1
|
Sato Y, Sugimura K, Edgar KJ, Kamitakahara H. Selective cross-metathesis of cellobiose derivatives with amido-functionalized olefinic structures: A model study for synthesis of cellulosic diblock copolymers. Carbohydr Polym 2024; 339:122274. [PMID: 38823932 DOI: 10.1016/j.carbpol.2024.122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
This work describes a model study for synthesis of cellulose-based block copolymers, investigating selective coupling of peracetyl β-d-cellobiose and perethyl β-d-cellobiose at their reducing-ends by olefin cross-metathesis (CM). Herein we explore suitable pairs of ω-alkenamides that permit selective, quantitative coupling by CM. Condensation reactions of hepta-O-acetyl-β-d-cellobiosylamine or hepta-O-ethyl-β-d-cellobiosylamine with acyl chlorides afforded the corresponding N-(β-d-cellobiosyl)-ω-alkenamide derivatives with an aromatic olefin or linear olefinic structures. Among the introduced olefinic structures, CM of the undec-10-enamide (Type I olefin) and the acrylamide (Type II olefin) gave the hetero-block tetramers, N-(hepta-O-ethyl-β-d-cellobiosyl)-N'-(hepta-O-acetyl-β-d-cellobiosyl)-alkene-α,ω-diamides, with >98 % selectivity. Moreover, selectivity was not influenced by the cellobiose substituents when a Type I olefin with a long alkyl tether was used. Although the amide carbonyl group could chelate the ruthenium atom and reduce CM selectivity, the results indicated that such chelation is suppressed by sterically hindered pyranose rings or the long alkyl chain between the amido group and the double bond. Based on this model study, selective end-to-end coupling of tri-O-ethyl cellulose and acetylated cellobiose was accomplished, proving the concept that this model study with cellobiose derivatives is a useful signpost for selective synthesis of polysaccharide-based block copolymers.
Collapse
Affiliation(s)
- Yuuki Sato
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kazuki Sugimura
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Hiroshi Kamitakahara
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Lu A, Li S. Polysaccharides as a Hydrophilic Building Block of Amphiphilic Block Copolymers for the Conception of Nanocarriers. Pharmaceutics 2024; 16:467. [PMID: 38675130 PMCID: PMC11054713 DOI: 10.3390/pharmaceutics16040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Polysaccharides are gaining increasing attention for their relevance in the production of sustainable materials. In the domain of biomaterials, polysaccharides play an important role as hydrophilic components in the design of amphiphilic block copolymers for the development of drug delivery systems, in particular nanocarriers due to their outstanding biocompatibility, biodegradability, and structural versatility. The presence of a reducing end in polysaccharide chains allows for the synthesis of polysaccharide-based block copolymers. Compared with polysaccharide-based graft copolymers, the structure of block copolymers can be more precisely controlled. In this review, the synthesis methods of polysaccharide-based amphiphilic block copolymers are discussed in detail, taking into consideration the structural characteristics of polysaccharides. Various synthetic approaches, including reductive amination, oxime ligation, and other chain-end modification reactions, are explored. This review also focuses on the advantages of polysaccharides as hydrophilic blocks in polymeric nanocarriers. The structure and unique properties of different polysaccharides such as cellulose, hyaluronic acid, chitosan, alginate, and dextran are described along with examples of their applications as hydrophilic segments in the synthesis of amphiphilic copolymers to construct nanocarriers for sustained drug delivery.
