1
|
Lv D, Chen F, Yang X, Yin L. Investigating the gelation behavior and mechanisms of Ficus awkeotsang Makino pectin under the influence of different cations. Int J Biol Macromol 2025; 310:143406. [PMID: 40268002 DOI: 10.1016/j.ijbiomac.2025.143406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
This study explored the gelation behavior, gel properties, and mechanisms of Ficus awkeotsang Makino Pectin (JFSP) under monovalent (Li+, Na+, K+, Rb+, Cs+) and divalent metal ions (Mg2+, Ca2+, Fe2+, Zn2+, Sr2+, Ba2+). At a polymer concentration of 0.3 % (w/v), stable gels formed with divalent ions at 1.8 × 10-3 mol/L and monovalent ions at 4.5 × 10-4 mol/L. The addition of metal ions increased the particle size of pectin dispersions, with divalent ions causing a larger increase (180.3 ± 0.3 and 202.2 ± 2.3 nm) compared to monovalent ions (170.2 ± 0.6 to 177.3 ± 0.2 nm). Also the metal ions neutralized negative charges on pectin molecules and transformed layered pectin gels into an ordered and porous network, as confirmed by scanning electron microscopy. Atomic force microscopy and small-angle X-ray scattering further confirmed a cross-linked structure with smaller inter-chain distance in Ca2+-treated gels (2.67 nm) compared to K+-treated (2.95 nm) and control samples (3.65 nm). Microrheology indicated enhanced pectin interactions and network heterogeneity upon ion addition. Infrared spectroscopy showed intensified ionic carboxyl group vibrations, suggesting interactions between free carboxyl groups and cations, reducing electrostatic repulsion and promoting chain entanglement and cross-linking. Therefore, divalent ions, especially Ca2+, promoted gelation and improved gel hardness (20.15 ± 0.62 g), water holding capacity (98.86 ± 1.06 %), and stability (water loss rate of <10 %). These findings highlight the critical role of ion type and concentration in optimizing JFSP gel performance, with important implications for the development of JFSP-based functional foods.
Collapse
Affiliation(s)
- Dingyang Lv
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, LuoHe, Henan 462000, China.
| | - Xi Yang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, PO Box 40, 17 Qinghuadonglu, Haidian, Beijing 100083, China.
| |
Collapse
|
2
|
Tsirigotis-Maniecka M, Górska E, Mazurek-Hołys A, Pawlaczyk-Graja I. Unlocking the Potential of Food Waste: A Review of Multifunctional Pectins. Polymers (Basel) 2024; 16:2670. [PMID: 39339134 PMCID: PMC11436238 DOI: 10.3390/polym16182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
This review comprehensively explores the multifunctional applications of pectins derived from food waste and by-products, emphasizing their role as versatile biomaterials in the medical-related sectors. Pectins, known for their polyelectrolytic nature and ability to form hydrogels, influence the chemical composition, sensory properties, and overall acceptability of food and pharmaceutical products. The study presents an in-depth analysis of molecular parameters and structural features of pectins, such as the degree of esterification (DE), monosaccharide composition, galacturonic acid (GalA) content, and relative amounts of homogalacturonan (HG) and rhamnogalacturonan I (RG-I), which are critical for their technofunctional properties and biological activity. Emphasis is placed on pectins obtained from various waste sources, including fruits, vegetables, herbs, and nuts. The review also highlights the importance of structure-function relationships, especially with respect to the interfacial properties and rheological behavior of pectin solutions and gels. Biological applications, including antioxidant, immunomodulatory, anticancer, and antimicrobial activities, are also discussed, positioning pectins as promising biomaterials for various functional and therapeutic applications. Recalled pectins can also support the growth of probiotic bacteria, thus increasing the health benefits of the final product. This detailed review highlights the potential of using pectins from food waste to develop advanced and sustainable biopolymer-based products.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Ewa Górska
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Aleksandra Mazurek-Hołys
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Izabela Pawlaczyk-Graja
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| |
Collapse
|
3
|
