1
|
Pedrosa LDF, Kouzounis D, Schols H, de Vos P, Fabi JP. Assessing high-temperature and pressure extraction of bioactive water-soluble polysaccharides from passion fruit mesocarp. Carbohydr Polym 2024; 335:122010. [PMID: 38616103 DOI: 10.1016/j.carbpol.2024.122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 04/16/2024]
Abstract
The mesocarp (albedo) of passion fruit is considered a waste product but rich in soluble fibers, especially pectins. Biological activity and health benefits of pectins have recently emerged, especially in colorectal cancer and attenuating inflammation. Pectin conventional extraction often uses mineral acids, which can be hazardous to the environment, and alternatives can be costly. Here, we assessed a high-temperature and pressure method to extract pectin from the passion fruit albedo and evaluated the differences from the water-soluble fractions extracted. HPSEC, HPAEC, FTIR-ATR, and HSQC-NMR were performed to identify and confirm the highly methylated homogalacturonan structures. The heat-modified samples showed a decreased molecular size compared to the untreated sample. Colorectal cancer cell lines showed reduced viability after being treated with different doses of modified samples, with two of them, LW-MP3 and 4, showing the most potent effects. All samples were detected inside cells by immunofluorescence assay. It was observed that LW-MP3 and 4 upregulated the p53 protein, indicating cell-cycle arrest and the cleaved caspase-9 in one of the cell lines, with LW-MP4 enhancing cell death by apoptosis. Since the modified samples were composed of hydrolyzed homogalacturonans, those probably were the responsible structures for these anti-cancer effects.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands.
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil.
| |
Collapse
|
2
|
Ganatra P, Jyothish L, Mahankal V, Sawant T, Dandekar P, Jain R. Drug-loaded vegan gummies for personalized dosing of simethicone: A feasibility study of semi-solid extrusion-based 3D printing of pectin-based low-calorie drug gummies. Int J Pharm 2024; 651:123777. [PMID: 38181992 DOI: 10.1016/j.ijpharm.2024.123777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Chewable gummies are an attractive dosage form for all age groups because of their appearance and texture. Although, this dosage form has been highly preferred administering nutraceuticals, its application in the pharmaceutical sector is worth exploring. In this study, simethicone (SMT), an OTC drug prescribed for anti-flatulence was incorporated in pectin- based, low-calorie, 3D printed gummies. Semi-solid extrusion (SSE)-based 3D printing was used to dispense personalized dose of SMT i.e 40 mg for children and 125 mg for adults. Formulation optimization was carried out based on the texture profile of the gummies, using a texture analyzer. The inks were thoroughly characterized for their rheological behavior since it is a critical attribute for SSE-based 3D printing. Printing parameters like the printing speed, layer height and the type of the nozzle were optimized based on the printing accuracy achieved. The printed gummies were further evaluated for their disintegration time, drug content, weight variation, water activity and total microbial count. SSE-based 3D printing was found to be an effective tool to print pectin-based shear thinning gels for accurate drug dispensing. The texture profile of the printed gummies was comparable to the gummies prepared by conventional method as well as the marketed samples.
Collapse
Affiliation(s)
- Pankti Ganatra
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, India
| | - Lakshmi Jyothish
- Department of Food Processing and Technology, Institute of Chemical Technology, Mumbai, India
| | - Vaishnavi Mahankal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Tanvi Sawant
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
3
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
4
|
Zhang T, Tang Y, Ge H, Zhang D, Li T, Cheng D, Liu J, Yu Y. Storage impact on egg white powder's physical and functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3799-3811. [PMID: 36251338 DOI: 10.1002/jsfa.12274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Changes in storage temperature and time alter the functional properties of egg white powder (EWP) and determine its quality and shelf-life, finally affecting the consumer acceptance of the products made from EWP. In the present study, the EWP samples were stored at four different temperatures (-20, 4, 25 and 37 °C) for 60 days, and then the protein structural, physical and functional properties of EWP were measured and assessed further for correlation with storage conditions using heatmap. RESULTS The viscosity of the EWP solution increased after 30 days. Foaming ability and rheological properties increased first and then decreased compared to untreated samples with the prolonged storage time. Correlation analysis results indicated that the gel hardness, water holding capacity, foaming ability, emulsifying ability, particle size, dispersibility and viscosity of EWP were significantly related to storage time (P < 0.05). Only the gelation properties of EWP stored at 37 °C for 60 days changed significantly and were negatively related to its moisture content (P < 0.05). Additionally, the random coil content of EWP was positively correlated with particle size, moisture content, solubility and gel properties, whereas β-sheet was negatively correlated with them. CONCLUSION Compared to other temperatures, the functional properties of EWP were relatively stable under 4 °C. Therefore, the low temperature (4 °C) was selected as the most suitable storage temperature for EWP. The results of the present study could provide a theoretical basis for the shelf-life extension of EWP. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yuanhu Tang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, China
| | - Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, China
| | - Deju Zhang
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Hong Kong, China
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, China
| | - Dongkun Cheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
5
|
Rheological and microstructural properties of polysaccharide obtained from the gelatinous Tremella fuciformis fungus. Int J Biol Macromol 2023; 228:153-164. [PMID: 36566809 DOI: 10.1016/j.ijbiomac.2022.12.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The gelatinous feature of Tremella fuciformis polysaccharide (TFP) has attracted growing interest in its application as a thickening agent in the food industry. This study aims to reveal the microstructure and rheological properties of TFP. Results showed that TFP randomly distributed in aqueous solutions in an irregular worm-like morphology and formed a more extensive entangled network and stiffer chains at higher concentration solutions. The further rheological study indicated that the TFP solutions exhibited a shear-thinning behavior. Multiple results of dynamic oscillation tests confirmed the viscoelastic properties of TFP. Frequency sweep data display that TFP solutions exhibit solid-like behavior at high frequencies, showing the oscillatory behavior of entangled polymers. The temperature sweep demonstrated that the rheological behavior of TFP is thermally reversible. These results enriched the understanding of the rheology-microstructure relationship of TFP solution and were beneficial to expanding the application of TFP in food processing.
Collapse
|
6
|
Rheological characterization of low methoxyl pectin extracted from durian rind. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
7
|
Karimi S, Ghanbarzadeh B, Roufegarinejad L, Falcone PM. Physicochemical and rheological characterization of a novel hydrocolloid extracted from Althaea officinalis root. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Assessing the bioactivity, cytotoxicity, and rheological properties of pectin recovered from citrus peels. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
10
|
Cai W, Hu T, Huang Q. Rheological properties and critical concentrations of a hyperbranched polysaccharide from Lignosus rhinocerotis sclerotia. Int J Biol Macromol 2022; 202:46-54. [PMID: 35038466 DOI: 10.1016/j.ijbiomac.2022.01.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 12/30/2022]
Abstract
The application of polysaccharides in the food industry mainly depends on their rheological properties and the polysaccharides in different concentration regions exhibit different rheological properties due to the interactions between polymer chains. Hence, this work investigated the concentration-dependent rheological behavior of Lignosus rhinocerotis polysaccharide (LRP) in water and determined the critical concentrations. The intrinsic viscosity of LRP was 378 ± 32 mL/g and the LRP exhibited more apparent shear-thinning behavior with increasing concentration. The LRP critical overlap and aggregation concentration in water was ~2.5 mg/mL, implicating the formation of hydrophobic regions may result from the aggregation and overlap between hyperbranched LRP molecules. The LRP/water system showed higher storage modulus than loss modulus with slight frequency dependence at the concentration of 15 mg/mL, exhibiting the structured liquid behavior. When the concentration increased from 10 mg/mL to 30 mg/mL, the compliance recovery percentage value increased from 58.51% to 92.30%, indicating the formation of a strong gel network in the LRP/water system. Furthermore, the micro-rheological test revealed that the LRP/water system exhibited a concentration-dependent increase in elasticity and viscosity and deterioration in fluidity.