Collapse
Affiliation(s)
- Aijing Lu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China;
| | - Suming Li
- Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
3
|
Aliabadi A, Hasannia M, Vakili-Azghandi M, Araste F, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Synthesis approaches of amphiphilic copolymers for spherical micelle preparation: application in drug delivery. J Mater Chem B 2023; 11:9325-9368. [PMID: 37706425 DOI: 10.1039/d3tb01371e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The formation of polymeric micelles in aqueous environments through the self-assembly of amphiphilic polymers can provide a versatile platform to increase the solubility and permeability of hydrophobic drugs and pave the way for their administration. In comparison to various self-assembly-based vehicles, polymeric micelles commonly have a smaller size, spherical morphology, and simpler scale up process. The use of polymer-based micelles for the encapsulation and carrying of therapeutics to the site of action triggered a line of research on the synthesis of various amphiphilic polymers in the past few decades. The extended knowledge on polymers includes biocompatible smart amphiphilic copolymers for the formation of micelles, therapeutics loading and response to external stimuli, micelles with a tunable drug release pattern, etc. Different strategies such as ring-opening polymerization, atom transfer radical polymerization, reversible addition-fragmentation chain-transfer, nitroxide mediated polymerization, and a combination of these methods were employed to synthesize copolymers with diverse compositions and topologies with the proficiency of self-assembly into well-defined micellar structures. The current review provides a summary of the important polymerization techniques and recent achievements in the field of drug delivery using micellar systems. This review proposes new visions for the design and synthesis of innovative potent amphiphilic polymers in order to benefit from their application in drug delivery fields.
Collapse
Affiliation(s)
- Ali Aliabadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Hasannia
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Araste
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Gosteva A, Gubarev AS, Dommes O, Okatova O, Pavlov GM. New Facet in Viscometry of Charged Associating Polymer Systems in Dilute Solutions. Polymers (Basel) 2023; 15:polym15040961. [PMID: 36850244 PMCID: PMC9966599 DOI: 10.3390/polym15040961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The peculiarities of viscosity data treatment for two series of polymer systems exhibiting associative properties: brush-like amphiphilic copolymers-charged alkylated N-methyl-N-vinylacetamide and N-methyl-N-vinylamine copolymer (MVAA-co-MVACnH2n+1) and charged chains of sodium polystyrene-4-sulfonate (PSSNa) in large-scale molecular masses (MM) and in extreme-scale of the ionic strength of solutions were considered in this study. The interest in amphiphilic macromolecular systems is explained by the fact that they are considered as micellar-forming structures in aqueous solutions, and these structures are able to carry hydrophobic biologically active compounds. In the case of appearing the hydrophobic interactions, attention was paid to discussing convenient ways to extract the correct value of intrinsic viscosity η from the combined analysis of Kraemer and Huggins plots, which were considered as twin plots. Systems and situations were demonstrated where intrachain hydrophobic interactions occurred. The obtained data were discussed in terms of lnηr vs. cη plots as well as in terms of normalized scaling relationships where ηr was the relative viscosity of the polymer solution. The first plot allowed for the detection and calibration of hydrophobic interactions in polymer chains, while the second plot allowed for the monitoring of the change in the size of charged chains depending on the ionic strength of solutions.
Collapse
Affiliation(s)
- Anna Gosteva
- Institute of Macromolecular Compounds, Russian Academy of Sciences Bolshoi pr. 31, 199004 Saint Petersburg, Russia
| | - Alexander S. Gubarev
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Olga Dommes
- Institute of Macromolecular Compounds, Russian Academy of Sciences Bolshoi pr. 31, 199004 Saint Petersburg, Russia
| | - Olga Okatova
- Institute of Macromolecular Compounds, Russian Academy of Sciences Bolshoi pr. 31, 199004 Saint Petersburg, Russia
| | - Georges M. Pavlov
- Institute of Macromolecular Compounds, Russian Academy of Sciences Bolshoi pr. 31, 199004 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
5
|
Liu Q, Ding X, Xu X, Lai H, Zeng Z, Shan T, Zhang T, Chen M, Huang Y, Huang Z, Dai X, Xia M, Cui S. Tumor-targeted hyaluronic acid-based oxidative stress nanoamplifier with ROS generation and GSH depletion for antitumor therapy. Int J Biol Macromol 2022; 207:771-783. [PMID: 35351548 DOI: 10.1016/j.ijbiomac.2022.03.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023]
Abstract
Tumor cells with innate oxidative stress are more susceptible to exogenous ROS-mediated oxidative damage than normal cells. However, the generated ROS could be scavenged by the overexpressed GSH in cancer cells, thus causing greatly restricted efficiency of ROS-mediated antitumor therapy. Herein, using cinnamaldehyde (CA) as a ROS generator while β-phenethyl isothiocyanate (PEITC) as a GSH scavenger, we designed a tumor-targeted oxidative stress nanoamplifier to elevate intracellular ROS level and synchronously suppress antioxidant systems, for thorough redox imbalance and effective tumor cells killing. First, an amphiphilic acid-sensitive cinnamaldehyde-modified hyaluronic acid conjugates (HA-CA) were synthesized, which could self-assemble into nano-assembly in aqueous media via strong hydrophobic interaction and π-π stacking. Then, aromatic PEITC was appropriately encapsulated into HA-CA nano-assembly to obtain HA-CA/PEITC nanoparticles. Through enhanced permeability retention (EPR) effect and specific CD44 receptor-mediated endocytosis, HA-CA/PEITC nanoparticles could accumulate in tumor tissues and successfully release CA and PEITC under acidic lysosomal environment. Both in vitro and in vivo results showed that the nanoparticles could efficiently boost oxidative stress of tumor cells via generating ROS and depleting GSH, and finally achieve superior antitumor efficacy. This nanoamplifier with good biosafety provides a potential strategy to augment ROS generation and suppress GSH for enhanced oxidation therapy.
Collapse
Affiliation(s)
- Qiuxing Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xin Ding
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hualu Lai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ting Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiuling Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meng Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shengmiao Cui
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
6
|
Lu M, Huang X, Cai X, Sun J, Liu X, Weng L, Zhu L, Luo Q, Chen Z. Hypoxia-Responsive Stereocomplex Polymeric Micelles with Improved Drug Loading Inhibit Breast Cancer Metastasis in an Orthotopic Murine Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20551-20565. [PMID: 35476401 DOI: 10.1021/acsami.1c23737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor metastasis is a leading cause of breast cancer-related death. Taxane-loaded polymeric formulations, such as Genexol PM and Nanoxel M using poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) micelles as drug carriers, have been approved for the treatment of metastatic breast cancer. Unfortunately, the physical instability of PEG-PLA micelles, leading to poor drug loading, premature drug leakage, and consequently limited drug delivery to tumors, largely hinders their therapeutic outcome. Inspired by the enantiomeric nature of PLA, this work developed stereocomplex PEG-PLA micelles through stereoselective interactions of enantiomeric PLA, which are further incorporated with a hypoxia-responsive moiety used as a hypoxia-cleavable linker of PEG and PLA, to maximize therapeutic outcomes. The results showed that the obtained micelles had high structural stability, showing improved drug loading for effective drug delivery to tumors as well as other tissues. Especially, they were capable of sensitively responding to the hypoxic tumor environment for drug release, reversing hypoxia-induced drug resistance and hypoxia-promoted cell migration for enhanced bioavailability under hypoxia. In vivo results further showed that the micelles, especially at a high dose, inhibited the growth of the primary tumor and improved tumor pathological conditions, consequently remarkably inhibiting its metastasis to the lungs and liver, while not causing any systemic toxicity. Hypoxia-responsive stereocomplex micelles thus emerge as a reliable drug delivery system to treat breast cancer metastasis.