Ji R, Zhang X, Chen Z, Song S, Li Y, Zhang X, Zhang W. Effect of metal cation crosslinking on the mechanical properties and shrimp freshness monitoring sensitivity of pectin/carboxymethyl cellulose sodium/anthocyanin intelligent films. Carbohydr Polym 2024; 340:122285. [PMID: 38858002 DOI: 10.1016/j.carbpol.2024.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Although many preparation methods have been reported so far, it is still a great challenge for intelligent packaging films with both excellent mechanical properties and very high sensitivity. Herein, we report a facile method to prepare performance-enhanced pectin (PC)/carboxymethyl cellulose sodium (CMC)/anthocyanins (ACNs)/metal ion films by crosslinking with metal ions (Zn2+, Mg2+ and Ca2+). Cross-linking reaction between PC/CMC and metal ions significantly improved water resistance and mechanical properties of composite films (P < 0.05). Even at high relative humidity (RH = 84 %), cross-linking of Ca2+, Mg2+, and Zn2+ significantly increased the tensile index of the films by 1.37, 1.41, and 1.52 times (P < 0.05), respectively. Moreover, the complexation of metal ions/polysaccharides with ACNs reduced the decomposition rate of ACNs, improved the storage stability and antioxidant capacity of ACNs, and also increased the sensitivity of the colorimetric response of the indicator films in monitoring shrimp freshness. Thus, with this high sensitivity, the Red, Green and Blue (RGB) values of the films can be determined using a mobile phone application to monitor shrimp safety in real time. These results suggest that ACNs-metal cation-polysaccharide composite films have great potential for smart packaging applications.
Collapse
Affiliation(s)
- Run Ji
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Zhao Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shuang Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
4
|
Kaczmarska A, Pieczywek PM, Cybulska J, Cieśla J, Zdunek A. Structural and rheological properties of diluted alkali soluble pectin from apple and carrot. Food Chem 2024; 446:138869. [PMID: 38428075 DOI: 10.1016/j.foodchem.2024.138869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Pectin, a complex polysaccharide found in plant cell walls, plays a crucial role in various industries due to its functional properties. The diluted alkali-soluble pectin (DASP) fractions that result from the stepwise extraction of apples and carrots were studied to evaluate their structural and rheological properties. Homogalacturonan and rhamnogalacturonan I, in different proportions, were the main pectin domains that composed DASP from both materials. Atomic force microscopy revealed that the molecules of apple DASP were longer and more branched. A persistence length greater than 40 nm indicated that the pectin molecules deposited on mica behaved as stiff molecules. The weight-averaged molar mass was similar for both samples. Intrinsic viscosity values of 194.91 mL·g-1 and 186.79 mL·g-1 were obtained for apple and carrot DASP, respectively. Rheological measurements showed greater structural strength for apple-extracted pectin, whereas carrot pectin was characterized by a higher linear viscoelasticity limit. This comparison showed that the pectin fractions extracted by diluted alkali are structurally different and have different rheological properties depending on their botanical origin. The acquired insights can enhance the customized use of pectin residue and support further investigations in industries relying on pectin applications.
Collapse
Affiliation(s)
- Adrianna Kaczmarska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-270 Lublin, Poland
| | - Piotr M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-270 Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-270 Lublin, Poland
| | - Jolanta Cieśla
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-270 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-270 Lublin, Poland.
| |
Collapse
|
5
|
Tang L, Li M, Zhao G, Ye F. Characterization of a low-methoxyl pectin extracted from red radish (Raphanus sativus L.) pomace and its gelation induced by NaCl. Int J Biol Macromol 2024; 254:127869. [PMID: 37939773 DOI: 10.1016/j.ijbiomac.2023.127869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
There is an increasing demand for obtaining pectin from new sources. Red radish (Raphanus sativus L.) pomace pectin extracted by alkali was low-methoxyl pectin with esterification degree of 10.17 %, galacturonic acid content of 69.71 % (wt), and average molar weight of 78.59 kDa. The pectin primarily consisted of rhamnogalacturonan I and homogalacturonan domains. The predominant monosaccharides of the pectin were galacturonic acid (46.32 mol%), arabinose (16.03 mol%), galactose (10.46 mol%), and rhamnose (10.28 mol%), respectively. The red radish pomace pectin solution exhibited a shear-thinning behavior. NaCl could induce gelation of red radish pomace pectin, and the gel properties of red radish pomace pectin were considerably affected by the NaCl concentration. As the NaCl concentration (0.25-0.50 mol/L) increased, the rate of gelation accelerated, and the time to gelation point appeared earlier. There was an optimal NaCl concentration (0.50 mol/L) for the pectin to form a gel with the greatest solid-like properties, gel hardness (33.84 g) and water-holding capacity (62.41 %). Gelation force analysis indicated gel formation mainly caused by electrostatic shielding effect of Na+ and hydrogen bonding. This research could facilitate the applications of the red radish pomace pectin in the realm of edible hydrocolloids.
