1
|
Ryu Y, Bouharras FE, Cha M, Mudondo J, Kim Y, Ramakrishnan SR, Shin S, Yu Y, Lee W, Park J, Song Y, Yum SJ, Cha HG, Ahn D, Kim SJ, Kim HT. Recent advancements in the evolution, production, and degradation of biodegradable mulch films: A review. ENVIRONMENTAL RESEARCH 2025; 277:121629. [PMID: 40250592 DOI: 10.1016/j.envres.2025.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Biomass-based plastic production systems play a crucial role in fostering a sustainable society. Biodegradable mulch films (BDMs) have emerged as a practical solution to environmental pollution in agriculture. Various types of BDMs, including polybutylene adipate-co-terephthalate, polybutylene succinate, and polybutylene succinate-co-adipate, have been developed, though many are still derived from fossil-fuel-based plastics. Furthermore, the adoption of biodegradable materials in agricultural practices remains limited. This review critically assesses the evolution and significance of mulch films, highlighting the transition from traditional polyethylene (PE) to BDMs in response to environmental challenges. We provide an overview of the biorefinery approach to producing biomass-derived BDMs, discussing biomass pretreatment, saccharification, production of plastic monomers using microbial cell factories, purification, and polymerization. The review also explores techniques to enhance the biodegradation capabilities of mulch films during polymerization. Additionally, we emphasize the necessity for advancements in controlling the degradation rates of BDMs. By addressing the environmental concerns associated with the disposal of these materials, this review underscores the importance of developing effective strategies for a more sustainable and environmentally friendly agricultural landscape.
Collapse
Affiliation(s)
- Yeonkyeong Ryu
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Fatima Ezzahra Bouharras
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Minseok Cha
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joyce Mudondo
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Younghoon Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Sudha Rani Ramakrishnan
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biotechnology, Anna University, Chennai, 600025, India
| | - Sangbin Shin
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea; Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Youngchang Yu
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Jiyoung Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yunjeong Song
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| | - Dowon Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Soo-Jung Kim
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Gao J, Bi Y, Su J, Zhang Y, Wang Y, Zhang S. The rigid-flexible balanced molecular crosslinking network transition interface: An effective strategy for improving the performance of bamboo fibers/poly(butadiene succinate-co-butadiene adipate) biocomposites. Int J Biol Macromol 2024; 276:133786. [PMID: 38992551 DOI: 10.1016/j.ijbiomac.2024.133786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The poor interfacial compatibility of natural fiber-reinforced polymer composites has become a major challenge in the development of industry-standard high-performance composites. To solve this problem, this study constructs a novel rigid-flexible balanced molecular crosslinked network transition interface in composites. The interface improves the interfacial compatibility of the composites by balancing the stiffness and strength of the fibers and the matrix, effectively improving the properties of the composites. The flexural strength and flexural modulus of the composites were enhanced by 38 % and 44 %, respectively. Water absorption decreased by 30 %. The initial and maximum thermal degradation temperatures increased by 20 °C and 16 °C, respectively. The maximum storage modulus increased by 316 %. Furthermore, the impact toughness was elevated by 41 %, attributed to the crosslinked network's efficacy in absorbing and dissipating externally applied energy. This innovative approach introduces a new theory of interfacial reinforcement compatibility, advancing the development of high-performance and sustainable biocomposites.