Collapse
Affiliation(s)
- Min Lu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xu Huang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xiaohui Cai
- Department of Hematology, Nanjing Medical University, Affiliated Changzhou No. 2 People's Hospital, Changzhou 213000, People's Republic of China
| | - Jiajia Sun
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xuemeng Liu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Lingyan Weng
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Qianqian Luo
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Zhongping Chen
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
7
|
Kwa YC, Tan YF, Foo YY, Leo BF, Chung I, Kiew LV, Imae T, Yusa SI, Chung LY. Improved delivery and antimetastatic effects of Stattic by self-assembled amphiphilic pendant-dendron copolymer micelles in breast cancer cell lines. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Lu A, Petit E, Jelonek K, Orchel A, Kasperczyk J, Wang Y, Su F, Li S. Self-assembled micelles prepared from bio-based hydroxypropyl methyl cellulose and polylactide amphiphilic block copolymers for anti-tumor drug release. Int J Biol Macromol 2020; 154:39-47. [DOI: 10.1016/j.ijbiomac.2020.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
|
9
|
Lamch Ł, Ronka S, Warszyński P, Wilk KA. NMR studies of self-organization behavior of hydrophobically functionalized poly(4-styrenosulfonic-co-maleic acid) in aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water. Polymers (Basel) 2020; 12:polym12051185. [PMID: 32455970 PMCID: PMC7285226 DOI: 10.3390/polym12051185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most important properties of hydrophobically functionalized polyelectrolytes (HF-PEs) and their assemblies is their ability to encapsulate hydrophobic/amphiphilic agents and provide release on demand of the entrapped payload. The aim of the present work was to synthesize and study self-organization behavior in aqueous solution of hydrophobically functionalized poly(acrylic acid) (PAA) comprising the ester-type pH labile moiety with various degrees of hydrophobization and side-chain lengths in the absence and presence of appropriate mono- and polyvalent electrolytes (i.e., NaCl or CaCl2). The synthesis and purification of hydrophobically functionalized PAA were performed under mild conditions in order to avoid chemical degradation of the polymers. The modified polyelectrolytes self-assembly in aqueous systems was monitored using diffusion-ordered nuclear magnetic resonance (DOSY NMR). The performed studies, supported by the all-atoms molecular dynamics simulations, revealed a strong dependence of polyelectrolyte self-assembled state on concentration—specific concentration regions with the coexistence of both smaller and larger aggregates were observed (values of hydrodynamic diameter DH around one nanometer and between two to six nanometers, respectively). Our investigations enabled us to gain crucial information about the self-assembly of the hydrophobically functionalized poly(acrylic acid) and opened the possibility of understanding and predicting its performance under various conditions.
Collapse
|
11
|
Caceres M, Petit E, Deratani A. Partial depolymerization of hydroxypropylmethyl cellulose for production of low molar mass polymer chains. Carbohydr Polym 2020; 229:115461. [DOI: 10.1016/j.carbpol.2019.115461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/31/2023]
|
12
|
Valencia GA, Zare EN, Makvandi P, Gutiérrez TJ. Self-Assembled Carbohydrate Polymers for Food Applications: A Review. Compr Rev Food Sci Food Saf 2019; 18:2009-2024. [PMID: 33336964 DOI: 10.1111/1541-4337.12499] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/26/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022]
Abstract
The self-assembled natural and synthetic polymers are booming. However, natural polymers obtained from native or modified carbohydrate polymers (CPs), such as celluloses, chitosan, glucans, gums, pectins, and starches, have had special attention as raw material in the manufacture of self-assembled polymer composite materials having several forms: films, hydrogels, micelles, and particles. The easy manipulation of the architecture of the CPs, as well as their high availability in nature, low cost, and being sustainable and green polymers have been the main positive points in the use of them for different applications. CPs have been used as building blocks for composite structures, and their easy orientation and ordering has given rise to self-assembled CPs (SCPs). These macromolecules have been little studied for food applications. Nonetheless, their research has grown mainly in the last 5 years as encapsulated food additive wall materials, food coatings, and edible films. The multifaceted properties (systems sensitive to pH, temperature, ionic strength, types of ions, mechanical force, and enzymes) of these devices are leading to the development of advanced food materials. This review article focused on the analysis of SCPs for food applications in order to encourage other research groups for their preparation and implementation.
Collapse
Affiliation(s)
- Germán Ayala Valencia
- Dept. of Chemical and Food Engineering, Federal Univ. of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | | | - Pooyan Makvandi
- Inst. for Polymers, Composites and Biomaterials (IPCB), Natl. Research Council (CNR), Naples, Italy.,Dept. of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran Univ. of Medical Sciences, Tehran, Iran
| | - Tomy J Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, B7608FLC, Mar del Plata, Argentina
| |
Collapse
|