Collapse
Affiliation(s)
- Luo Tang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Mengsa Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
6
|
Soluble Extracellular Polymeric Substances Produced by Parachlorella kessleri and Chlorella vulgaris: Biochemical Characterization and Assessment of Their Cadmium and Lead Sorption Abilities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217153. [PMID: 36363977 PMCID: PMC9653888 DOI: 10.3390/molecules27217153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022]
Abstract
In the present study, the potential of lead and cadmium removal by the extracellular polymeric substances (EPS) produced from Parachlorella kessleri and Chlorella vulgaris were investigated. Carbohydrates were the dominant components of EPS from both analyzed species. The contents of reducing sugars, uronic acids, and amino acids were higher in EPS synthesized by C. vulgaris than in EPS from P. kessleri. The analysis of the monosaccharide composition showed the presence of rhamnose, mannose and galactose in the EPS obtained from both species. The ICP-OES (inductively coupled plasma optical emission spectrometry) analyses demonstrated that C. vulgaris EPS showed higher sorption capacity in comparison to P. kessleri EPS. The sorption capacity of C. vulgaris EPS increased with the increase in the amount of metal ions. P. kessleri EPS had a maximum sorption capacity in the presence of 100 mg/L of metal ions. The FTIR analysis demonstrated that the carboxyl, hydroxyl, and carbonyl groups of EPS play a key role in the interactions with metal ions. The present study showed C. vulgaris EPS can be used as a biosorbent in bioremediation processes due to its biochemical composition, the presence of significant amounts of negatively charged uronic acids, and higher sorption capacity.
Collapse
|
7
|
Zhang W, Cao J, Jiang W. Effect of different cation in situ cross-linking on the properties of pectin-thymol active film. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Cieśla J, Koczańska M, Pieczywek P, Szymańska-Chargot M, Cybulska J, Zdunek A. Structural properties of diluted alkali-soluble pectin from Pyrus communis L. in water and salt solutions. Carbohydr Polym 2021; 273:118598. [PMID: 34560998 DOI: 10.1016/j.carbpol.2021.118598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
The self-assembly and gelation of low-methoxyl diluted alkali-soluble pectin (LM DASP) from pear fruit (Pyrus communis L. cv. Conference) was studied in water and salt solutions (NaCl and CaCl2, constant ionic strength) without pH adjustment at 20 °C. The samples at different LM DASP concentrations were characterized using rheological tests, Fourier-transform infrared spectroscopy, dual-angle dynamic light scattering and atomic force microscopy. LM DASP from pear fruit (Pyrus communis L.) showed gelling ability. The indices (aggregation index and shape factor) based on light scattering may be useful for the characterization of structural changes in polysaccharide suspension, particularly for the determination of a gel point. The results obtained may be important for the food, cosmetic and pharmaceutical industries where pectin is used as a texturizer, an encapsulating agent, a carrier of bioactive substances or a gelling agent.
