1
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
2
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Adetunji CO, Akram M, Michael OS, Shahzad K, Ayeni AE, Hasan S, Adetunji JB, Hasan SM, Inamuddin, Olaniyan M, Muhibi MA. Polysaccharides Derived From Natural Sources: A Panacea to Health and Nutritional Challenges. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
4
|
Zhao S, Wang Y, Yang F, Wang Y, Zhang H. Screening a
Lactobacillus plantarum
strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality. J Appl Microbiol 2020; 129:233-242. [DOI: 10.1111/jam.14604] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/29/2022]
Affiliation(s)
- S.S. Zhao
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - Y.P. Wang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - F.Y. Yang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - Y. Wang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - H. Zhang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
- College of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou P. R. China
| |
Collapse
|
5
|
Fermentation Characteristics of Lactobacillus Plantarum and Pediococcus Species Isolated from Sweet Sorghum Silage and Their Application as Silage Inoculants. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study aims to evaluate the fermentation characteristics of Lactobacillus plantarum and Pediococcus spp isolated from sweet sorghum silage to enhance the fermentation quality of Napier grass and sweet sorghum silage. Based on molecular 16S ribosomal ribonucleic identification the isolated strains were phylogenetically related to Lactobacillus plantarum (HY1), Pediococcus acidilactici (HY2) and Pediococcus claussenii (HY3). Strains HY1, HY2 and HY3 and commercial bacteria Lactobacillus plantarum, Ecosyl; (MTD\1( were ensiled with sweet sorghum and Napier grass and the non-inoculated grasses, have been arranged in a completely randomized experimental design in a 5 (inoculants) × 3 (ensiling periods). In both grasses, the fermentation characteristics chemical composition and microbial population were assessed at 5–30 and 90 days of ensiling. The results showed that the effect of addition inoculants significantly reduced (p < 0.05) the pH, ammonia-N, acetic acid and undesirable microbial population and increased (p < 0.05) lactic acid and lactic acid bacteria counting when compared to the control. The effect of ensiling days on silage quality through the increasing lactic acid, acetic acid, ammonia-N, propionic acid and butyric acid whereas decreasing pH and water-soluble carbohydrates and microbial counts. In both sweet sorghum and Napier silage treated with isolated strains showed the best results in silage quality. The HY3 belongs to Pediococcus claussenii was not extensively studied in silage but it has shown good fermentation quality which strongly recommended to apply as probiotic.
Collapse
|
6
|
Zerbetto M, Angles d'Ortoli T, Polimeno A, Widmalm G. Differential Dynamics at Glycosidic Linkages of an Oligosaccharide as Revealed by 13C NMR Spin Relaxation and Stochastic Modeling. J Phys Chem B 2018; 122:2287-2294. [PMID: 29385337 DOI: 10.1021/acs.jpcb.7b12478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among biomolecules, carbohydrates are unique in that not only can linkages be formed through different positions, but the structures may also be branched. The trisaccharide β-d-Glcp-(1→3)[β-d-Glcp-(1→2)]-α-d-Manp-OMe represents a model of a branched vicinally disubstituted structure. A 13C site-specific isotopologue, with labeling in each of the two terminal glucosyl residues, enabled the acquisition of high-quality 13C NMR relaxation parameters, T1 and T2, and heteronuclear NOE, with standard deviations of ≤0.5%. For interpretation of the experimental NMR data, a diffusive chain model was used, in which the dynamics of the glycosidic linkages is coupled to the global reorientation motion of the trisaccharide. Brownian dynamics simulations relying on the potential of mean force at the glycosidic linkages were employed to evaluate spectral densities of the spin probes. Calculated NMR relaxation parameters showed a very good agreement with experimental data, deviating <3%. The resulting dynamics are described by correlation times of 196 and 174 ps for the β-(1→2)- and β-(1→3)-linked glucosyl residues, respectively, i.e., different and linkage dependent. Notably, the devised computational protocol was performed without any fitting of parameters.
Collapse
Affiliation(s)
- Mirco Zerbetto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Padova 35131, Italy
| | - Thibault Angles d'Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Padova 35131, Italy
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Li Q, Niu Y, Xing P, Wang C. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chin Med 2018; 13:7. [PMID: 29445417 PMCID: PMC5802060 DOI: 10.1186/s13020-018-0166-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Functional polysaccharides can be derived from plants (including herbs), animals and microorganisms. They have been widely used in a broad of biomedical applications, such as immunoregulatory agents or drug delivery vehicles. In the past few years, increasing studies have started to develop natural polysaccharides-based biomaterials for various applications in tissue engineering and regenerative medicine. MAIN BODY We discuss in this article the emerging applications of natural polysaccharides-particularly those derived from Chinese medicine-for wound healing. First, we introduce natural polysaccharides of three natural sources and their biological activities. Then, we focus on certain natural polysaccharides with growth factor-binding affinities and their inspired polymeric tools, with an emphasis on how these polysaccharides could possibly benefit wound healing. Finally, we report the latest progress in the discovery of polysaccharides from Chinese medicinal herbs with identified activities favouring tissue repair. CONCLUSION Natural polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential to serve as therapeutic tools for tissue regeneration.
Collapse
Affiliation(s)
- Qiu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Panfei Xing
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| |
Collapse
|
8
|
Jo S, Myatt D, Qi Y, Doutch J, Clifton LA, Im W, Widmalm G. Multiple Conformational States Contribute to the 3D Structure of a Glucan Decasaccharide: A Combined SAXS and MD Simulation Study. J Phys Chem B 2018; 122:1169-1175. [DOI: 10.1021/acs.jpcb.7b11085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sunhwan Jo
- Leadership
Computing Facility, Argonne National Laboratory, 9700 Cass Avenue, Argonne 60439, Illinois, United States
| | - Daniel Myatt
- ISIS
Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11
OQX, U.K
| | - Yifei Qi
- College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - James Doutch
- ISIS
Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11
OQX, U.K
| | - Luke A. Clifton
- ISIS
Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11
OQX, U.K
| | - Wonpil Im
- Department
of Biological Sciences and Bioengineering, Lehigh University, Bethlehem 18015, Pennsylvania, United States
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| |
Collapse
|
9
|
Francius G, El Zein R, Mathieu L, Gosselin F, Maul A, Block JC. Nano-exploration of organic conditioning film formed on polymeric surfaces exposed to drinking water. WATER RESEARCH 2017; 109:155-163. [PMID: 27883920 DOI: 10.1016/j.watres.2016.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 05/16/2023]
Abstract
Adsorption of organic macromolecules onto surfaces in contact with waters forms a so-called conditioning film and induces modifications of the surface properties. Here, we characterized conditioning films formed onto two hydrophobic materials (used as pipe liner) and immersed for 24 h in tap water. Using combination of atomic force microscopy (AFM), and chemical force microscopy (CFM), we detected some changes in roughness and hydrophilic/hydrophobic balance of the surface of the tested coupons, and also the deposition of numerous organic polymers (few millions/cm2) randomly distributed on the surface. The maximum molecular extension of these organic polymers was in the range of 250-1250 nm according to the tested materials. Systematic analysis of the force curves with the theoretical models (WLC and FJC) allowed determining the proportion of rupture events related to the unfolding of both polysaccharide and polypeptide segments, which represented 75-80% and 20-25% of the analyzed curves, respectively. The number of autochthonous drinking water bacteria, which attached to the material within the same period of time was 10000-folds lower than the detected number of polymers attached to the surface. Even in drinking water systems with relatively low organic matter (dissolved organic carbon < 1.1 mg/L), the potential of formation of a conditioning biofilm is important.
Collapse
Affiliation(s)
- Grégory Francius
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France.
| | - Racha El Zein
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Laurence Mathieu
- EPHE, PSL Research University, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Vandoeuvre-lès-Nancy, F-54500, France
| | - Florence Gosselin
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Armand Maul
- Université de Lorraine - CNRS, Laboratoire interdisciplinaire des environnements continentaux, LIEC, UMR 7360, Metz, F-57070, France
| | - Jean-Claude Block
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| |
Collapse
|