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microbes are the main cause of various undesired infections in living organisms, including humans. Most of these infections are favored in hospital environments where humans are being treated with antibiotics and where some microbes succeed in developing resistance to such drugs. As a consequence, our society is currently researching for alternative, yet more efficient antimicrobial solutions. Certain natural and synthetic polymers are versatile materials that have already proved themselves to be highly suitable for the development of the next-generation of antimicrobial systems that can efficiently prevent and kill microbes in various environments. Here, we discuss the latest developments of polymeric structures, exhibiting (reinforced) antimicrobial attributes that can be assembled on surfaces and coatings either from synthetic polymers displaying antiadhesive and/or antimicrobial properties or from blends and nanocomposites based on such polymers.
Collapse
Affiliation(s)
- Iulia Babutan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, 1 M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
| | - Alexandra-Delia Lucaci
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 38 Gheorghe Marinescu Str., 540142 Târgu Mureș, Romania;
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
| |
Collapse
|
46
|
Employing Nanosilver, Nanocopper, and Nanoclays in Food Packaging Production: A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11050509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade, there has been an increasing demand for “ready-to-cook” and “ready-to-eat” foods, encouraging food producers, food suppliers, and food scientists to package foods with minimal processing and loss of nutrients during food processing. Following the increasing trend in the customer’s demands for minimally processed foodstuffs, this underscores the importance of promising interests toward industrial applications of novel and practical approaches in food. Along with substantial progress in the emergence of “nanoscience”, which has turned into the call of the century, the efficacy of conventional packaging has faded away. Accordingly, there is a wide range of new types of packaging, including electronic packaging machines, flexible packaging, sterile packaging, metal containers, aluminum foil, and flexographic printing. Hence, it has been demonstrated that these novel approaches can economically improve food safety and quality, decrease the microbial load of foodborne pathogens, and reduce food spoilage. This review study provides a comprehensive overview of the most common chemical or natural nanocomposites used in food packaging that can extend food shelf life, safety and quality. Finally, we discuss applying materials in the production of active and intelligent food packaging nanocomposite, synthesis of nanomaterial, and their effects on human health.
Collapse
|
47
|
Mironescu M, Lazea-Stoyanova A, Barbinta-Patrascu ME, Virchea LI, Rexhepi D, Mathe E, Georgescu C. Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. Polymers (Basel) 2021; 13:1190. [PMID: 33917150 PMCID: PMC8067845 DOI: 10.3390/polym13081190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
A critical overview of current approaches to the development of starch-containing packaging, integrating the principles of green chemistry (GC), green technology (GT) and green nanotechnology (GN) with those of green packaging (GP) to produce materials important for both us and the planet is given. First, as a relationship between GP and GC, the benefits of natural bioactive compounds are analyzed and the state-of-the-art is updated in terms of the starch packaging incorporating green chemicals that normally help us to maintain health, are environmentally friendly and are obtained via GC. Newer approaches are identified, such as the incorporation of vitamins or minerals into films and coatings. Second, the relationship between GP and GT is assessed by analyzing the influence on starch films of green physical treatments such as UV, electron beam or gamma irradiation, and plasma; emerging research areas are proposed, such as the use of cold atmospheric plasma for the production of films. Thirdly, the approaches on how GN can be used successfully to improve the mechanical properties and bioactivity of packaging are summarized; current trends are identified, such as a green synthesis of bionanocomposites containing phytosynthesized metal nanoparticles. Last but not least, bioinspiration ideas for the design of the future green packaging containing starch are presented.
Collapse
Affiliation(s)
- Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, 550012 Sibiu, Romania;
| | - Andrada Lazea-Stoyanova
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Ilfov, Romania
| | - Marcela Elisabeta Barbinta-Patrascu
- Department of Electricity, Faculty of Physics, Solid-State Physics and Biophysics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Bucharest-Magurele, Romania
| | - Lidia-Ioana Virchea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania;
| | - Diana Rexhepi
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (D.R.); (E.M.)
| | - Endre Mathe
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (D.R.); (E.M.)
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania
| | - Cecilia Georgescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, 550012 Sibiu, Romania;
| |
Collapse
|
48
|
Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 2021; 20:2428-2454. [DOI: 10.1111/1541-4337.12727] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Nejra Omerović
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | - Mila Djisalov
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | | | | | - Jovana Vunduk
- Ekofungi Ltd. Belgrade Serbia
- Faculty of Agriculture, Institute of Food Technology and Biochemistry University of Belgrade Belgrade Serbia
| | | | | | | | - Jasmina Vidić
- Micalis Institute, INRAE, AgroParisTech Université Paris‐Saclay Jouy en Josas France
| |
Collapse
|
49
|
Morphological, structural and cytotoxic behavior of starch/silver nanocomposites with synthesized silver nanoparticles using Stevia rebaudiana extracts. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03184-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Ceballos RL, von Bilderling C, Guz L, Bernal C, Famá L. Effect of greenly synthetized silver nanoparticles on the properties of active starch films obtained by extrusion and compression molding. Carbohydr Polym 2021; 261:117871. [PMID: 33766358 DOI: 10.1016/j.carbpol.2021.117871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Replacing packaging plastics with biodegradable active materials is an emerging concern. In this context, thermoplastic starch (TPS) films and nanocomposites containing different concentrations of silver nanoparticles synthetized with starch and yerba mate (TPS-AgNP1: 0.006 wt.% and TPS-AgNP2: 0.015 wt.%) were developed by extrusion and compression molding. Spherical AgNP of 20-130 nm were obtained after the green synthesis and excellent adhesion between AgNP and the matrix was observed. Consequently, both composites exhibited higher stiffness and tensile strength values than TPS, indicating a reinforcing effect of AgNP. TPS-AgNP1 showed the highest strain at break and toughness values, and TPS-AgNP2 presented the lowest moisture content and ability to delay E. coli growth. Additionally, all materials disintegrated after 4 weeks of burial and resulted thermally stable up to 240 °C. This investigation provides a convenient and inexpensive way to develop starch-based nanocomposites with improved properties which appear to be promising as active packaging materials.
Collapse
Affiliation(s)
- Rocío L Ceballos
- Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Física de Buenos Aires (IFIBA-CONICET), Intendente Güiraldes 2160 (C1428EGA), Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Catalina von Bilderling
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET-UNLP), Diagonal 113, Casco Urbano, B1900, La Plata, Provincia de Buenos Aires, Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (C1428EGA), Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Lucas Guz
- Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Física de Buenos Aires (IFIBA-CONICET), Intendente Güiraldes 2160 (C1428EGA), Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET, Universidad Nacional de San Martín, 25 de Mayo y Francia (1650), San Martín, Provincia de Buenos Aires, Argentina.
| | - Celina Bernal
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN, UBA-CONICET), Facultad de Ingeniería, Universidad de Buenos Aires, Av. Las Heras 2214 (1127), Buenos Aires, Argentina.
| | - Lucía Famá
- Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Física de Buenos Aires (IFIBA-CONICET), Intendente Güiraldes 2160 (C1428EGA), Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|