1
|
Su C, Liu G, Zou Y, Ji S, Gao J. Preparation and in vitro evaluation of pH and glutathione dual-responsive drug delivery system based on sodium carboxymethyl cellulose. Int J Biol Macromol 2024; 280:135857. [PMID: 39307500 DOI: 10.1016/j.ijbiomac.2024.135857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Stimuli-responsive drug delivery systems based on sodium carboxymethyl cellulose (NaCMC) for drug release encounter inherent challenges. In this research, a novel pH and glutathione (GSH) dual-responsive system, CPT-S-S-NaCMC@ZIF-8/SP-PEG, was constructed. Firstly, the prodrug CPT-S-S-OH was synthesized and combined with NaCMC to form GSH-responsive micelles CPT-S-S-NaCMC, significantly enhancing the drug loading and grafting rates to 63.79 % and 91.99 %, respectively. Subsequently, zinc ions and dimethylimidazole can be assembled into porous materials (ZIF-8) on the surface of the micelles. This system exhibits dual pH-GSH responsiveness and effectively reduces the drug release from 84.76 % to 28.71 % at pH = 7.4. Moreover, incorporating pH-responsive spiropyran (SP)-modified polyethylene glycol (PEG) can reduce drug leakage to 16.09 % at pH = 7.4 and exhibit good fluorescence intensity at 722 nm.
Collapse
Affiliation(s)
- Chengdong Su
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China
| | - Yulong Zou
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China
| | - Shuang Ji
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China
| | - Jun Gao
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China.
| |
Collapse
|
2
|
Ren H, Guo A, Luo C. Sandwich hydrogel to realize cartilage-mimetic structures and performances from polyvinyl alcohol, chitosan and sodium hyaluronate. Carbohydr Polym 2024; 328:121738. [PMID: 38220330 DOI: 10.1016/j.carbpol.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Developing artificial substitutes that mimic the structures and performances of natural cartilage is of great importance. However, it is challenging to integrate the high strength, excellent biocompatibility, low coefficient of friction, long-term wear resistance, outstanding swelling resistance, and osseointegration potential into one material. Herein, a sandwich hydrogel with cartilage-mimetic structures and performances was prepared to achieve this goal. The precursor hydrogel was obtained by freezing-thawing the mixture of poly vinyl alcohol, chitosan and deionized water three cycles, accompanied by soaking in sodium hyaluronate solution. The top of the precursor hydrogel was hydrophobically modified with lauroyl chloride and then loaded with lecithin, while the bottom was mineralized with hydroxyapatite. Due to the multiple linkages (crystalline domains, hydrogen bonds, and ionic interactions), the compressive stress was 71 MPa. Owing to the synergy of the hydrophobic modification and lecithin, the coefficient of friction was 0.01. Additionally, no wear trace was observed after 50,000 wear cycles. Remarkably, hydroxyapatite enabled the hydrogel osseointegration potential. The swelling ratio of the hydrogel was 0.06 g/g after soaking in simulated synovial fluid for 7 days. Since raw materials were non-toxic, the cell viability was 100 %. All of the above merits make it an ideal material for cartilage replacement.
Collapse
Affiliation(s)
- Hanyu Ren
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Andi Guo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Chunhui Luo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, Ningxia, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Zhang Y, Wang L, Wang ZD, Zhou Q, Zhou X, Zhou T, Guan YX, Liu X. Surface-anchored microbial enzyme-responsive solid lipid nanoparticles enabling colonic budesonide release for ulcerative colitis treatment. J Nanobiotechnology 2023; 21:145. [PMID: 37127609 PMCID: PMC10152766 DOI: 10.1186/s12951-023-01889-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Colon-targeted oral drug delivery systems (CDDSs) are desirable for the treatment of ulcerative colitis (UC), which is a disease with high relapse and remission rates associated with immune system inflammation and dysregulation localized within the lining of the large bowel. However, the success of current available approaches used for colon-targeted therapy is limited. Budesonide (BUD) is a corticosteroid drug, and its rectal and oral formulations are used to treat UC, but the inconvenience of rectal administration and the systemic toxicity of oral administration restrict its long-term use. In this study, we designed and prepared colon-targeted solid lipid nanoparticles (SLNs) encapsulating BUD to treat UC by oral administration. A negatively charged surfactant (NaCS-C12) was synthesized to anchor cellulase-responsive layers consisting of polyelectrolyte complexes (PECs) formed by negatively charged NaCS and cationic chitosan onto the SLNs. The release rate and colon-specific release behavior of BUD could be easily modified by regulating the number of coated layers. We found that the two-layer BUD-loaded SLNs (SLN-BUD-2L) with a nanoscale particle size and negative zeta potential showed the designed colon-specific drug release profile in response to localized high cellulase activity. In addition, SLN-BUD-2L exhibited excellent anti-inflammatory activity in a dextran sulfate sodium (DSS)-induced colitis mouse model, suggesting its potential anti-UC applications.
Collapse
Affiliation(s)
- Yipeng Zhang
- Department of Pharmacology and Department of Radiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Liying Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zi-Dan Wang
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Quan Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xuefei Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Xin Guan
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Radiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Sahu KM, Patra S, Swain SK. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int J Biol Macromol 2023; 240:124338. [PMID: 37030461 DOI: 10.1016/j.ijbiomac.2023.124338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Among different form of cyclodextrin (CD), β-CD has been taken a special attraction in pharmaceutical science due to lowest aqueous solubility and adequate cavity size. When β-CD forms inclusion complex with drugs then biopolymers such as polysaccharides in combination plays a vital role as a vehicle for safe release of drugs. It is noticed that, β-CD assisted polysaccharide-based composite achieves better drug release rate through host-guest mechanism. Present review is a critical analysis of this host-guest mechanism for release of drugs from polysaccharide supported β-CD inclusion complex. Various important polysaccharides such as cellulose, alginate, chitosan, dextran, etc. in relevant to drug delivery are logically compared in present review by their association with β-CD. Efficacy of mechanism of drug delivery by different polysaccharides with β-CD is analytically examined in schematic form. Drug release capacity at different pH conditions, mode of drug release, along with characterization techniques adopted by individual polysaccharide-based CD complexes are comparatively established in tabular form. This review may explore better visibility for researchers those are working in the area of controlled release of drugs by vehicle consist of β-CD associated polysaccharide composite through host-guest mechanism.