Collapse
Affiliation(s)
- Wudan Cai
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Hu
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Biology and Agricultural Resources, Huanggang Normal College, Huanggang 438000, China
| | - Qilin Huang
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
ZHANG H, ZHAO Y, KANG X, LI H, MO H. Effect of sodium trimetaphosphate modification on the structure and rheological properties of zein. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.65522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hao ZHANG
- Henan Institute of Science and Technology, China
| | - Yanyan ZHAO
- Henan Institute of Science and Technology, China
| | | | - Hongbo LI
- Shaanxi University of Science and Technology, China
| | - Haizhen MO
- Shaanxi University of Science and Technology, China
| |
Collapse
|
12
|
Effect of Tamarillo Fortification and Fermentation Process on Physicochemical Properties and Nutrient and Volatiles Content of Yoghurt. Foods 2021; 11:foods11010079. [PMID: 35010204 PMCID: PMC8750935 DOI: 10.3390/foods11010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Bright-red Laird’s Large tamarillo is a unique and under-utilised fruit that is a dietary source of carotenoids, vitamins C and E, and dietary fibre. The effects of the addition of freeze-dried tamarillo powder (5–15%) to milk and yoghurt starter either before (PRE) or after (POS) fermentation on physicochemical properties were examined. Using LC-MS and GG-MS, nutrient and volatile contents of tamarillo yoghurt were also examined. The addition of tamarillo prior to fermentation was associated with a more yellow colour and higher concentrations of tocopherol compared to when tamarillo was added after fermentation. Higher elastic modulus, PUFAs, pro-vitamin A content, and vitamin C retention were observed for POS than PRE. All tamarillo yoghurts showed improvement in syneresis, lower lactose content, and higher concentrations of antioxidant vitamins than the commercial premium-assorted fruits yoghurt from New Zealand Food Composition Data. Yoghurt fortified with tamarillo powder offers the potential for the development of a high-value nutritional product that could be a good source of vitamin C and a source of vitamin E and β-carotene, and maintain the volatiles that give tamarillo its distinctive flavour.
Collapse
|
13
|
Zhong L, Li X, Duan M, Song Y, He N, Che L. Impacts of high hydrostatic pressure processing on the structure and properties of pectin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Lapomarda A, Cerqueni G, Geven MA, Chiesa I, De Acutis A, De Blasi M, Montemurro F, De Maria C, Mattioli-Belmonte M, Vozzi G. Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting. Macromol Biosci 2021; 21:e2100168. [PMID: 34173326 DOI: 10.1002/mabi.202100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Developing biomaterial formulations with specific biochemical characteristics and physical properties suitable for bioprinting of 3D scaffolds is a pivotal challenge in tissue engineering. Therefore, the design of novel bioprintable formulations is a continuously evolving research field. In this work, the authors aim at expanding the library of biomaterial inks by blending two natural biopolymers: pectin and gelatin. Cytocompatible formulations are obtained by combining pectin and gelatin at different ratios and using (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as single crosslinking agent. It is shown that the developed formulations are all suitable for extrusion-based 3D bioprinting. Self-supporting scaffolds with a designed macroporosity and micropores in the bioprinted struts are successfully obtained by combining extrusion-based bioprinting and freeze-drying. The presence of gelatin in these formulations allows for the modulation of porosity, of water uptake and of scaffold stiffness in respect to pure pectin scaffolds. Results demonstrate that these new biomaterial formulations, processed with this specific approach, are promising candidates for the fabrication of tissue-like scaffolds for tissue regeneration.
Collapse
Affiliation(s)
- Anna Lapomarda
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy.,Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| | - Giorgia Cerqueni
- Department of Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, 60121, Italy
| | - Mike A Geven
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Irene Chiesa
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy.,Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| | - Aurora De Acutis
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy
| | - Matteo De Blasi
- Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| | - Francesca Montemurro
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy
| | - Carmelo De Maria
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy.,Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| | - Monica Mattioli-Belmonte
- Department of Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, 60121, Italy
| | - Giovanni Vozzi
- Research Center 'E. Piaggio', University of Pisa, Via Diotisalvi, 1, Pisa, 56122, Italy.,Department of Ingegneria dell'Informazione, University of Pisa, Via Girolamo Caruso, 16, Pisa, 56122, Italy
| |
Collapse
|
15
|
Lin Y, An F, He H, Geng F, Song H, Huang Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Singh RP, Tingirikari JMR. Agro waste derived pectin poly and oligosaccharides: Synthesis and functional characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Zhao R, Wu S, Liu S, Li B, Li Y. Structure and Rheological Properties of Glycerol Monolaurate-Induced Organogels: Influence of Hydrocolloids with Different Surface Charge. Molecules 2020; 25:E5117. [PMID: 33158027 PMCID: PMC7662997 DOI: 10.3390/molecules25215117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Organogel (OG) is a class of semi-solid gel, entrapping organic solvent within a three-dimensional network, which is formed via the self-assembly of organogelators. In the present study, OG was produced by glycerol monolaurate (GML) as organogelator. The influence of hydrocolloids with different surface charges (chitosan (CS), konjac glucomannan (KGM) and sodium alginate (SA)) on the physiochemical properties of OG was investigated. Rheological studies demonstrated that OG and pure hydrocolloid solution showed shear-thinning behavior. After incorporation of the hydrocolloid, the initial viscosity of OG was lowered from ~100 Pa·s to <10 Pa·s, and then the viscosity increased to more than 100 Pa·s at a low shear rate of 0.1-0.2 s-1, which subsequently decreased with a higher shear rate. OGs in the presence of hydrocolloids still kept the thermo-sensitivity, while the melting point of the OG decreased with the incorporation of hydrocolloids. Hydrocolloid addition greatly shortened the gelling time of the OG from 21 min to less than 2 min. The presence of hydrocolloids increased the particle size of oil droplets in the molten OG. Some aggregation and coalescence of oil droplets occurred in the presence of positive-charged CS and negative-charged SA, respectively. After gelling, the gel structure converted into a biphasic-like network. Hydrocolloids improved the hardness, stickiness and the oil-holding stability of OGs by 18.8~33.9%. Overall, hydrocolloid incorporation could modulate the properties of OGs through their different surface charge properties. These novel OGs have potential as nutrient carriers or low-fat margarine alternatives and avoid the trans-fatty acid intake.
