1
|
Ren W, Zhang Y, Liu X, Li S, Li H, Zhai Y. Peracetic acid pretreatment improves biogas production from anaerobic digestion of sewage sludge by promoting organic matter release, conversion and affecting microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119427. [PMID: 37890304 DOI: 10.1016/j.jenvman.2023.119427] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Peracetic acid (PAA) pretreatment is considered as a novel and effective chemical pretreatment method for sludge. However, there is little information available on potential mechanisms of how PAA pretreatment affects sludge anaerobic digestion (AD). To fill the knowledge gap, this study investigated the effects and potential mechanisms of PAA pretreatment on sludge AD systems from physicochemical and microbiological perspectives. Batch experiments resulted that biogas production was enhanced by PAA pretreatment and the highest cumulative biogas yield (297.94 mL/g VS (volatile solid)) was obtained with 2 mM/g VS of PAA pretreatment. Kinetic model analysis illustrated that the PAA pretreatment improved the biogas potential (Pt) of sludge AD, but prolonged the lag phase (λ) of AD. Mechanistic studies revealed that reactive oxygen species (ROS) (HO•, O2-•, 1O2 and CH3C(O)OO•) were the major intermediate products of PAA decomposition. These ROS effectively promoted the decomposition and solubilization of sludge, and provided more biodegradable organic matter for the following AD reactions. 16S rRNA amplicon sequencing showed that some functional microorganisms associated with hydrolysis, acidogenesis, acetogenesis as well as methanogenesis, such as Hydrogenispora, Romboutsia, Longivirga, Methanosarcina and Methanosaet, were significantly enriched in reactors pretreated with PAA. Redundancy analysis and variation partitioning analysis indicated that functional microorganisms were significantly correlated with intermediate metabolites (soluble carbohydrate, soluble protein, soluble chemical oxygen demand and volatile fatty acids) and cumulative biogas production. This study provides a fresh understanding of the effects and mechanisms of PAA pretreatment on sludge AD, updates the insights into the response of functional microorganisms to PAA pretreatment, and the findings obtained might provide a fundamental basis for chemical pretreatment of sludge AD using oxidants.
Collapse
Affiliation(s)
- Wanying Ren
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, PR China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
2
|
Xi G, Chen S, Zhang X, Xing Y, He Z. Mechanism analysis of efficient degradation of carbamazepine by chalcopyrite-activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13197-13209. [PMID: 36125685 DOI: 10.1007/s11356-022-23023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, natural chalcopyrite (NCP) was used to activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) oxidatively. Before and after the NCP reaction, the physical and chemical properties were characterized by SEM-EDS, XRD, XPS, XRF, and VSM. The effects of the amount of NCP and PMS, the initial pH value, and the reaction temperature on the catalytic performance of NCP were systematically studied. The research results show that the degradation efficiency of the NCP/PMS system for CBZ can reach 82.34% under the optimal reaction conditions, and the degradation process follows a pseudo-second-order kinetic model. The results of the radical quenching experiment and EPR analysis show that the active species in the system are OH·, SO4-·, and 1O2, of which SO4-· is the main active species. In addition, this study shows that the NCP/PMS system can degrade CBZ with high efficiency of 90.73% only with the assistance of 0.15 g/L Fe0. This study determined the optimal reaction conditions for natural chalcopyrite to activate PMS to degrade CBZ and clarified the activation mechanism, which broadened the application of natural ores in the field of water treatment.
Collapse
Affiliation(s)
- GaoYang Xi
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuxun Chen
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xuhang Zhang
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu Xing
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhengguang He
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
3
|
Ahmad Rather I, Ayoub Khan S, Ali R, Alam Khan T. Appraisal of adsorptive potential of novel one-walled meso-phenylboronic acid functionalized calix[4]pyrrole for liquid phase sequestration of paracetamol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Senosy IA, Lu ZH, Zhou DD, Abdelrahman TM, Chen M, Zhuang LY, Liu X, Cao YW, Li JH, Hua Yang Z. Construction of a magnetic solid-phase extraction method for the analysis of azole pesticides residue in medicinal plants. Food Chem 2022; 386:132743. [PMID: 35364494 DOI: 10.1016/j.foodchem.2022.132743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
In this work, a sensitive and cost-effective method for the quantitative analysis of azole pesticides residues in six medicinal plants was established based on magnetic cyclodextrin crosslinked with tetrafluoroterephthalonitrile (Fe3O4@TFN-CDPs) coupled with high-performance liquid chromatography (HPLC). Through characterization analysis, the outer shell of Fe3O4@TFN-CDPs has observed coating with a network of the polymer and forming a core-shell structure. Under the optimum conditions, the limits of detection (LODs) and limits of qualification (LOQs) of target pesticides were ranged from 0.011 to 0.106 µg Kg-1 and from 0.036 to 0.354 µg Kg-1, respectively. Finally, the achieved recoveries of pesticides in six medicinal samples fluctuated from 60.1% to 102.3%. Altogether, this method based on Fe3O4@TFN-CDPs composites provided a new idea for the analysis of trace pesticides in complicated matrices.