Collapse
Affiliation(s)
- Jian Gao
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanbin Bi
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jixing Su
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Zhang
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yida Wang
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Gao J, Zhang Y, Bi Y, Du K, Su J, Zhang S. A strong hydrogen bond bridging interface based on tannic acid for improving the performance of high-filled bamboo fibers/poly (butylene succinate-co-butylene adipate) (PBSA)biocomposites. Int J Biol Macromol 2024; 267:131611. [PMID: 38641288 DOI: 10.1016/j.ijbiomac.2024.131611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Natural plant fiber-reinforced bio-based polymer composites are widely attracting attention because of their economical, readily available, low carbon, and biodegradable, and showing promise in gradually replacing petroleum-based composites. Nevertheless, the fragile interfacial bonding between fiber and substrate hinders the progression of low-cost and abundant sustainable high-performance biocomposites. In this paper, a novel high-performance sustainable biocomposite was built by introducing a high density strong hydrogen-bonded bridging interface based on tannic acid (TA) between bamboo fibers (BFs) and PBSA. Through comprehensive analysis, this strategy endowed the biocomposites with better mechanical properties, thermal stability, dynamic thermo-mechanical properties and water resistance. The optimum performance of the composites was achieved when the TA concentration was 2 g/L. Tensile strength as well as modulus, flexural strength as well as modulus, and impact strength improved by 22 %, 10 %, 15 %, 35 %, and 25 % respectively. Additionally, the initial degradation temperature(Tonset) and maximum degradation temperature(Tmax) increased by 12.07 °C and 14.8 °C respectively. The maximum storage modulus(E'), room temperature E', and loss modulus(E")elevated by 199 %, 75 %, and 181 % respectively. Moreover, the water absorption rate decreased by 59 %. The strong hydrogen-bonded bridging interface serves as a novel model and theory for biocomposite interface engineering. At the same time, it offers a promising future for the development of high performance sustainable biocomposites with low cost and abundant biomass resources and contributes to their wide application in aerospace, automotive, biomedical and other field.
Collapse
Affiliation(s)
- Jian Gao
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanbin Bi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jixing Su
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Long Z, Wang W, Zhou Y, Yu L, Shen L, Dong Y. Effect of polybutylene adipate terephthalate on the properties of starch/polybutylene adipate terephthalate shape memory composites. Int J Biol Macromol 2023; 240:124452. [PMID: 37068541 DOI: 10.1016/j.ijbiomac.2023.124452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In this work, the starch/polybutylene adipate terephthalate (PBAT) composite films with high starch content were prepared by hot-pressing and ultraviolet cross-linking methods using cassava starch, benzophenone (BP), degradable PBAT and citric acid as film-forming substrate, photosensitizer, toughening material and solvent, respectively. The results showed that starch and PBAT had excellent performance, resulting in the composites films exhibit robust tensile strength (9.90 MPa), decent elongation at break (500.05 %) and excellent shape memory property. Under 30 % pre-tensile strain, the shape memory fixity and recovery ratios reached 96.58 % and 93.94 %, respectively. In addition, the starch-based films were successfully rendered hydrophobic by PBAT hydrophobic characteristics. PBAT not only secures the biodegradability of the starch/PBAT composites films, but also improves the mechanical properties of them, and meets the requirements of the thermal shrinkage films when subjected to large strain.
Collapse
Affiliation(s)
- Zhaomeng Long
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Wenjun Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yue Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Laiming Yu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Luting Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yubing Dong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Liu C, Han Z, Yan X, Yu J, Zhang Q, Wang D, Zhao Y, Zhang H. Rheological and mechanical properties, heat resistance and hydrolytic degradation of poly(butylene succinate‐
co
‐adipate)/stereocomplex polylactide blends. J Appl Polym Sci 2023. [DOI: 10.1002/app.53884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Chengkai Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- College of Chemical and Environmental Engineering Shandong University of Science and Technology Qingdao 266510 China
| | - Zhengyi Han
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xiangyu Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Jinshuo Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Dongmei Wang
- College of Chemical and Environmental Engineering Shandong University of Science and Technology Qingdao 266510 China
| | - Yan Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Huiliang Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
6
|
Yoksan R, Dang KM. The effect of polyethylene glycol sorbitan monostearate on the morphological characteristics and performance of thermoplastic starch/biodegradable polyester blend films. Int J Biol Macromol 2023; 231:123332. [PMID: 36681227 DOI: 10.1016/j.ijbiomac.2023.123332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Although thermoplastic starch (TPS) has been developed to mitigate greenhouse gas emissions and environmental and health-related impacts from plastics, high moisture sensitivity and poor mechanical properties limited its practical applications. Blending TPS with biodegradable polyesters, i.e., poly(lactic acid) (PLA) and poly(butylene succinate-co-butylene adipate) (PBSA), is an alternative approach; however, the compatibility among polymer phases needs to be improved. Here, polyethylene glycol sorbitan monostearate (Tween 60), an amphiphilic surfactant, was proposed to improve the compatibility and performance of the TPS/PLA/PBSA 40/30/30 blend. The concentration of Tween 60 varied in the range of 0.5-2.5 wt%. The blends were fabricated using an extruder through two different melt-mixing routes, i.e., direct mixing and masterbatch mixing, and then converted to film using a blown film extrusion line. Tween 60 could improve compatibility between TPS dispersed phase and PLA/PBSA matrix, resulting in increased tensile strength, extensibility, impact strength, thermal stability, and water vapor and oxygen barrier properties of the ternary blend. In addition, better performance of the blend was obtained from the direct mixing route. Tween 60 could thus be considered a potential compatibilizer for the TPS/PLA/PBSA blend film, which can be further used as a biodegradable packaging material.
