1
|
David C, de Souza JF, Silva AF, Grazioli G, Barboza AS, Lund RG, Fajardo AR, Moraes RR. Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:14. [PMID: 38353746 PMCID: PMC10866797 DOI: 10.1007/s10856-023-06773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
In this study, poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with cannabidiol (CBD) were synthesized (PLGA@CBD microparticles) and embedded up to 10 wt% in a chondroitin sulfate/polyvinyl alcohol hydrogel matrix. In vitro chemical, physical, and biological assays were carried out to validate the potential use of the modified hydrogels as biomaterials. The microparticles had spherical morphology and a narrow range of size distribution. CBD encapsulation efficiency was around 52%, loading was approximately 50%. Microparticle addition to the hydrogels caused minor changes in their morphology, FTIR and thermal analyses confirmed these changes. Swelling degree and total porosity were reduced in the presence of microparticles, but similar hydrophilic and degradation in phosphate buffer solution behaviors were observed by all hydrogels. Rupture force and maximum strain at rupture were higher in the modified hydrogels, whereas modulus of elasticity was similar across all materials. Viability of primary human dental pulp cells up to 21 days was generally not influenced by the addition of PLGA@CBD microparticles. The control hydrogel showed no antimicrobial activity against Staphylococcus aureus, whereas hydrogels with 5% and 10% PLGA@CBD microparticles showed inhibition zones. In conclusion, the PLGA@CBD microparticles were fabricated and successfully embedded in a hydrogel matrix. Despite the hydrophobic nature of CBD, the physicochemical and morphological properties were generally similar for the hydrogels with and without the CBD-loaded microparticles. The data reported in this study suggested that this original biomaterial loaded with CBD oil has characteristics that could enable it to be used as a scaffold for tissue/cellular regeneration.
Collapse
Affiliation(s)
- Carla David
- Biopathological Research Group, Faculty of Dentistry (GIBFO), University of the Andes, Mérida, Venezuela.
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Jaqueline F de Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials-LaCoPol, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Guillermo Grazioli
- Department of Dental Materials, Universidad de la República, Montevideo, Uruguay
| | - Andressa S Barboza
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rafael G Lund
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials-LaCoPol, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
2
|
Asami J, Quevedo BV, Santos AR, Giorno LP, Komatsu D, de Rezende Duek EA. The impact of non-deproteinization on physicochemical and biological properties of natural rubber latex for biomedical applications. Int J Biol Macromol 2023; 253:126782. [PMID: 37690638 DOI: 10.1016/j.ijbiomac.2023.126782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Latex is a colloidal suspension derived from the Hevea brasiliensis tree, derived from natural rubber, poly(isoprene), and assorted constituents including proteins and phospholipids. These constituents are inherent to both natural rubber and latex serum. This investigation was undertaken to examine the impact of the deproteinization process on chemical and biological dynamics of natural rubber latex. Natural Rubber (NR) extracted from the pure latex (LNCP) was obtained through centrifugation, followed by six rounds of solvent purification (LP6). The structure was characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), swelling test, surface zeta potential (ζ), scanning electron microscopy (SEM) and in vitro assay. The results revealed that the LP6 group presented decreased swelling kinetics, reduced cell adhesion and proliferation, and a smoother surface with decreased negative surface charge. Conversely, the LNCP group shown accelerated swelling, heightened adhesion and cellular growth, and a more negatively charged and rougher surface. As such, the attributes of latex serum and proteins have potential usage across numerous biomedical applications.
Collapse
Affiliation(s)
- Jessica Asami
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil.