Collapse
Affiliation(s)
- Ibrahim A Senosy
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Agriculture, Department of Plant Protection, Fayoum University, Fayoum 63514, Egypt
| | - Zhi-Heng Lu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong-Dong Zhou
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Talat M Abdelrahman
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Agriculture, Department of Plant Protection, Al-Azhar University, Assiut 71524, Egypt
| | - Min Chen
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Lv-Yun Zhuang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Wen Cao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Hong Li
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong- Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Hiew BYZ, Tee WT, Loh NYL, Lai KC, Hanson S, Gan S, Thangalazhy-Gopakumar S, Lee LY. Synthesis of a highly recoverable 3D MnO 2/rGO hybrid aerogel for efficient adsorptive separation of pharmaceutical residue. J Environ Sci (China) 2022; 118:194-203. [PMID: 35305768 DOI: 10.1016/j.jes.2021.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Water contamination by non-steroidal anti-inflammatory drugs, such as acetaminophen, is an emerging ecological concern. In this study, a new three-dimensional manganese dioxide-engrafted reduced graphene oxide (3D MnO2/rGO) hybrid aerogel was developed for acetaminophen sequestration. The synthesis involved firstly the self-assembly of GO aerogel, followed by thermal reduction and in-situ MnO2 growth by redox-reaction. The aerogel demonstrated interlinked planes with smooth surfaces deposited with MnO2 nanospheres and pores of 138.4 - 235.3 µm width. The influences of adsorbent dosage, initial pH, acetaminophen concentration, temperature and contact time were investigated. It was determined that the adsorption of acetaminophen occurred on uniform sorption sites in the aerogel, as suggested by the best fit of data to the Langmuir isotherm, yielding a maximum adsorption capacity of 252.87 mg/g. This highest adsorption performance of the 3D MnO2/rGO aerogel was attained at a dosage of 0.6 g/L, initial pH of 6.2 and temperature of 40°C. The process kinetics were in-line with the pseudo-first-order and pseudo-second-order kinetics at 10 and 20 - 500 mg/L concentrations, respectively. Thermodynamic assay showed the spontaneity and endothermicity features of the 3D MnO2/rGO-acetaminophen system. The acetaminophen adsorption mechanisms were mainly hydrogen bonding and pore entrapment. Moreover, the as-synthesised aerogel was effectively regenerated using acetone and re-utilised in four adsorption-desorption cycles. Overall, the results highly recommend the implementation of the 3D MnO2/rGO hybrid aerogel for purification of wastewater polluted by acetaminophen residue.
Collapse
Affiliation(s)
- Billie Yan Zhang Hiew
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wan Ting Tee
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Nicholas Yung Li Loh
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Kar Chiew Lai
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Svenja Hanson
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Suyin Gan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Suchithra Thangalazhy-Gopakumar
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Lai Yee Lee
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia..
| |
Collapse
|
6
|
Khan SA, Abbasi N, Hussain D, Khan TA. Sustainable Mitigation of Paracetamol with a Novel Dual-Functionalized Pullulan/Kaolin Hydrogel Nanocomposite from Simulated Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8280-8295. [PMID: 35758902 DOI: 10.1021/acs.langmuir.2c00702] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present investigation, a novel, green, and economical dual-functionalized pullulan/kaolin hydrogel nanocomposite (f-PKHN) was fabricated and subsequently applied for the liquid-phase decontamination of paracetamol (PCT), a pharmaceutical pollutant. Pullulan and kaolin were functionalized with l-asparagine and gallic acid, respectively. The physicochemical facets of the functionalized pullulan/kaolin hydrogel nanocomposite and its interactive behavior with PCT were elucidated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and elemental mapping. The process parameters along with the isotherm, kinetics, and thermodynamics were methodically appraised via a batch technique to unveil the adsorption performance of the as-fabricated hydrogel nanocomposite. The adsorption isotherm and kinetics of PCT uptake by f-PKHN conform well to Freundlich and pseudo-second-order models, respectively. Relying on hydrogen bonding, n-π, and van der Waals interactions, the maximum adsorption capacity was 332.54 mg g-1, higher than for most of the previous adsorbents reported in the literature for PCT removal. Thermodynamic calculations corroborated endothermic, spontaneous, and feasible adsorption phenomena. The maintenance of a high uptake percentage (69.11%) in the fifth consecutive adsorption-desorption cycle implied the significant reusable potential of f-PKHN. Swelling studies exhibited 90% swelling within 200 min, indicating the successful fabrication of a cross-linked hydrogel network. The real water (distilled water, tap water, and river water) samples spiked with PCT specified a significant uptake of PCT (>85%), and the minor influence of ionic strength on the adsorptive potential of f-PKHN validated its potentiality for the decontamination of real effluents. In conclusion, f-PKHN with substantial adsorption capacity, green characteristics, and excellent reusability can be reckoned with as a promising adsorbent for the de-escalation of PCT from aquatic sources as well as at the industrial level.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Neha Abbasi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Daud Hussain
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| |
Collapse
|
7
|
Krawczyk K, Silvestri D, Nguyen NHA, Ševců A, Łukowiec D, Padil VVT, Řezanka M, Černík M, Dionysiou DD, Wacławek S. Enhanced degradation of sulfamethoxazole by a modified nano zero-valent iron with a β-cyclodextrin polymer: Mechanism and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152888. [PMID: 34998775 DOI: 10.1016/j.scitotenv.2021.152888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Rising concern about emerging and already persisting pollutants in water has urged the scientific community to develop novel remedial techniques. A new group of remediation methods is based on the modification of nanoscale zero-valent iron particles (nZVI), which are well known for treating volatile organic compounds and heavy metals. The properties of nZVI may be further enhanced by modifying their structure or surface using "green" polymers. Herein, nZVI was modified by a β-cyclodextrin polymer (β-CDP), which is considered an environmentally safe and inexpensive adsorbent of contaminants. This composite was used for the first time for the degradation of sulfamethoxazole (SMX). