1
|
Marwan-Abdelbaset E, Samy-Kamal M, Tan D, Lu X. Microbial production of hyaluronic acid: The current advances, engineering strategies and trends. J Biotechnol 2025; 403:52-72. [PMID: 40154620 DOI: 10.1016/j.jbiotec.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Hyaluronic acid (HA) is a versatile biomolecule with applications in medicine, cosmetics, and pharmaceuticals. While traditionally extracted from animal tissues, HA is now predominantly produced through microbial fermentation. Microbial fermentation using strains such as Streptococcus zooepidemicus, Corynebacterium glutamicum, and Bacillus subtilis offers a more scalable and sustainable alternative to chemical and animal extraction methods. Recent studies reveal promising yields from engineered strains of Corynebacterium glutamicum and Bacillus subtilis, utilizing advanced metabolic and genetic techniques. Recent advancements in genetic and metabolic engineering, as well as synthetic biology, have addressed some challenges related to molecular weight, viscosity, and by-product formation. This review focuses on the microbial production of HA using engineered strains, encompassing producer organisms, metabolic engineering strategies, industrial-scale production, and key factors influencing molecular weight. Furthermore, it addresses the challenges and potential solutions associated with HA production. Additional research is necessary to develop more efficient and robust engineered strains that exhibit resistance to contamination and can utilize low-cost substrates, such as Pseudomonas putida and Halomonas spp. By overcoming these challenges, researchers can advance the industrial production of HA and expand its applications, thereby contributing to the growth of the HA market.
Collapse
Affiliation(s)
- Ehab Marwan-Abdelbaset
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed Samy-Kamal
- Department of Marine Sciences and Applied Biology, University of Alicante, Sciences Building V, San Vicente del Raspeig Campus, PO Box 99, Alicante 03080, Spain
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - XiaoYun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
2
|
Saeed S, Maghraby M, Elnaggar AY, Abdel-Hafez SH, Attia YA. Photobiostimulation of Saccharomyces cerevisiae with Nano Cobalt Ferrite: A Sustainable Approach to Bioethanol Production from Banana Peels. Curr Microbiol 2025; 82:117. [PMID: 39907819 DOI: 10.1007/s00284-025-04099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
This study presents a pioneering investigation into the effects of cobalt ferrite nanoparticles (CoFe₂O₄ NPs) on the fermentation efficiency of Saccharomyces cerevisiae and the production of bioethanol from banana peel biomass. The findings reveal a notable difference between the control sample, which produced only 11.16% bioethanol, and the enhanced yield achieved with the addition of 100 ppm CoFe₂O₄ nanoparticles, which reached an impressive 52.16%. This substantial increase underscores the potential of nanomaterials to catalyze fermentation processes, likely due to their unique physicochemical properties that enhance metabolic activity in yeast cells. Additionally, the study explored the impact of visible light irradiation on bioethanol production. Light exposure alone resulted in a 15.44% increase in ethanol yield compared to the control sample without nanoparticles. This emphasizes the role of light in enhancing fermentation dynamics, potentially by providing additional energy for metabolic reactions. When CoFe₂O₄ nanoparticles were activated by visible light, their stimulating effects on ethanol production were further intensified, leading to a remarkable ethanol yield of 63.01%. These results indicate a synergistic relationship between the nanoparticles and light, where the photoactivation of the nanomaterials not only boosts their catalytic properties but also enhances the overall metabolic activity of Saccharomyces cerevisiae. This suggests a promising approach for developing more efficient fermentation processes, potentially increasing bioethanol yields while utilizing waste materials. Overall, the integration of nanotechnology with renewable biomass resources offers a viable pathway toward more sustainable energy solutions.
Collapse
Affiliation(s)
- Samar Saeed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mona Maghraby
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Ashraf Y Elnaggar
- Department of Food Sciences and Nutrition, College of Science, Taif University, 21944, Taif, Saudi Arabia
| | - Shams H Abdel-Hafez
- Department of Chemistry, College of Science, Taif University, 21944, Taif, Saudi Arabia
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
3
|
Graciela CQ, José Juan EC, Gieraldin CL, Xóchitl Alejandra PM, Gabriel AÁ. Hyaluronic Acid-Extraction Methods, Sources and Applications. Polymers (Basel) 2023; 15:3473. [PMID: 37631529 PMCID: PMC10459667 DOI: 10.3390/polym15163473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this review, a compilation of articles in databases on the extraction methods and applications of hyaluronic acid (HA) was carried out. HA is a highly hydrated component of different tissues, including connective, epithelial, and neural. It is an anionic, linear glycosaminoglycan (GAG) primarily found in the native extracellular matrix (ECM) of soft connective tissues. Included in the review were studies on the extraction methods (chemical, enzymatical, combined) of HA, describing advantages and disadvantages as well as news methods of extraction. The applications of HA in food are addressed, including oral supplementation, biomaterials, medical research, and pharmaceutical and cosmetic industry applications. Subsequently, we included a section related to the structure and penetration routes of the skin, with emphasis on the benefits of systems for transdermal drug delivery nanocarriers as promoters of percutaneous absorption. Finally, the future trends on the applications of HA were included. This final section contains the effects before, during, and after the application of HA-based products.
Collapse
Affiliation(s)
- Callejas-Quijada Graciela
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Escobar-Chávez José Juan
- Unidad de Investigación Multidisciplinaria, Laboratorio 12: Sistemas Transdérmicos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54714, Estado de México, Mexico;
| | - Campos-Lozada Gieraldin
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Pérez-Marroquín Xóchitl Alejandra
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Aguirre-Álvarez Gabriel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
| |
Collapse
|
4
|
Saeed S, Samer M, Mohamed MSM, Abdelsalam E, Mohamed YMA, Abdel-Hafez SH, Attia YA. Implementation of graphitic carbon nitride nanomaterials and laser irradiation for increasing bioethanol production from potato processing wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34887-34897. [PMID: 35040058 DOI: 10.1007/s11356-021-18119-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 05/09/2023]
Abstract
Agricultural and agro-industrial wastes (e.g., potato peel waste) are causing severe environmental problems. The processes of pretreatment, saccharification, and fermentation are the major obstacles in bioethanol production from wastes and must be overcome by efficient novel techniques. The effect of exposing the fungi (yeast) Saccharomyces cerevisiae to laser source with the addition of graphitic carbon nitride nanosheets (g-C3N4) with different concentrations on bioethanol production was investigated through the implementation of a batch anaerobic system and using potato peel waste (PPW). Dichromate test was implemented as quantitative analysis for quantification of the bioethanol yield. The benefits of this test were the appearance of green color indicating the identification of ethanol (C2H5OH) by bare eye and the ease to calculate the bioethanol yield through UV-visible spectrophotometry. The control sample (0.0 ppm of g-C3N4) showed only a 4% yield of bioethanol; however, by adding 150 ppm to PPW medium, 22.61% of ethanol was produced. Besides, laser irradiations (blue and red) as influencing parameters were studied with and without the addition of g-C3N4 nanomaterials aiming to increase the bioethanol. It was determined that the laser irradiation can trigger the bioethanol production (in case of red: 13.13% and in case of blue: 16.14% yields, respectively) compared to the control sample (in absence of g-C3N4). However, by adding different concentrations of g-C3N4 nanomaterials from 5 to 150 ppm, the bioethanol yield was increased as follows: in case of red: 56.11% and, in case of blue: 56.77%, respectively. It was found that using fungi and exposing it to the blue laser diode source having a wavelength of 450 nm and a power of 250 mW for a duration of 30 min with the addition of 150 mg L-1 of g-C3N4 nanomaterials delivered the highest bioethanol yield from PPW.
Collapse
Affiliation(s)
- Samar Saeed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mohamed Samer
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Mahmoud S M Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Essam Abdelsalam
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Yasser M A Mohamed
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Shams H Abdel-Hafez
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
6
|
Qiu Y, Ma Y, Huang Y, Li S, Xu H, Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym 2021; 269:118320. [PMID: 34294332 DOI: 10.1016/j.carbpol.2021.118320] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronic acid (HA) is a naturally formed acidic mucopolysaccharide, with excellent moisturising properties and used widely in the medicine, cosmetics, and food industries. The industrial production of specific molecular weight HA has become imperative. Different biological activities and physiological functions of HA mainly depend on the degree of polymerisation. This article reviews the research status and development prospects of the green biosynthesis and molecular weight regulation of HA. There is an application-based prerequisite of specific molecular weight of HA that could be regulated either during the fermentation process or via a controlled HA degradation process. This work provides an important theoretical basis for the downstream efficient production of diversified HA, which will further accelerate the research applications of HA and provide a good scientific basis and method reference for the study of the molecular weight regulation of similar biopolymers.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, PR China.
| | - Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
7
|
Wang J, He W, Wang T, Li M, Li X. Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus. Colloids Surf B Biointerfaces 2021; 205:111854. [PMID: 34022706 DOI: 10.1016/j.colsurfb.2021.111854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022]
Abstract
Nanoparticles (NPs) were hypothesized to enhance fermentation processes and assist microorganisms in producing valuable biopolymers. Donors of trace iron, i.e., FeSO4·7H2O, zero-valence iron nanoparticles (Fe NPs), and ferric oxide nanoparticles (α-Fe2O3 NPs), were tested to study the impact on hyaluronic acid (HA) production. The bioprocess with the addition of 30 mg/L Fe NPs produced higher HA than the other groups. However, Fe NPs were limited by the synergistic effect of geomagnetism and high surface energy, resulting in obvious agglomeration behavior. To address this, we developed novel sucrose-modified iron nanoparticles (SM-Fe NPs), which showed effective improvement of dispersion and agglomeration. Concerning the SM-Fe NP additives, an adequate supply of nutrients and trace elements provided sufficient substrates and energy for the reproduction of Streptococcus zooepidemicus. Furthermore, the highest HA production with the addition of 30 mg/L SM-Fe NPs was 0.226 g/L, and the dry weight of the produced HA increased 3.28 times compared with the control group (0.069 g/L). This work significantly improved HA production and presented promising opportunities for industrial production.
Collapse
Affiliation(s)
- Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China
| | - Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China
| | - Man Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China.
| |
Collapse
|
8
|
Pan NC, Baldo C, Pereira HCB, Vignoli JA, Celligoi MAPC. Perspectives of microbial hyaluronic acid utilization in wound healing. MICROBIAL BIOTECHNOLOGY IN FOOD AND HEALTH 2021:227-250. [DOI: 10.1016/b978-0-12-819813-1.00009-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Attia YA, Al Nazawi AM, Elsayed H, Sadik MW. Carbon nanotubes catalyzed UV-trigger production of hyaluronic acid from Streptococcus equi. Saudi J Biol Sci 2021; 28:484-491. [PMID: 33424331 PMCID: PMC7783678 DOI: 10.1016/j.sjbs.2020.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Hyaluronic acid (HA) has great importance in biomedical applications. In this work, a novel nanoparticle-based method that stimulates the hyaluronic acid (HA) production by the bacteria Streptococcus equi subsp. Zooepidemicus has been reported. CNTs with diameters of 40-50 nm and lengths of about 20 mm were used at four different concentrations (0, 10, 25, 50, and 100 μg) to the bacteria and determined the mass of the produced HA in dependence on the exposure time under UV-irradiation. The results clearly showed that the exposure for one minute with low power UV light (254 nm) and 100 µg (CNTs) treatments steadily increased HA production from the control (0.062 g/L) to the highest value (0.992) g/L of HA. The incubation of the streptococci with CNTs led to an increase of the HA production by a factor of 4.23 after 300S exposure time under UV light, whereas the HA production was no significant enhancement under visible light. It is explained that the CNTs nanoparticle-stimulated increase of the HA production with the internalization of the nanoparticles by the bacteria since they "serve as co-enzymes" under induced mutation by UV-irradiation. Transformation process was carried out and showed that the major protein band of Streptococcus equi was observed in the Streptococcus DH5α. RAPD analysis indicates that the amplified DNA fragments and the percentage of polymorphism was similar between Streptococcus equi and Streptococcus DH50α. The chemical structure and molecular weight of the photoproduced HA from Streptococcus equi was similar to the chemical structure of the standard sample.
Collapse
Affiliation(s)
- Yasser A. Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt
| | - Ashwaq M. Al Nazawi
- Preventive Medicine Department, Public Health Directorate, Ministry of Health, Jeddah 22246, Saudi Arabia
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mahmoud W. Sadik
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
10
|
Cheng F, Yu H, Stephanopoulos G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. Metab Eng 2019; 55:276-289. [DOI: 10.1016/j.ymben.2019.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
|
11
|
Chahuki FF, Aminzadeh S, Jafarian V, Tabandeh F, Khodabandeh M. Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus. Int J Biol Macromol 2018; 121:870-881. [PMID: 30342141 DOI: 10.1016/j.ijbiomac.2018.10.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 10/14/2018] [Indexed: 01/16/2023]
Abstract
Hyaluronic acid (HA) is a natural polymer with various molecular weights that specify multiple biological roles. Traditionally, HA is obtained from animal waste and conventional pathogenic streptococci. However, there are challenges in these processes such as the presence of exotoxins, hyaluronidase, and viral contamination. In order to reduce these problems, this study was conducted to produce HA using recombinant bacterium that is generally recognized as safe (GRAS), and thereafter increase production through experimental design. At first, some lactic acid bacteria were screened and evaluated for HA production. Accordingly, among the selected bacteria, Lactobacillus acidophilus PTCC1643 produced about 0.25 g HA/L in the 48th hour of cultivation, and was thus selected as an alternative host for heterologous HA production. An expression vector containing HA synthase genes was transformed into L. acidophilus by electroporation. Consequently, HA production increased to 0.4 g/L. Eventually, response surface method (RSM) was used, which increased HA production to 1.7 g/L. This is approximately 7-fold higher than that produced at first. The resulting HA was characterized by FTIR spectroscopy and its molecular weight was estimated using agarose gel electrophoresis. In conclusion, L. acidophilus could be a safe, effective, and novel HA producer with industrial potential and commercial prospects.
Collapse
Affiliation(s)
- Fatemeh Fotouhi Chahuki
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Institute of Industrial and Environmental Biotechnology, Bioprocess Engineering Research Group, Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, P. O. Box: 14965/161, Tehran, Iran; Department of Biology, Faculty of Sciences, University of Zanjan, Iran
| | - Saeed Aminzadeh
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Institute of Industrial and Environmental Biotechnology, Bioprocess Engineering Research Group, Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, P. O. Box: 14965/161, Tehran, Iran.
| | - Vahab Jafarian
- Department of Biology, Faculty of Sciences, University of Zanjan, Iran
| | - Fatemeh Tabandeh
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Institute of Industrial and Environmental Biotechnology, Bioprocess Engineering Research Group, Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, P. O. Box: 14965/161, Tehran, Iran
| | - Mahvash Khodabandeh
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Institute of Industrial and Environmental Biotechnology, Bioprocess Engineering Research Group, Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, P. O. Box: 14965/161, Tehran, Iran
| |
Collapse
|