Collapse
Affiliation(s)
- Rangrong Yoksan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| | - Khanh Minh Dang
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
7
|
Maubane L, Lekalakala R, Orasugh JT, Letwaba J. Effect of short-chain architecture on the resulting thermal properties of polypropylene. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Polymers (Basel) 2022; 14:polym14112268. [PMID: 35683940 PMCID: PMC9182625 DOI: 10.3390/polym14112268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The enhancement of the PLA thermomechanical properties is significant due to its suitability as a replacement for primary synthetic polymer use in diverse industrial production. The amphiphilic chitin was used as a compatibilizer in PLA/starch biocomposite. The properties of plasticised polylactic acid blended with starch, and amphiphilic chitin was studied for enhanced thermomechanical and viscoelastic properties. Chitin was modified using acetylated substitution reaction and blended with plasticised PLA/starch biocomposite. The biocomposite was prepared with combined compression and melt extrusion techniques. The biocomposite’s thermomechanical, thermal, mechanical, and morphological properties were studied using dynamic mechanical analysis, TGA-DSC, tensile test, and scanning electron microscopy. The storage and loss modulus were significantly enhanced with increased amphiphilic chitin content. Similarly, the single peak of tan delta showed good miscibility of the polymeric blend. Additionally, the modulus increases with frequency change from 1 Hz to 10 Hz. The thermal stability of the biocomposite was observed to be lower than the neat PLA. The tensile properties of the biocomposite increased significantly more than the neat PLA, with P4S4C having the highest tensile strength and modulus of 87 MPa and 7600 MPa. The SEM images show good miscibility with no significant void in the fractured surface. The viscoelastic properties of PLA were enhanced considerably with plasticizer and amphiphilic chitin with improved biodegradability. The properties of the biocomposite can be adapted for various industrial applications.
Collapse
|
10
|
Olaiya NG, Obaseki OS, Mersal GAM, Ibrahim MM, Hessien MM, Grace OF, Afzal A, Khanam T, Rashedi A. Functional miscibility and thermomechanical properties enhancement of substituted phthalic acetylated modified chitin filler in biopolymer composite. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211411. [PMID: 35706656 PMCID: PMC9156934 DOI: 10.1098/rsos.211411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
The miscibility between hydrophobic and hydrophilic biopolymers has been of significant challenge. This study used a novel simplified chitin modification method to produce phthalic chitin using phthalic anhydride in a substitution reaction. The FT-IR functional group analysis was used to confirm the substitution reaction. The modified chitin was used as compatibilizer in polylactic acid (PLA)/starch biocomposite to enhance its properties. The biocomposite was prepared using melt extrusion and compression moulding technique. The biocomposite's morphological, thermomechanical and water absorption properties were characterized using scanning electron microscope, tensile test, dynamic mechanical analysis, thermogravimetry analysis, differential scanning calorimetry, thickness swelling and water absorption test. The FT-IR study shows a successful substitution reaction of the amine hydrogen ion present in the chitin as opposed to substituting the hydrogen ion in the hydroxide group. The tensile and impact properties of biocomposite incorporated with modified chitin showed better results compared with other samples. The SEM images showed uniform miscibility of the modified biocomposite. The dynamic mechanical analysis showed improved modulus value with the incorporation of modified chitin. The thermal properties showed improved thermal stability of the modified biocomposite. Furthermore, the percentage of water absorbed by biocomposite with modified chitin is reduced compared with the PLA/starch biocomposite. The produced biodegradable ternary blend can be used as a substitute for plastics in industrial applications.