Collapse
Affiliation(s)
- Runan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
| | - Shan Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Functional Food Engineering &Technology Research Center of Hubei Province, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Functional Food Engineering &Technology Research Center of Hubei Province, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (R.Z.); (S.W.); (S.L.); (B.L.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Functional Food Engineering &Technology Research Center of Hubei Province, Wuhan 430070, China
| |
Collapse
|
18
|
Abboud KY, Iacomini M, Simas FF, Cordeiro LM. High methoxyl pectin from the soluble dietary fiber of passion fruit peel forms weak gel without the requirement of sugar addition. Carbohydr Polym 2020; 246:116616. [DOI: 10.1016/j.carbpol.2020.116616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
|
19
|
Tavakolipour H, Mokhtarian M, Kalbasi‐Ashtari A. Rheological modeling and activation energy of Persian grape molasses. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hamid Tavakolipour
- Department of Food Science and Technology Sabzevar Branch, Islamic Azad University Sabzevar Iran
| | - Mohsen Mokhtarian
- Department of Food Science and Technology, Roudehen Branch Islamic Azad University Roudehen Iran
| | - Ahmad Kalbasi‐Ashtari
- Food Science and Technology Faculty of Agricultural Technology and Engineering, University of Tehran Karaj Iran
| |
Collapse
|
20
|
Haj Romdhane M, Beltifa A, Mzoughi Z, Rihouey C, Ben Mansour H, Majdoub H, Le Cerf D. Optimization of extraction with salicylic acid, rheological behavior and antiproliferative activity of pectin from Citrus sinensis peels. Int J Biol Macromol 2020; 159:547-556. [PMID: 32439441 DOI: 10.1016/j.ijbiomac.2020.05.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
A Box-Behnken design was used to optimize extraction temperature, extraction time and concentration of the salicylic acid to obtain a maximum polysaccharide yield from Citrus sinensis peels. The optimal settings were: extraction time 3 h, extraction temperature 80 °C and concentration of the salicylic acid 1.5%. Under these conditions, the experimental yield and uronic acid content were 11.74% and 66.9% respectively. Preliminary characterization was performed via FT-IR, SEC/MALS/VD/DRI and GC-MS after hydrolysis. SEC analysis showed that the extracted polysaccharide had a weight average molar mass of 350 kDa and an intrinsic viscosity of 640 mL/g. The GC-MS results revealed that the extracted polysaccharide was composed of arabinose 56.7%, galactose 17.8%, xylose 13.8%, rhamnose 5.1%, mannose 2.5% and glucose 1.5% suggested a rhamnogalacturonan pectin type I with a degree of esterification of 50.9% (IRTF). The flow curve and the dynamic frequency sweep were obtained at 10, 20, 30 and 40 g/L in water and at 30 g/L in presence of CaCl2 or NaCl at 1 mol/L. The solutions showed shear-thinning behavior fitted with Ostwald-De Waele model, except 10 g/L with a Newtonian behavior. The apparent viscosity and, the G' and G" moduli increase with PACO concentration in agreement with a slow-down of the dynamic chain. In the presence of CaCl2 or NaCl the reduction of electrostatic repulsions between pectin chains decreases the rheological parameters. The effect is less sensitive with CaCl2 due to intermolecular interactions. The antiproliferative activity of the extracted pectin on human Caco-2 and Hep-2 cells was very interesting with an IC50 1.4 and 1.8 μg/mL respectively.
Collapse
Affiliation(s)
- Mariem Haj Romdhane
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Asma Beltifa
- University of Monastir, Research Unit of Analysis and Process Applied to Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia, Tunisia
| | - Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Christophe Rihouey
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Hedi Ben Mansour
- University of Monastir, Research Unit of Analysis and Process Applied to Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia, Tunisia
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France.
| |
Collapse
|
21
|
Diep TT, Rush EC, Yoo MJY. Tamarillo (Solanum betaceum Cav.): A Review of Physicochemical and Bioactive Properties and Potential Applications. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1804931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tung Thanh Diep
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland, New Zealand
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
| | - Elaine C. Rush
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
- School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland, New Zealand
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
| |
Collapse
|
22
|
Estrada-Girón Y, Cabrera-Díaz E, Esparza-Merino RM, Martín-del-Campo A, Valencia-Botín AJ. Innovative edible films and coatings based on red color pectin obtained from the byproducts of Hibiscus sabdariffa L. for strawberry preservation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00577-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Chen Q, Xue G, Ni Q, Wang Y, Gao Q, Zhang Y, Xu G. Physicochemical and rheological characterization of pectin-rich polysaccharides from Gardenia jasminoides J. Ellis flower. Food Sci Nutr 2020; 8:3335-3345. [PMID: 32724598 PMCID: PMC7382185 DOI: 10.1002/fsn3.1612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/22/2023] Open
Abstract
Gardenia (Gardenia jasminoides J. Ellis) is regarded as an edible medicine plant in China. Here, gardenia flower polysaccharide fraction (GFPF) was extracted by water at 90°C and its chemical composition, rheological properties, and antioxidant activities of GFPF were investigated. The GFPF extraction yield was 18.04 ± 1.81% (W/W) and mainly comprised neutral sugars (46.83 ± 3.14%), uronic acid (35.21 ± 0.17%), protein (1.63 ± 0.34%), and total phenol (9.49 ± 0.08 mgGAE/g). Galacturonic acid (41.05 ± 0.59%) was the main monosaccharide, and galactose, glucose, arabinose, rhamnose, xylose, mannose, and glucuronic acid were also detected in GFPF. Its degree of esterification was 32.76 ± 1.52%. FT-IR spectra analysis showed a similar absorption pattern between GFPF and pectin from apple. The results suggested that GFPF was low methoxy pectin. Thermogravimetric analysis and zeta potential analysis indicated that the pectin was stable under high temperature and alkaline condition. Steady rheology showed that the GFPF dispersion was a shear thinned pseudoplastic fluid with high apparent viscosities at concentration above 2%. The degree of pseudoplasticity of the solutions increased with the concentrations increased and the temperatures decreased. DPPH and ABTS free radical scavenging assay indicated that GFPF had relatively high antioxidant activity. The results showed that gardenia flower was rich in pectin polysaccharides with low methoxy pectin. It had high apparent viscosities at concentration above 2% and had good antioxidant activity. The data suggested that GFPF can be a new resource of low methoxy pectin with potential application as thicker or gelling agents in food industry.
Collapse
Affiliation(s)
- Qi Chen
- Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology ScienceSchool of Agriculture and Food ScienceZhejiang Agriculture and Forestry UniversityZhejiangChina
| | - Gang Xue
- Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology ScienceSchool of Agriculture and Food ScienceZhejiang Agriculture and Forestry UniversityZhejiangChina
| | - Qinxue Ni
- Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology ScienceSchool of Agriculture and Food ScienceZhejiang Agriculture and Forestry UniversityZhejiangChina
| | - Yan Wang
- Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology ScienceSchool of Agriculture and Food ScienceZhejiang Agriculture and Forestry UniversityZhejiangChina
| | - Qianxin Gao
- Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology ScienceSchool of Agriculture and Food ScienceZhejiang Agriculture and Forestry UniversityZhejiangChina
| | - Youzuo Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology ScienceSchool of Agriculture and Food ScienceZhejiang Agriculture and Forestry UniversityZhejiangChina
| | - Guangzhi Xu
- Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology ScienceSchool of Agriculture and Food ScienceZhejiang Agriculture and Forestry UniversityZhejiangChina
| |
Collapse
|
24
|
Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. MATERIALS 2020; 13:ma13030673. [PMID: 32028627 PMCID: PMC7042806 DOI: 10.3390/ma13030673] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022]
Abstract
Regardless of the considerable progress in properties and versatility of synthetic polymers, their low biodegradability and lack of environmentally-friendly character remains a critical issue. Pectin is a natural-based polysaccharide contained in the cell walls of many plants allowing their growth and cell extension. This biopolymer can be extracted from plants and isolated as a bioplastic material with different applications, including food packaging. This review aims to present the latest research results regarding pectin, including the structure, different types, natural sources and potential use in several sectors, particularly in food packaging materials. Many researchers are currently working on a multitude of food and beverage industry applications related to pectin as well as combinations with other biopolymers to improve some key properties, such as antioxidant/antimicrobial performance and flexibility to obtain films. All these advances are covered in this review.