Collapse
Affiliation(s)
- Jolanta Cieśla
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Magdalena Koczańska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
9
|
Sequential natural deep eutectic solvent pretreatments of apple pomace: A novel way to promote water extraction of pectin and to tailor its main structural domains. Carbohydr Polym 2021; 266:118113. [PMID: 34044930 DOI: 10.1016/j.carbpol.2021.118113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
To establish a "green" biorefinery extraction of apple pomace pectin, a sequential pretreatment with three natural deep eutectic solvents (NADES, choline chloride (CC): glycerol (G); CC: lactic acid (LA); potassium carbonate (K): G) was used prior to hot water extraction. A synergistic effect of CC:G and CC:LA pretreatments was observed and led to the highest recovery of pectin. The sequential NADES/water extraction process also provided a mean to tailor pectin main structure. It was explained as resulting from ion exchange and individual NADES components effects. The 13C solid state NMR T1ρH and THH parameters indicated a reorganization of cellulose in the residues following extraction of pectin, notably after alkaline K:G pretreatment/water extraction. Hence, sequential NADES pretreatments/water extraction represents a "green" alternative to mild mineral acid to extract pectin and to tailor its main structures, while the residual pomace can be further sources of valuable compounds and polymers.
Collapse
|
10
|
Yang B, Zeng M, Zhu H, Huang P, Li Z, Song S. Selective depression of molybdenite using a novel eco-friendly depressant in Cu-Mo sulfides flotation system. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
12
|
Cieśla J, Koczańska M, Pieczywek P, Cybulska J, Zdunek A. The concentration-modified physicochemical surface properties of sodium carbonate-soluble pectin from pears (Pyrus communis L.). Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Zdunek A, Pieczywek PM, Cybulska J. The primary, secondary, and structures of higher levels of pectin polysaccharides. Compr Rev Food Sci Food Saf 2020; 20:1101-1117. [PMID: 33331080 DOI: 10.1111/1541-4337.12689] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022]
Abstract
Pectin is a heteropolysaccharide abundant in the cell wall of plants and is obtained mainly from fruit (citrus and apple), thus its properties are particularly prone to changes occurring during ripening process. Properties of pectin depend on the string-like structure (conformation, stiffness) of the molecules that determines their mutual interaction and with the surrounding environment. Therefore, in this review the primary, secondary, and structures of higher levels of pectin chains are discussed in relation to external factors including crosslinking mechanisms. The review shows that the primary structure of pectin is relatively well known, however, we still know little about the conformation and properties of the more realistic systems of higher orders involving side chains, functional groups, and complexes of pectin domains. In particular, there is lack of knowledge on the influence of postharvest changes and extraction method on the primary and secondary structure of pectin that would affect conformation in a given environment and assembly to higher structural levels. Exploring the above-mentioned issues will allow to improve our understanding of pectin functionality and will help to tailor new functionalities for the food industry based on natural but often biologically variable source. The review also demonstrates that atomic force microscopy is a very convenient and adequate tool for the evaluation of pectin conformation since it allows for the relatively straightforward stretching of the pectin molecule in order to measure the force-extension curve which is directly related to its stiffness or flexibility.
Collapse
Affiliation(s)
- Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Piotr M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
14
|
Pieczywek PM, Płaziński W, Zdunek A. Dissipative particle dynamics model of homogalacturonan based on molecular dynamics simulations. Sci Rep 2020; 10:14691. [PMID: 32895471 PMCID: PMC7477560 DOI: 10.1038/s41598-020-71820-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/19/2020] [Indexed: 12/23/2022] Open
Abstract
In this study we present an alternative dissipative particle dynamics (DPD) parametrization strategy based on data extracted from the united-atom molecular simulations. The model of the homogalacturonan was designed to test the ability of the formation of large-scale structures via hydrogen bonding in water. The extraction of coarse-grained parameters from atomistic molecular dynamics was achieved by means of the proposed molecule aggregation algorithm based on an iterative nearest neighbour search. A novel approach to a time-scale calibration scheme based on matching the average velocities of coarse-grained particles enabled the DPD forcefield to reproduce essential structural features of homogalacturonan molecular chains. The successful application of the proposed parametrization method allowed for the reproduction of the shapes of radial distribution functions, particle velocities and diffusivity of the atomistic molecular dynamics model using DPD force field. The structure of polygalacturonic acid molecules was mapped into the DPD force field by means of the distance and angular bond characteristics, which closely matched the MD results. The resulting DPD trajectories showed that randomly dispersed homogalacturonan chains had a tendency to aggregate into highly organized 3D structures. The final structure resembled a three-dimensional network created by tightly associated homogalacturonan chains organized into thick fibres.