| | - Bruna V Quevedo
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil; Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| | - Arnaldo R Santos
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Luciana Pastena Giorno
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Eliana Aparecida de Rezende Duek
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil; Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| |
Collapse
|
3
|
Chuah LH, Loo HL, Goh CF, Fu JY, Ng SF. Chitosan-based drug delivery systems for skin atopic dermatitis: recent advancements and patent trends. Drug Deliv Transl Res 2023; 13:1436-1455. [PMID: 36808298 PMCID: PMC9937521 DOI: 10.1007/s13346-023-01307-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/20/2023]
Abstract
Atopic dermatitis (AD) is a complex, relapsing inflammatory skin disease with a considerable social and economic burden globally. AD is primarily characterized by its chronic pattern and it can have important modifications in the quality of life of the patients and caretakers. One of the fastest-growing topics in translational medicine today is the exploration of new or repurposed functional biomaterials into drug delivery therapeutic applications. This area has gained a considerable amount of research which produced many innovative drug delivery systems for inflammatory skin diseases like AD. Chitosan, a polysaccharide, has attracted attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine, and has been considered a promising candidate for AD treatment due to its antimicrobial, antioxidative, and inflammatory response modulation properties. The current pharmacological treatment for AD involves prescribing topical corticosteroid and calcineurin inhibitors. However, the adverse reactions associated with the long-term usage of these drugs such as itching, burning, or stinging sensation are also well documented. Innovative formulation strategies, including the use of micro- and nanoparticulate systems, biopolymer hydrogel composites, nanofibers, and textile fabrication are being extensively researched with an aim to produce a safe and effective delivery system for AD treatment with minimal side effects. This review outlines the recent development of various chitosan-based drug delivery systems for the treatment of AD published in the past 10 years (2012-2022). These chitosan-based delivery systems include hydrogels, films, micro-, and nanoparticulate systems as well as chitosan textile. The global patent trends on chitosan-based formulations for the AD are also discussed.
Collapse
Affiliation(s)
- Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Hooi-Leong Loo
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Ju-Yen Fu
- Malaysian Palm Oil Board, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Gehrcke M, Martins CC, de Bastos Brum T, da Rosa LS, Luchese C, Wilhelm EA, Soares FZM, Cruz L. Novel Pullulan/Gellan Gum Bilayer Film as a Vehicle for Silibinin-Loaded Nanocapsules in the Topical Treatment of Atopic Dermatitis. Pharmaceutics 2022; 14:2352. [PMID: 36365170 PMCID: PMC9699506 DOI: 10.3390/pharmaceutics14112352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
In this study a novel gellan gum/pullulan bilayer film containing silibinin-loaded nanocapsules was developed for topical treatment of atopic dermatitis (AD). The bilayer films were produced by applying a pullulan layer on a gellan gum layer incorporated with silibinin nanocapsules by two-step solvent casting method. The bilayer formation was confirmed by microscopic analysis. In vitro studies showed that pullulan imparts bioadhesitvity for the films and the presence of nanocapsules increased their occlusion factor almost 2-fold. Besides, the nano-based film presented a slow silibinin release and high affinity for cutaneous tissue. Moreover, this film presented high scavenger capacity and non-hemolytic property. In the in vivo study, interestingly, the treatments with vehicle film attenuated the scratching behavior and the ear edema in mice induced by 2,4-dinitrochlorobenzene (DNCB). However, the nano-based film containing silibinin modulated the inflammatory and oxidative parameters in a similar or more pronounced way than silibinin solution and vehicle film, as well as than hydrocortisone, a classical treatment of AD. In conclusion, these data suggest that itself gellan gum/pullulan bilayer film might attenuate the effects induced by DNCB, acting together with silibinin-loaded nanocapsules, which protected the skin from oxidative damage, improving the therapeutic effect in this AD-model.
Collapse
Affiliation(s)
- Mailine Gehrcke
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Carolina Cristóvão Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Taíne de Bastos Brum
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Fabio Zovico Maxnuck Soares
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
5
|
Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022; 27:molecules27175580. [PMID: 36080341 PMCID: PMC9458019 DOI: 10.3390/molecules27175580] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with different advantages and disadvantages. Bacterial cellulose (BC) has received enormous interest in the cosmetic, pharmaceutical, and medical fields due to its biological, physical, and mechanical characteristics, which enable the creation of polymer composites and blends with broad applications. In the medical field, BC was at first used in wound dressings, tissue regeneration, and artificial blood vessels. This material is suitable for treating various skin diseases due its considerable fluid retention and medication loading properties. BC membranes are used as a temporary dressing for skin treatments due to their excellent fit to the body, reduction in pain, and acceleration of epithelial regeneration. BC-based composites and blends have been evaluated and synthesized both in vitro and in vivo to create an ideal microenvironment for wound healing. This review describes different methods of producing and handling BC for use in the medical field and highlights the qualities of BC in detail with emphasis on biomedical reports that demonstrate its utility. Moreover, it gives an account of biomedical applications, especially for tissue engineering and wound dressing materials reported until date. This review also includes patents of BC applied as a wound dressing material.
Collapse
|
6
|
Ferrari Cervi V, Parcianello Saccol C, Henrique Marcondes Sari M, Cristóvão Martins C, Saldanha da Rosa L, Dias Ilha B, Zovico Soares F, Luchese C, Antunes Wilhelm E, Cruz L. Pullulan film incorporated with nanocapsules improves pomegranate seed oil anti-inflammatory and antioxidant effects in the treatment of atopic dermatitis in mice. Int J Pharm 2021; 609:121144. [PMID: 34600055 DOI: 10.1016/j.ijpharm.2021.121144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to prepare pullulan films containing pomegranate seeds oil (PSO) based nanocapsules, and evaluate the formulation efficacy in the treatment of atopic dermatitis (AD)-like lesions induced by 2,4-dinitrochlorobenzene (DNCB). The Eudragit RS 100® nanocapsules (PSONC) were prepared by the interfacial precipitation of preformed polymer, whereas the films were produced by the solvent casting method. Pomegranate seed oil nanoemulsions (PSONE) were prepared by the spontaneous emulsification method for comparative reasons. Both nanosystems presented adequate mean diameter (248 ± 16 nm for PSONE and 181 ± 6 nm for PSONC), polydispersity index (below 0.2), zeta potential (-25.63 ± 1.1 mV for PSONE and + 43.13 ± 0.7 mV for PSONC) and pH in the acid range (6.77 ± 0.27 and 5.31 ± 0.17, PSONE and PSONC). By a pre-formulation study, sorbitol (6.5%) and PEG 400 (1.5%) were considered the most suitable plasticizers for developing pullulan films (6%) intending topical application. In general, pullulan films were classified as flexible and hydrophilic, with high occlusive properties, 57.6 ± 0.8%, 64.6 ± 0.8% for vehicle, PSONCF (pullulan film containing PSONC), respectively. All formulations (films and nanocarriers) presented no irritant potential in the chorioallantoic membrane test. In the in vivo model, the treatments with free PSO and PSONCF attenuated the skin injury as well as the mechanical hypernociceptive behavioral induced by DNCB exposure to mice. Importantly, the biochemical analyses provided evidence that only the treatment with PSONCF modulated the inflammatory and the oxidative stress parameters evaluated in this study. In conclusion, these data lead us to believe that PSONC incorporation into a pullulan film matrix improved the biological properties of the PSO in this AD-model.
Collapse
Affiliation(s)
- Verônica Ferrari Cervi
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Carolina Cristóvão Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Bruna Dias Ilha
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Fábio Zovico Soares
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
7
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
8
|
Beneficial effect on rapid skin wound healing through carboxylic acid-treated chicken eggshell membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112350. [PMID: 34474899 DOI: 10.1016/j.msec.2021.112350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023]
Abstract
At the initial stage of wound healing, growth factors stimulate tissue regeneration by interacting with the extracellular matrix (ECM), leading to rapid wound repair and structural support. Chicken eggshell membrane (ESM) is a low-cost and highly functional ECM biomaterial for tissue regeneration. However, natural ESM has limitations for tissue engineering purposes because it is difficult to control the size, shape, and biocompatibility of the surfaces. To overcome this, blends of synthetic materials and natural ESMs, such as soluble eggshell membrane protein, are combined for biomaterial applications. Unfortunately, it is difficult to pattern fibrous structure. Here, we modified the natural chicken ESM through weak acid treatment to promote wound healing and skin regeneration without loss of fibrous structure. Treatment of citric acid and acetic acid reacted the amine or amide group with carboxyl groups (R-COOH) and achieved hydrophilicity for adherence of proliferating regenerative cells. Our in vitro study revealed that the modified ESM scaffolds significantly promoted human dermal fibroblasts adhesion, viability, proliferation, and cytokine secretion, compared with natural ESM. In addition, the modified ESM accelerated skin regeneration and enhanced the wound healing process even at early stages in an in vivo rat wound model. Collectively, the modified ESM performed best for promoting skin regeneration, cytokine secretion, epidermal cell proliferation, and controlling the inflammatory response both in vitro and in vivo.
Collapse
|
9
|
Voss GT, de Oliveira RL, Davies MJ, Domingues WB, Campos VF, Soares MP, Luchese C, Schiesser CH, Wilhelm EA. Suppressive effect of 1,4-anhydro-4-seleno-D-talitol (SeTal) on atopic dermatitis-like skin lesions in mice through regulation of inflammatory mediators. J Trace Elem Med Biol 2021; 67:126795. [PMID: 34091240 DOI: 10.1016/j.jtemb.2021.126795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a multifactorial chronic inflammatory disease that affects ∼20 % of children and 3% of adults globally and is generally treated by the topical application of steroidal drugs that have undesirable side-effects. The development of alternative therapies is therefore an important objective. The present study investigated the effects of topical treatment with a novel water-soluble selenium-containing carbohydrate derivative (4-anhydro-4-seleno-D-tatitol, SeTal) on the symptoms and inflammatory parameters in an AD mouse model. METHODS Mice were sensitized by applying 2,4-dinitrochlorobenzene (DNCB) to their dorsal skin on days 1-3, then further challenged on their ears and dorsal skin on days 14, 17, 20, 23, 26, and 29. SeTal (1 and 2%) or hydrocortisone (1%) was applied topically to the backs of the mice from days 14-29, and skin severity scores and scratching behavior determined on day 30. The mice were euthanized, and their ears and dorsal skin removed to quantify inflammatory parameters, edema, myeloperoxidase (MPO) activity, and AD-associated cytokines (tumor necrosis factor alpha (TNF-α), interleukins (IL)-18, and IL-33). RESULTS DNCB treatment induced skin lesions and increased the scratching behavior, ear edema, MPO activity (ear and dorsal skin), and cytokine levels in dorsal skin. Topical application of SeTal improved inflammatory markers (cytokine levels and MPO activity), cutaneous severity scores, and scratching behavior. CONCLUSION The efficacy of SeTal was satisfactory in the analyzed parameters, showing similar or better results than hydrocortisone. SeTal appears to be therapeutically advantageous for the treatment and control of AD.
Collapse
Affiliation(s)
- Guilherme T Voss
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil
| | - Renata L de Oliveira
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark; Seleno Therapeutics Pty. Ltd., Brighton East, VIC, 3187, Australia
| | - William B Domingues
- Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil
| | - Mauro P Soares
- Laboratório Regional de Diagnóstico Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil
| | - Carl H Schiesser
- Seleno Therapeutics Pty. Ltd., Brighton East, VIC, 3187, Australia.
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil.
| |
Collapse
|
10
|
Seidi F, Khodadadi Yazdi M, Jouyandeh M, Dominic M, Naeim H, Nezhad MN, Bagheri B, Habibzadeh S, Zarrintaj P, Saeb MR, Mozafari M. Chitosan-based blends for biomedical applications. Int J Biol Macromol 2021; 183:1818-1850. [PMID: 33971230 DOI: 10.1016/j.ijbiomac.2021.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Polysaccharides are the most abundant naturally available carbohydrate polymers; composed of monosaccharide units covalently connected together. Chitosan is the most widely used polysaccharides because of its exceptional biocompatibility, mucoadhesion, and chemical versatility. However, it suffers from a few drawbacks, e.g. poor mechanical properties and antibacterial activity for biomedical applications. Blending chitosan with natural or synthetic polymers may not merely improve its physicochemical and mechanical properties, but may also improve its bioactivity-induced properties. This review paper summarizes progress in chitosan blends with biodegradable polymers and polysaccharides and their biomedical applications. Blends of chitosan with alginate, starch, cellulose, pectin and dextran and their applications were particularly addressed. The critical and challenging aspects as well as the future ahead of the use of chitosan-based blends were eventually enlightened.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | | | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala 682013, India
| | - Haleh Naeim
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | | | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Nasalapure AV, Chalannavar RK, Kasai DR, Reddy KR, Raghu AV. Novel polymeric hydrogel composites: Synthesis, physicochemical, mechanical and biocompatible properties. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac11bf] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
In this research study, novel hydrogel composite films were constructed using different ratios of poly (vinyl alcohol) (PVA)/kappa-carrageenan (KC) (PVA90/KC10%, PVA80/KC20%, PVA70/KC30%, PVA60/KC40%) crosslinked with glutaraldehyde (0.025%) and investigated their physicochemical characteristics such as mechanical, thermal, morphological, swelling behaviour, and cell viability. SEM and FTIR revealed that surface morphology changed to heterogeneous and the presence of molecular interaction among the polymers. PVA90KC10 and PVA60KC40 exhibited smaller and larger pores on surface respectively. The change in the proportion of PVA and KC also triggered the tensile strength (Ts) of the film and the highest Ts observed were 21.60 MPa for PVA60KC40. Moreover, the thermal analysis showed three-phase degradation, and an increase in KC40 concentration results inversely proportional to a decrease in the rate of thermal degradation. Further, swelling and in-vitro biodegradation study confirmed the enhanced perseverance of water uptake for PVA60KC40 (286%) due to pores structure of the hydrogel film and PVA and KC alone degraded faster as compare to other films results suggested higher concentration of PVA90KC10 showed lower degradation rate and highest for PVA60KC40 about 6% and 22% respectively. Further, the cell viability was studied with MTT assay method by using NIH3T3 and HEK-293 cells for biocompatibility study revealed NIH3T3 cells were more biocompatible than HEK-293 and cell viability percent for PVA60KC40 showed the highest cell attachment about 99%. Overall corroborating data obtained from the study attested to the average swelling, appreciable mechanical characters, good interaction between molecules, and cell viability of the constructed PVA/KC hydrogel film, these all characters pave to be used as a potential template for biomedical applications such as tissue engineering and drug delivery.
Collapse
|
12
|
Karakurt I, Ozaltin K, Vargun E, Kucerova L, Suly P, Harea E, Minařík A, Štěpánková K, Lehocky M, Humpolícek P, Vesel A, Mozetic M. Controlled release of enrofloxacin by vanillin-crosslinked chitosan-polyvinyl alcohol blends. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112125. [PMID: 34082942 DOI: 10.1016/j.msec.2021.112125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2021] [Accepted: 04/18/2021] [Indexed: 11/28/2022]
Abstract
In transdermal drug delivery applications uniform drug distribution and sustained release are of great importance to decrease the side effects. In this direction in the present research, vanillin crosslinked chitosan (CS) and polyvinyl alcohol (PVA) blend based matrix-type transdermal system was prepared by casting and drying of aqueous solutions for local delivery of enrofloxacin (ENR) drug. Subsequently, the properties including the morphology, chemical structure, thermal behavior, tensile strength, crosslinking degree, weight uniformity, thickness, swelling and drug release of the CS-PVA blend films before and after crosslinking were characterized. In vitro drug release profiles showed the sustained release of ENR by the incorporation of vanillin as a crosslinker into the CS-PVA polymer matrix. Furthermore, the release kinetic profiles revealed that the followed mechanism for all samples was Higuchi and the increase of vanillin concentration in the blend films resulted in the change of diffusion mechanism from anomalous transport to Fickian diffusion. Overall, the obtained results suggest that the investigated vanillin crosslinked CS-PVA matrix-type films are potential candidates for transdermal drug delivery system.