Collapse
Affiliation(s)
- Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
5
|
Gao X, Du J, Cheng L, Li Z, Li C, Ban X, Gu Z, Hong Y. Modification of Octenyl Succinic Anhydride Starch by Grafting Folic Acid and its Potential as an Oral Colonic Delivery Carrier. STARCH-STARKE 2023. [DOI: 10.1002/star.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xiang Gao
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Jing Du
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Xiaofeng Ban
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| |
Collapse
|
6
|
Althomali RH, Alamry KA, Hussein MA, Guedes RM. An investigation on the adsorption and removal performance of a carboxymethylcellulose-based 4-aminophenazone@MWCNT nanocomposite against crystal violet and brilliant green dyes. RSC Adv 2023; 13:4303-4313. [PMID: 36760307 PMCID: PMC9891083 DOI: 10.1039/d2ra07321h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
The multistep chemical modification of carboxymethylcellulose (CMC) in the presence of 4-aminophenazone (A-PH) and multiwall carbon nanotubes (MWCNTs) has been successfully conducted. The environmental performance of this material has been thoroughly investigated. Crystal violet (CV) and brilliant green (BG) were eliminated by utilising a new hybrid nanocomposite material (A-PH-CMC/MWCNTs) from a simulated textile wastewater solution. Using SEM, EDX, XRD and FTIR spectroscopy methods, the detailed characterisation of A-PH-CMC/MWCNT nanocomposites was investigated. The results indicated that the adsorption capacity was dependent on six factors (e.g., contact duration, starting concentration, adsorbent mass, the effect of the solution pH, temperature and the effect of KNO3). In addition, thermodynamic and regeneration studies have been reported. According to the theories of pseudo-second-order kinetics, the removal process involves chemical adsorption. The experimental results were best suited by the Langmuir model, in which maximum adsorption capacities of 20.83 and 22.42 mg g-1 were predicted for the BG and CV dyes, respectively. The research is a preliminary case study demonstrating the excellent potential of A-PH-CMC/MWCNT nanocomposites as a material for CV and BG dye removal.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - R M Guedes
- LAETA-INEGI, DEMec, Mechanical Engineering Department, Faculty of Engineering of University of Porto (FEUP) Rua Dr Roberto Frias s/n 4200-465 Porto Portugal
| |
Collapse
|
7
|
Zhang J, Xu Z, Wang Y, Zhang G, Qian C, Lv H, Wang Z, Yang Z, Wang X, Meng M, Shi Y. Synthesis and evaluation of targeted nanomicelle delivery system with rhein as the hydrophobic end and its synergistic therapy effect on tumor. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Guo X, Yang J. Preparation of oleic acid–carboxymethylcellulose sodium composite vesicle and its application in encapsulating nicotinamide. POLYM INT 2021. [DOI: 10.1002/pi.6256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiangnan Guo
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Jisheng Yang
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
9
|
Wang J, Zhang D, Chu F. Wood-Derived Functional Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001135. [PMID: 32578276 DOI: 10.1002/adma.202001135] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 05/12/2023]
Abstract
In recent years, tremendous efforts have been dedicated to developing wood-derived functional polymeric materials due to their distinctive properties, including environmental friendliness, renewability, and biodegradability. Thus, the uniqueness of the main components in wood (cellulose and lignin) has attracted enormous interest for both fundamental research and practical applications. Herein, the emerging field of wood-derived functional polymeric materials fabricated by means of macromolecular engineering is reviewed, covering the basic structures and properties of the main components, the design principle to utilize these main components, and the resulting wood-derived functional polymeric materials in terms of elastomers, hydrogels, aerogels, and nanoparticles. In detail, the natural features of wood components and their significant roles in the fabrication of materials are emphasized. Furthermore, the utilization of controlled/living polymerization, click chemistry, dynamic bonds chemistry, etc., for the modification is specifically discussed from the perspective of molecular design, together with their sequential assembly into different morphologies. The functionalities of wood-derived polymeric materials are mainly focused on self-healing and shape-memory abilities, adsorption, conduction, etc. Finally, the main challenges of wood-derived functional polymeric materials fabricated by macromolecular engineering are presented, as well as the potential solutions or directions to develop green and scalable wood-derived functional polymeric materials.
Collapse
Affiliation(s)
- Jifu Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
10
|
Aziz T, Ullah A, Fan H, Ullah R, Haq F, Khan FU, Iqbal M, Wei J. Cellulose Nanocrystals Applications in Health, Medicine and Catalysis. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:2062-2071. [DOI: 10.1007/s10924-021-02045-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 07/25/2024]
|
11
|
Cai X, Wang Y, Du X, Xing X, Zhu G. Stability of pH-responsive Pickering emulsion stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106093] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Zhang M, Yang J. Preparation and characterization of multifunctional slow release fertilizer coated with cellulose derivatives. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Manxian Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jisheng Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
13
|
Preparation of submicron capsules containing fragrance and their application as emulsifier. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03186-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|