Collapse
Affiliation(s)
- P M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-270, Lublin, Poland.
| | - W Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Cracow, Poland
| | - A Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-270, Lublin, Poland
| |
Collapse
|
15
|
Pieczywek P, Kozioł A, Płaziński W, Cybulska J, Zdunek A. Resolving the nanostructure of sodium carbonate extracted pectins (DASP) from apple cell walls with atomic force microscopy and molecular dynamics. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Pieczywek PM, Cybulska J, Zdunek A. An Atomic Force Microscopy Study on the Effect of β-Galactosidase, α-L-Rhamnosidase and α-L-Arabinofuranosidase on the Structure of Pectin Extracted from Apple Fruit Using Sodium Carbonate. Int J Mol Sci 2020; 21:E4064. [PMID: 32517129 PMCID: PMC7312408 DOI: 10.3390/ijms21114064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
The enzyme driven changes in plant cell wall structure during fruit ripening result in debranching, depolymerization and solubilization of pectin polysaccharides, which has an effect in terms of the postharvest quality losses in fruit. Atomic force microscopy (AFM) has revealed that diluted alkali soluble pectins (DASP) from fruit and vegetables have an interesting tendency to self-assemble into regular structures. However, the mechanism is not yet fully understood. The current study is aimed at investigating the role of neutral sugars, namely galactose, rhamnose and arabinose in the formation of the branched structure of DASP. β-galactosidase, α-L-rhamnosidase and α-L-arabinofuranosidase enzymes were used for the treatment of DASP extracted from Golden Delicious apple flesh (Malus domestica cv. Golden Delicious). The effects of the selective degradation of pectic polysaccharides after 15, 30, 60, 90 and 120 min of incubation were observed using AFM. The α-L-rhamnosidase enzyme activity on pectin extracted with Na2CO3 did not cause any visible or measurable degradation of the molecular structure. The moderate effects of β-galactosidase enzymatic treatment suggested the possible role of galactose in the branching of DASP molecules deposited on mica. Data obtained for α-L-arabinofuranosidase indicated the crucial role of arabinose in the formation and preservation of the highly branched structure of the DASP fraction.
Collapse
Affiliation(s)
- Piotr Mariusz Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20–270 Lublin, Poland; (J.C.); (A.Z.)
| | | | | |
Collapse
|
17
|
Hou M, Huo Y, Yang X, He Z. Absorption, transport, content, and subcellular distribution of vanadium in the polysaccharide fraction of cell wall in corn seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:153-158. [PMID: 32070908 DOI: 10.1016/j.plaphy.2020.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the tolerance of plants to vanadium (Ⅴ). The hydroponic method was employed to evaluate the absorption, transport, content, and subcellular distribution of vanadium in the polysaccharide fraction of corn seedlings cell wall under different concentrations of vanadium stress. Results showed that: (a) vanadium was mainly concentrated in the roots of the corn seedlings, and only trace amounts were transported to the leaves; (b) in terms of its subcellular distribution, vanadium was mainly enriched in cell wall regions followed by soluble fraction; (c) the content of vanadium in polysaccharide fraction was highest in alkali-soluble pectin, followed by chelated pectin (P < 0.05).
Collapse
Affiliation(s)
- Ming Hou
- College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road No.12, Guilin City, Guangxi, China.
| | - Yan Huo
- College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road No.12, Guilin City, Guangxi, China
| | - Xinhan Yang
- College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road No.12, Guilin City, Guangxi, China
| | - Zhicheng He
- College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road No.12, Guilin City, Guangxi, China
| |
Collapse
|
18
|
Zhang W, Fan X, Gu X, Gong S, Wu J, Wang Z, Wang Q, Wang S. Emulsifying properties of pectic polysaccharides obtained by sequential extraction from black tomato pomace. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105454] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Stealey S, Guo X, Majewski R, Dyble A, Lehman K, Wedemeyer M, Steeber DA, Kaltchev MG, Chen J, Zhang W. Calcium-oligochitosan-pectin microcarrier for colonic drug delivery. Pharm Dev Technol 2019; 25:260-265. [PMID: 31709858 DOI: 10.1080/10837450.2019.1691591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pectin-based hydrogel microcarriers have shown promise for drug delivery to the colonic region. Microcarriers must remain stable throughout the upper gastrointestinal tract for effective colonic delivery, an issue that traditional pectin-based microcarriers have faced. The positively-charged natural biopolymer oligochitosan and divalent cation Ca2+ were used to dually cross-link pectin-based hydrogel microcarriers to improve carrier stability through simulated gastric and intestinal environments. Microcarriers were characterized with Scanning Electron Microscope and Fourier-Transform Infrared analysis. An optical microscope was used to observe the change of microcarrier size and morphology over time in the simulated gastrointestinal environments. Fluorescently-labeled Dextran was used as a model drug for this system. Calcium-Oligochitosan-Pectin microcarriers exhibited relatively small drug release in the upper gastrointestinal regions and were responsive to the high pH and enzymatic activity of simulated colonic environment (over 94% release after 2 h), suggesting great potential for colonic drug delivery.
Collapse
Affiliation(s)
- Samuel Stealey
- BioMolecular Engineering Program, Department of Physics & Chemistry, Milwaukee School of Engineering, Milwaukee, WI, USA
| | - Xiaoru Guo
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rebecca Majewski
- BioMolecular Engineering Program, Department of Physics & Chemistry, Milwaukee School of Engineering, Milwaukee, WI, USA
| | - Alexander Dyble
- BioMolecular Engineering Program, Department of Physics & Chemistry, Milwaukee School of Engineering, Milwaukee, WI, USA
| | - Kendra Lehman
- BioMolecular Engineering Program, Department of Physics & Chemistry, Milwaukee School of Engineering, Milwaukee, WI, USA
| | - Michael Wedemeyer
- BioMolecular Engineering Program, Department of Physics & Chemistry, Milwaukee School of Engineering, Milwaukee, WI, USA
| | - Douglas A Steeber
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Matey G Kaltchev
- BioMolecular Engineering Program, Department of Physics & Chemistry, Milwaukee School of Engineering, Milwaukee, WI, USA
| | - Junhong Chen
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Wujie Zhang
- BioMolecular Engineering Program, Department of Physics & Chemistry, Milwaukee School of Engineering, Milwaukee, WI, USA
| |
Collapse
|
20
|
Development of thermo/pH-responsive chitosan coated pectin-graft-poly(N,N-diethyl acrylamide) microcarriers. Carbohydr Polym 2019; 218:112-125. [DOI: 10.1016/j.carbpol.2019.04.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/23/2019] [Accepted: 04/19/2019] [Indexed: 11/23/2022]
|
21
|
Gawkowska D, Cieśla J, Zdunek A, Cybulska J. Cross-linking of diluted alkali-soluble pectin from apple (Malus domestica fruit) in different acid-base conditions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
22
|
Gawkowska D, Cieśla J, Zdunek A, Cybulska J. The Effect of Concentration on the Cross-Linking and Gelling of Sodium Carbonate-Soluble Apple Pectins. Molecules 2019; 24:E1635. [PMID: 31027264 PMCID: PMC6514935 DOI: 10.3390/molecules24081635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022] Open
Abstract
The cross-linking and gelation of low-methoxy pectins are basic processes commonly used in different industries. The aim of this research was to evaluate the cross-linking process of the sodium carbonate-soluble pectins (named DASP) extracted from apples, characterized by a low degree of methylesterification as a function of its concentration in water (CDASP). The cross-linking process was studied with a dynamic light scattering method, atomic force microscope (AFM), viscosity and pH measurements. An increase in CDASP above 0.01% resulted in a decrease in the aggregation index (AI) and the change of its sign from positive to negative. The value of AI = 0 occurred at CDASP = 0.33 ± 0.04% and indicated the formation of a pectin network. An increase in CDASP caused the changes in viscosity of pectin solutions and the nanostructure of pectins spin-coated on mica observed with AFM, which confirmed results obtained. The hydrogen bonds were involved in the cross-linking process.
Collapse
Affiliation(s)
- Diana Gawkowska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Jolanta Cieśla
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|