Collapse
Affiliation(s)
- Ilkay Karakurt
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Kadir Ozaltin
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Elif Vargun
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Department of Chemistry, Mugla Sitki Kocman University, Kotekli, 48000 Mugla, Turkey.
| | - Liliana Kucerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Evghenii Harea
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Antonín Minařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Kateřina Štěpánková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Marian Lehocky
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Petr Humpolícek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Miran Mozetic
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
13
|
Preparation and properties of conductive bacterial cellulose-based graphene oxide-silver nanoparticles antibacterial dressing. Carbohydr Polym 2021; 257:117671. [DOI: 10.1016/j.carbpol.2021.117671] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
|
14
|
Shams G, Rad AN, Safdarian M, Rezaie A, Bavarsad N, Abbaspour M. Self-microemulsification-assisted incorporation of tacrolimus into hydrophilic nanofibers for facilitated treatment of 2,4-dinitrochlorobenzene induced atopic dermatitis like lesions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wu Y, Wu M. Exosomes From Adipose-Derived Stem Cells: The Emerging Roles and Applications in Tissue Regeneration of Plastic and Cosmetic Surgery. Front Cell Dev Biol 2020; 8:574223. [PMID: 33015067 PMCID: PMC7511773 DOI: 10.3389/fcell.2020.574223] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are an important stem cell type separated from adipose tissue, with the properties of multilineage differentiation, easy availability, high proliferation potential, and self-renewal. Exosomes are novel frontiers of intercellular communication regulating the biological behaviors of cells, such as angiogenesis, immune modulation, proliferation, and migration. ASC-derived exosomes (ASC-exos) are important components released by ASCs paracrine, possessing multiple biological activities. Tissue regeneration requires coordinated “vital networks” of multiple growth factors, proteases, progenitors, and immune cells producing inflammatory cytokines. Recently, as cell-to-cell messengers, ASC-exos have received much attention for the fact that they are important paracrine mediators contributing to their suitability for tissue regeneration. ASC-exos, with distinct properties by encapsulating various types of bioactive cargoes, are endowed with great application potential in tissue regeneration, mechanically via the migration and proliferation of repair cells, facilitation of the neovascularization, and other specific functions in different tissues. Here, this article elucidated the research progress of ASC-exos about tissue regeneration in plastic and cosmetic surgery, including skin anti-aging therapy, dermatitis improvement, wound healing, scar removal, flap transplantation, bone tissue repair and regeneration, obesity prevention, fat grafting, breast cancer, and breast reconstruction. Deciphering the biological properties of ASC-exos will provide further insights for exploring novel therapeutic strategies of tissue regeneration in plastic and cosmetic surgery.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Bock N, Pham TLB, Nguyen TB, Nguyen TB, Tran HA, Tran PA. Polydopamine coating of uncrosslinked chitosan as an acellular scaffold for full thickness skin grafts. Carbohydr Polym 2020; 245:116524. [PMID: 32718628 DOI: 10.1016/j.carbpol.2020.116524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
There is an unmet need for skin grafting materials that are readily available for large area wounds, due to complex, lengthy and costly manufacturing processes that are not compatible with this type of wounds. Here we developed an acellular skin graft material based on surface coating of uncrosslinked porous (UCLP) chitosan. UCLP chitosan membranes had mechanical properties in ranges suitable for skin grafting. Polydopamine (PDA) coating improved hydrophilicity and resulted in a significant increase in attachment and metabolic activity of mammalian cells in vitro. PDA coating also decreased the attachment of pseudomonas aeruginosa - a common bacteria infecting skin wounds. Finally, the PDA-coated membranes were implanted in full thickness surgical wounds in a rodent model and resulted in complete would closure in 5 days. The current study suggests that PDA-coated UCLP chitosan membranes could be a simple and effective strategy for the development of grafting materials for large area wounds.