Collapse
Affiliation(s)
- N. G. Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology Akure, PMB 704, Ondo state, Nigeria
| | - O. S. Obaseki
- Department of Physical Sciences, Landmark University, PMB 1001, Omu-Aran, Kwara State, Nigeria
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud M. Hessien
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Asif Afzal
- Department of Mechanical Engineering, School of Technology, Glocal University, Delhi-Yamunotri, Marg, SH-57, Mirzapur pole, Saharanpur District, Uttar Pradesh 247121, India
- University Centre for Research and Development, Department of Mechanical Engineering, Chandigarh University, Gharuan Mohali, Punjab, India
| | - Taslima Khanam
- College of Engineering, I.T. and Environment, Charles Darwin University, Ellengowan Drive, Casuarina, NT 0810, Australia
| | - Ahmad Rashedi
- College of Engineering, I.T. and Environment, Charles Darwin University, Ellengowan Drive, Casuarina, NT 0810, Australia
| |
Collapse
|
11
|
Applications of Starch Biopolymers for a Sustainable Modern Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14106085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protected cultivation in modern agriculture relies extensively on plastic-originated mulch films, nets, packaging, piping, silage, and various applications. Polyolefins synthesized from petrochemical routes are vastly consumed in plasticulture, wherein PP and PE are the dominant commodity plastics. Imposing substantial impacts on our geosphere and humankind, plastics in soil threaten food security, health, and the environment. Mismanaged plastics are not biodegradable under natural conditions and generate problematic emerging pollutants such as nano-micro plastics. Post-consumed petrochemical plastics from agriculture face many challenges in recycling and reusing due to soil contamination in fulfilling the zero waste hierarchy. Hence, biodegradable polymers from renewable sources for agricultural applications are pragmatic as mitigation. Starch is one of the most abundant biodegradable biopolymers from renewable sources; it also contains tunable thermoplastic properties suitable for diverse applications in agriculture. Functional performances of starch such as physicomechanical, barrier, and surface chemistry may be altered for extended agricultural applications. Furthermore, starch can be a multidimensional additive for plasticulture that can function as a filler, a metaphase component in blends/composites, a plasticizer, an efficient carrier for active delivery of biocides, etc. A substantial fraction of food and agricultural wastes and surpluses of starch sources are underutilized, without harnessing useful resources for agriscience. Hence, this review proposes reliable solutions from starch toward timely implementation of sustainable practices, circular economy, waste remediation, and green chemistry for plasticulture in agriscience
Collapse
|
12
|
Cotacallapa-Sucapuca M, Vega EN, Maieves HA, Berrios JDJ, Morales P, Fernández-Ruiz V, Cámara M. Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review. Foods 2021; 10:1096. [PMID: 34063375 PMCID: PMC8156340 DOI: 10.3390/foods10051096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
The development of new food products obtained by extrusion processing has increased in recent years. Extrusion is used by the food industry to produce a wide variety of food products, such as ready-to-eat foods (e.g., snacks), among others. Pulses have also gained popularity as novel food ingredients in the formulation of a variety of food and food products, due to their high content of macro and micronutrients, and bioactive compounds that improve the nutritional and functional properties of the final food products. In this review, the impact of extrusion variables on proteins, carbohydrates, vitamins, phenolics and antinutritional compounds in pulses and pulse-based formulations are highlighted. Particularly, the impact of the specific mechanical energy. Also, the preservation, increase and/or reduction in those functional compounds, as a consequence of different extrusion processing conditions, are discussed.
Collapse
Affiliation(s)
- Mario Cotacallapa-Sucapuca
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (M.C.-S.); (E.N.V.); (H.A.M.); (P.M.); (V.F.-R.)
- Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| | - Erika N. Vega
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (M.C.-S.); (E.N.V.); (H.A.M.); (P.M.); (V.F.-R.)
| | - Helayne A. Maieves
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (M.C.-S.); (E.N.V.); (H.A.M.); (P.M.); (V.F.-R.)