Collapse
|
25
|
Ognyanov M, Remoroza C, Schols HA, Georgiev YN, Petkova NT, Krystyjan M. Structural, rheological and functional properties of galactose-rich pectic polysaccharide fraction from leek. Carbohydr Polym 2020; 229:115549. [DOI: 10.1016/j.carbpol.2019.115549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 10/25/2022]
|
26
|
Tamarillo (Solanum betaceum): Chemical composition, biological properties, and product innovation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
High-power ultrasound pretreatment for efficient extraction of fractions enriched in pectins and antioxidants from discarded carrots (Daucus carota L.). J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Qin Z, Liu HM, Cheng XC, Wang XD. Effect of drying pretreatment methods on structure and properties of pectins extracted from Chinese quince fruit. Int J Biol Macromol 2019; 137:801-808. [DOI: 10.1016/j.ijbiomac.2019.06.209] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022]
|
29
|
Patel MK, Tanna B, Gupta H, Mishra A, Jha B. Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds. Int J Biol Macromol 2019; 133:190-201. [DOI: 10.1016/j.ijbiomac.2019.04.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
|
30
|
Barbieri SF, da Costa Amaral S, Ruthes AC, de Oliveira Petkowicz CL, Kerkhoven NC, da Silva ERA, Silveira JLM. Pectins from the pulp of gabiroba (Campomanesia xanthocarpa Berg): Structural characterization and rheological behavior. Carbohydr Polym 2019; 214:250-258. [DOI: 10.1016/j.carbpol.2019.03.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
|
31
|
Rodsamran P, Sothornvit R. Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method. Food Chem 2019; 278:364-372. [DOI: 10.1016/j.foodchem.2018.11.067] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
|
32
|
Jiang Y, Du J, Zhang L, Li W. Properties of pectin extracted from fermented and steeped hawthorn wine pomace: A comparison. Carbohydr Polym 2018; 197:174-182. [DOI: 10.1016/j.carbpol.2018.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/29/2022]
|
33
|
Hua X, Yang H, Din P, Chi K, Yang R. Rheological properties of deesterified pectin with different methoxylation degree. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Zhang H, Chen J, Li J, Wei C, Ye X, Shi J, Chen S. Pectin from Citrus Canning Wastewater as Potential Fat Replacer in Ice Cream. Molecules 2018; 23:molecules23040925. [PMID: 29673153 PMCID: PMC6017722 DOI: 10.3390/molecules23040925] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/01/2018] [Accepted: 04/05/2018] [Indexed: 02/03/2023] Open
Abstract
Pectin had been recovered from canning wastewater produced by chemical treatment of segment membrane during preparation of canned citrus in our previous research. The purpose of this study was to characterize the extracted pectin from canning wastewater, and to evaluate its application as a fat alternative to replace fat in ice cream. The monosaccharide composition and rheological properties of the pectin were determined. The influences of fat reduction and pectin addition on the physicochemical, rheological and sensory properties of low-fat ice cream were determined. The rheological results showed that pectin solutions were typical pseudoplastic fluids. The addition of pectin in ice cream can cause an increase in viscosity, overrun, and hardness, and a decrease in meltdown of the ice cream. When 0.72% pectin (w/w) is incorporated into ice cream, a prototype product of ice cream with 45% lower fat content compared to the control was made. Results indicated that their qualities such as appearance, flavor, and taste were not significantly different. The low-fat ice cream had higher smoothness scores and lower mouth-coating scores. Hence, pectin extracted from citrus canning wastewater can be potentially used as fat replacer in ice cream, which benefits both the environment and the food industry.