Collapse
Affiliation(s)
- Nathalie Bock
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | | | | | | | - Hien A Tran
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; Interface Science and Materials Engineering Group, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), IHBI, QUT, Brisbane, QLD, Australia
| | - Phong A Tran
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; Interface Science and Materials Engineering Group, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), IHBI, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Gularte MS, Anghinoni JM, Abenante L, Voss GT, de Oliveira RL, Vaucher RA, Luchese C, Wilhelm EA, Lenardão EJ, Fajardo AR. Synthesis of chitosan derivatives with organoselenium and organosulfur compounds: Characterization, antimicrobial properties and application as biomaterials. Carbohydr Polym 2019; 219:240-250. [DOI: 10.1016/j.carbpol.2019.05.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023]
|
18
|
Zou L, Zhang Y, Liu X, Chen J, Zhang Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 2019; 178:222-229. [PMID: 30870789 DOI: 10.1016/j.colsurfb.2019.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 02/06/2023]
Abstract
To mimic the mineral component and the microstructure of natural bone, nanohydroxyapatite (nHAP)/polymer (natural and synthetic materials) composite scaffolds with micropore structures and good mechanical performance were prepared via the assistance of sonication and amidation. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed the biomimetic homogeneous formation of nHAP in the polymer matrix. Fourier transform infrared spectroscopy (FTIR) indicated that the polymer matrix regulated the crystallization of nHAP. The integration of synthetic/natural polymers benefited nHAP crystallization in the polymer matrix and thus improved the mechanical performance of the chitosan (CS)/collagen (Col)/ poly (lactic acid) (PLA)/nHAP scaffolds. The in vitro bioactivity ability was investigated by incubating in a simulated body fluid (SBF). The methyl thiazolyl tetrazolium (MTT) test, the acridine orange/ethidium bromide (AO/EB) and Giemsa staining showed that the scaffolds had good biocompatibility and could maintain the cell growth. Therefore, the CS/Col/PLA/nHAP scaffold is promising for bone tissue engineering applications.
Collapse
Affiliation(s)
- Lin Zou
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Yujue Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Xiaocui Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jingdi Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China; College of Dental Medicine, Columbia University, New York 10032, USA.
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China; Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
19
|
Souza JF, Costa GP, Luque R, Alves D, Fajardo AR. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: a green and versatile catalyst for the synthesis of 1,2,3-triazoles. Catal Sci Technol 2019. [DOI: 10.1039/c8cy01796d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study demonstrates that a polysaccharide-based hydrogel embedded with copper nanoparticles catalyzes cycloaddition reactions involving different azide and alkyne precursors.
Collapse
Affiliation(s)
| | | | - Rafael Luque
- Departamento de Química Orgánica
- Grupo FQM-383
- Universidad de Córdoba
- Córdoba
- Spain
| | | | | |
Collapse
|
20
|
Polysaccharide-based film loaded with vitamin C and propolis: A promising device to accelerate diabetic wound healing. Int J Pharm 2018; 552:340-351. [DOI: 10.1016/j.ijpharm.2018.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 10/06/2018] [Indexed: 01/07/2023]
|
21
|
Aguirre-Loredo RY, Velazquez G, Gutierrez MC, Castro-Rosas J, Rangel-Vargas E, Gómez-Aldapa CA. Effect of airflow presence during the manufacturing of biodegradable films from polymers with different structural conformation. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Lessa EF, Nunes ML, Fajardo AR. Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohydr Polym 2018; 189:257-266. [DOI: 10.1016/j.carbpol.2018.02.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 11/26/2022]
|
23
|
Therapeutic and technological potential of 7-chloro-4-phenylselanyl quinoline for the treatment of atopic dermatitis-like skin lesions in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Swain SK, Prusty K. Biomedical applications of acrylic-based nanohydrogels. JOURNAL OF MATERIALS SCIENCE 2018; 53:2303-2325. [DOI: 10.1007/s10853-017-1726-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Li Q, Lu F, Zhou G, Yu K, Lu B, Xiao Y, Dai F, Wu D, Lan G. Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules 2017; 18:3766-3775. [DOI: 10.1021/acs.biomac.7b01180] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qing Li
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Fei Lu
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guofang Zhou
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Kun Yu
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Bitao Lu
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Yang Xiao
- Sericulture and Agri-Food Research Institute of Guangdong Academy of Agriculture Science, Guangzhou 510610, China
| | - Fangying Dai
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Dayang Wu
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| |
Collapse
|
26
|
de Souza JF, da Silva GT, Fajardo AR. Chitosan-based film supported copper nanoparticles: A potential and reusable catalyst for the reduction of aromatic nitro compounds. Carbohydr Polym 2017; 161:187-196. [DOI: 10.1016/j.carbpol.2017.01.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
|
27
|
Development, characterization and biocompatibility of chondroitin sulfate/poly(vinyl alcohol)/bovine bone powder porous biocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:526-535. [DOI: 10.1016/j.msec.2016.11.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 01/19/2023]
|