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro nº 01, Pelotas 96010-610, RS, Brazil
| | | | - Patricia Morales
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (M.C.-S.); (E.N.V.); (H.A.M.); (P.M.); (V.F.-R.)
| | - Virginia Fernández-Ruiz
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (M.C.-S.); (E.N.V.); (H.A.M.); (P.M.); (V.F.-R.)
| | - Montaña Cámara
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (M.C.-S.); (E.N.V.); (H.A.M.); (P.M.); (V.F.-R.)
| |
Collapse
|
13
|
Zhang C, Chen F, Meng W, Li C, Cui R, Xia Z, Liu C. Polyurethane prepolymer-modified high-content starch-PBAT films. Carbohydr Polym 2021; 253:117168. [PMID: 33278963 DOI: 10.1016/j.carbpol.2020.117168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
We report a modified starch-poly(butylene adipate co-terephthalate) (PBAT) film (MSPF) prepared by extrusion blowing. Polyurethane prepolymer (PUP), was modified to the starch to enhance the compatibility. Different contents of amylose was blended with PBAT for improving mechanical strength and oxygen-barrier properties of MSPF. The microstructures, crystallinity, mechanical properties, oxygen-barrier capacity of MSPF were thoroughly evaluated. The result showed that MSPF with high starch content and excellent performances was successfully prepared with the synergy of PUP modification, amylose introduction and extrusion blowing. The crystallinity, hydrophobicity, oxygen-barrier properties and mechanical properties of MSPF increased with the increasing amylose content. The maximum tensile strength and elongation at break of MSPF reached 10.6 MPa and 805.6 %, respectively, even at the high starch content of 50 %. The result demonstrated that MSPF having excellent mechanical properties and oxygen-barrier properties could be use in the biodegradable field such as packaging materials, agricultural films and garbage bags.
Collapse
Affiliation(s)
- Chenhao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Wei Meng
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chengqiang Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ruihua Cui
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zhean Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
14
|
Effects of high starch content on the physicochemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing. Carbohydr Polym 2020; 239:116231. [DOI: 10.1016/j.carbpol.2020.116231] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022]
|
15
|
Olaiya NG, Nuryawan A, Oke PK, Khalil HPSA, Rizal S, Mogaji PB, Sadiku ER, Suprakas SR, Farayibi PK, Ojijo V, Paridah MT. The Role of Two-Step Blending in the Properties of Starch/Chitin/Polylactic Acid Biodegradable Composites for Biomedical Applications. Polymers (Basel) 2020; 12:polym12030592. [PMID: 32151004 PMCID: PMC7182811 DOI: 10.3390/polym12030592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.
Collapse
Affiliation(s)
- Niyi Gideon Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology Akure, P.M.B. 740, Akure 340282, Nigeria; (P.K.O.); (P.B.M.); (P.K.F.)
- School of Industrial Technology, University Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (N.G.O.); (H.P.S.A.K.); (M.T.P.)
| | - Arif Nuryawan
- Department of Forest Products Technology, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Peter Kayode Oke
- Department of Industrial and Production Engineering, Federal University of Technology Akure, P.M.B. 740, Akure 340282, Nigeria; (P.K.O.); (P.B.M.); (P.K.F.)
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, University Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (N.G.O.); (H.P.S.A.K.); (M.T.P.)
| | - Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - P. B. Mogaji
- Department of Industrial and Production Engineering, Federal University of Technology Akure, P.M.B. 740, Akure 340282, Nigeria; (P.K.O.); (P.B.M.); (P.K.F.)
| | - E. R. Sadiku
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria 0183, South Africa;
| | - S. R. Suprakas
- DST-/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (S.R.S.); (V.O.)
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Peter Kayode Farayibi
- Department of Industrial and Production Engineering, Federal University of Technology Akure, P.M.B. 740, Akure 340282, Nigeria; (P.K.O.); (P.B.M.); (P.K.F.)
| | - Vincent Ojijo
- DST-/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (S.R.S.); (V.O.)
| | - M. T. Paridah
- Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, Seri Kembangan 43400, Malaysia
- Correspondence: (N.G.O.); (H.P.S.A.K.); (M.T.P.)