Collapse
Affiliation(s)
- Hua Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jianle Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Junhui Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Chaoyang Wei
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xingqian Ye
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Shiguo Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds. Carbohydr Polym 2018; 180:63-71. [DOI: 10.1016/j.carbpol.2017.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
36
|
Mohd Rasidek NA, Mad Nordin MF, Iwamoto K, Abd Rahman N, Nagatsu Y, Tokuyama H. Rheological flow models of banana peel pectin jellies as affected by sugar concentration. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1514505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Noor Azwani Mohd Rasidek
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mariam Firdhaus Mad Nordin
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Koji Iwamoto
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Norazah Abd Rahman
- Faculty of Chemical Engineering, Universiti Teknologi Mara, Shah Alam, Malaysia
| | - Yuichiro Nagatsu
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Hideaki Tokuyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
37
|
Morales-Contreras BE, Rosas-Flores W, Contreras-Esquivel JC, Wicker L, Morales-Castro J. Pectin from Husk Tomato (Physalis ixocarpa Brot.): Rheological behavior at different extraction conditions. Carbohydr Polym 2017; 179:282-289. [PMID: 29111053 DOI: 10.1016/j.carbpol.2017.09.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 01/25/2023]
Abstract
A rheological study was carried out to evaluate formulations of test dispersions and gels of high methoxyl pectins (HTHMP) obtained at different conditions from husk tomato waste (Physalis ixocarpa Brot.). The effect of extraction agent (hydrochloric acid or citric acid), blanching time (10 or 15min) and extraction time (15, 20 or 25min) on the rheology of the tested samples was evaluated. Flow behavior and activation energy were evaluated on the test dispersions, while (Ea) frequency sweeps, temperature sweep, creep-recovery test and penetration test were performed on the gels. HTHMP dispersions showed shear thinning flow behavior, while showing a good fit to Cross model. Extraction agent, blanching time and extraction time did not have effect on Cross parameters (ηz, η∞, C, and m). Ea decreased as blanching time and extraction time increased. Frequency sweeps revealed high dependence on frequency for both G' and G", while temperature sweeps (25- 95°C) showed thermostable husk tomato pectin gels. Hydrocloric acid (HCl) extracted pectin gels showed stronger structure than citric acid (CA) gels.
Collapse
Affiliation(s)
- Blanca E Morales-Contreras
- TECNM/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1803, Nueva Vizcaya, 34080 Durango, Dgo., Mexico
| | - Walfred Rosas-Flores
- TECNM/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1803, Nueva Vizcaya, 34080 Durango, Dgo., Mexico
| | - Juan C Contreras-Esquivel
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Ing J. Cárdenas Valdez, República, Saltillo, Coah., Mexico
| | - Louise Wicker
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA 70808, USA; Department of Food Science and Technology, University of Georgia, Athens, GA 30602-7610, USA
| | - Juliana Morales-Castro
- TECNM/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1803, Nueva Vizcaya, 34080 Durango, Dgo., Mexico.
| |
Collapse
|
38
|
Chan SY, Choo WS, Young DJ, Loh XJ. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr Polym 2016; 161:118-139. [PMID: 28189220 DOI: 10.1016/j.carbpol.2016.12.033] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
Abstract
Pectins are a diverse family of biopolymers with an anionic polysaccharide backbone of α-1,4-linked d-galacturonic acids in common. They have been widely used as emulsifiers, gelling agents, glazing agents, stabilizers, and/or thickeners in food, pharmaceutical, personal care and polymer products. Commercial pectin is classified as high methoxy pectin (HMP) with a degree of methylation (DM) >50% and low methoxy pectin (LMP) with a DM <50%. Amidated low methoxy pectins (ALMP) can be obtained through aminolysis of HMP. Gelation of HMP occurs by cross-linking through hydrogen bonds and hydrophobic forces between the methyl groups, assisted by a high co-solute concentration and low pH. In contrast, gelation of LMP occurs by the formation of ionic linkages via calcium bridges between two carboxyl groups from two different chains in close proximity, known as the 'egg-box' model. Pectin gels exhibit Newtonian behaviour at low shear rates and shear-thinning behaviour when the shear rate is increased. An overview of pectin from its origin to its physicochemical properties is presented in this review.
Collapse
Affiliation(s)
- Siew Yin Chan
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - David James Young
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; Singapore Eye Research Institute (SERI), 11 Third Hospital Avenue, Singapore 168751, Singapore.
| |
Collapse
|