| |
Collapse
|
16
|
Effect of Empty Fruit Brunch reinforcement in PolyButylene-Succinate/Modified Tapioca Starch blend for Agricultural Mulch Films. Sci Rep 2020; 10:1166. [PMID: 31980742 PMCID: PMC6981160 DOI: 10.1038/s41598-020-58278-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
In this study, it focused on empty fruit brunch (EFB) fibres reinforcement in polybutylene succinate (PBS) with modified tapioca starch by using hot press technique for the use of agricultural mulch film. Mechanical, morphological and thermal properties were studied. Mechanical analysis showed decreased in values of modulus strength for both tensile and flexural testing for fibres insertion. Higher EFB fibre contents in films resulted lower mechanical properties due to poor fibre wetting from insufficient matrix. This has also found evident in SEM micrograph, showing poor interfacial bonding. Water vapour permeability (WVP) shows as higher hydrophilic EFB fibre reinforcement contents, the rate of WVP also increase. Besides this, little or no significant changes on thermal properties for composite films. This is because high thermal stability PBS polymer show its superior thermal properties dominantly. Even though EFB fibres insertion into PBS/tapioca starch biocomposite films have found lower mechanical properties. It successfully reduced the cost of mulch film production without significant changes of thermal performances.
Collapse
|
17
|
Olaiya NG, Surya I, Oke PK, Rizal S, Sadiku ER, Ray SS, Farayibi PK, Hossain MS, Abdul Khalil HPS. Properties and Characterization of a PLA-Chitin-Starch Biodegradable Polymer Composite. Polymers (Basel) 2019; 11:polym11101656. [PMID: 31614623 PMCID: PMC6836172 DOI: 10.3390/polym11101656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA–chitin, PLA–starch and PLA–chitin–starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young’s modulus, and impact showed that the PLA–chitin–starch blend has the best mechanical properties compared to PLA–chitin and PLA–starch blends. The dynamic mechanical analysis result shows a better damping property for PLA–chitin than PLA–chitin–starch and PLA–starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA–chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA–chitin–starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA–chitin and PLA–starch samples.
Collapse
Affiliation(s)
- N G Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology, P.M.B.740 Akure, Nigeria.
- School of Industrial Technology, Universiti Sains Malaysia,11800 Penang, Malaysia.
| | - Indra Surya
- Department of Chemical Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia.
| | - P K Oke
- Department of Industrial and Production Engineering, Federal University of Technology, P.M.B.740 Akure, Nigeria.
| | - Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
| | - E R Sadiku
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680 Pretoria, South Africa.
| | - S S Ray
- DST-/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| | - P K Farayibi
- Department of Industrial and Production Engineering, Federal University of Technology, P.M.B.740 Akure, Nigeria.
| | - Md Sohrab Hossain
- School of Industrial Technology, Universiti Sains Malaysia,11800 Penang, Malaysia.
| | - H P S Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia,11800 Penang, Malaysia.
| |
Collapse
|
18
|
Sakkara S, Nataraj D, Venkatesh K, Xu Y, Patil JH, Reddy N. Effect of pH on the physicochemical properties of starch films. J Appl Polym Sci 2019. [DOI: 10.1002/app.48563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Seema Sakkara
- Centre for Incubation, Innovation, Research and ConsultancyJyothy Institute of Technology Thathaguni Post 560082 Bengaluru India
- Research Resource CentreVisvesvaraya Technological University, Jnana Sangama Belagavi Belgavi Karnataka 590018 India
| | - Divya Nataraj
- Centre for Incubation, Innovation, Research and ConsultancyJyothy Institute of Technology Thathaguni Post 560082 Bengaluru India
- Research Resource CentreVisvesvaraya Technological University, Jnana Sangama Belagavi Belgavi Karnataka 590018 India
| | - Krishna Venkatesh
- Centre for Incubation, Innovation, Research and ConsultancyJyothy Institute of Technology Thathaguni Post 560082 Bengaluru India
| | - Yixiang Xu
- Agriculture Research Station, Virginia State University Petersburg Virginia 23806
| | - Jagadish H. Patil
- Department of Chemical EngineeringR.V. College of Engineering Bangalore 560059 India
| | - Narendra Reddy
- Centre for Incubation, Innovation, Research and ConsultancyJyothy Institute of Technology Thathaguni Post 560082 Bengaluru India
| |
Collapse
|
19
|
Fan M, Zhou M, Deng S, Chen F, Zhang Q, Fu Q. Property enhancement of poly(butylene succinate)/poly(ethyleneglycol- co
-cyclohexane-1,4-dimethanolterephthalate) blends via high-speed extrusion and in situ
fibrillation. J Appl Polym Sci 2019. [DOI: 10.1002/app.47549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mao Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Sha Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Feng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|
20
|
Abstract
Demand for environmentally friendly plastic materials which are obtained from renewable resources such as biomass-based polyesters is of concern. Herein, the enhanced characteristic performances of poly(butylene succinate) (PBS) by employing the fabrication of PBS-based composites with the nanosilver-coated carbon black (AgCB) using an injection-molding method are reported. The preformed AgCB additives are priorly prepared by the benzoxazine oxidation method. Phase characterization of the obtained composite materials examined by X-ray diffraction (XRD) reveals the crystalline PBS matrix and the presence of metallic silver particles, confirming the successful fabrication of the composite materials. Detailed analyses on thermal, mechanical, electrical, and antimicrobial properties of the composite materials are reported. The AgCB-PBS composite materials provide such potential features by an enhancement of electrical conductivity and the antimicrobial activity by an inhibition against E. coli and C. albicans. These AgCB-PBS composite materials show the possibility to be an option for antielectrostatic and antimicrobial applications such as for the production of smart, environmentally friendly keyboards.
Collapse
|
21
|
A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int J Biol Macromol 2019; 122:969-996. [DOI: 10.1016/j.ijbiomac.2018.10.092] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 01/30/2023]
|
22
|
Ayu RS, Khalina A, Harmaen AS, Zaman K, Jawaid M, Lee CH. Effect of Modified Tapioca Starch on Mechanical, Thermal, and Morphological Properties of PBS Blends for Food Packaging. Polymers (Basel) 2018; 10:E1187. [PMID: 30961112 PMCID: PMC6290640 DOI: 10.3390/polym10111187] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022] Open
Abstract
In this study, polybutylene succinate (PBS) was blended with five types of modified tapioca starch to investigate the effect of modified tapioca starch in PBS blends for food packaging by identifying its properties. Tensile and flexural properties of blends found deteriorated for insertion of starch. This is due to poor interface, higher void contents and hydrolytic degradation of hydrophilic starch. FTIR results show all starch/PBS blends are found with footprints of starch except OH stretching vibration which is absent in B40 blends. Besides, Broad O⁻H absorption in all specimens show that these are hydrogen bonded molecules and no free O⁻H bonding was found. SEM testing shows good interfacial bonding between PBS and starch except E40 blends. Therefore, poor results of E40 blends was expected. In TGA, a slightly weight loss found between 80 to 100 °C due to free water removal. Apart from this, insertion of all types of starch reduces thermal stability of blend. However, high crystallinity of starch/PBS blend observed better thermal stability but lower char yield. Starch A and B blends are suggested to be used as food wrap and food container materials while starch D blend is suitable for grocery plastic bags according to observed results.
Collapse
Affiliation(s)
- Rafiqah S Ayu
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Abdan Khalina
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Ahmad Saffian Harmaen
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Khairul Zaman
- Polycomposite Sdn Bhd, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia.
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Ching Hao Lee
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| |
Collapse
|
23
|
Preparation, characterization, and bioactivity of the polyester and tea waste green composites. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2322-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Maubane L, Ray SS, Jalama K. Influence of Silica Size on Properties of Poly[(Butylene Succinate)-Co-Adipate]/Butyl-Etherified High-Amylose Starch Blend Composites. STARCH-STARKE 2017. [DOI: 10.1002/star.201700181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lesego Maubane
- DST-CSIR National Centre for Nanostructured Materials; Council for Scientific and Industrial Research; Pretoria 0001 South Africa
- Department of Chemical Engineering; University of Johannesburg; Doornfontein 2028 Johannesburg South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials; Council for Scientific and Industrial Research; Pretoria 0001 South Africa
- Department of Applied Chemistry; University of Johannesburg; Doornfontein 2028 Johannesburg South Africa
| | - Kalala Jalama
- Department of Chemical Engineering; University of Johannesburg; Doornfontein 2028 Johannesburg South Africa
| |
Collapse
|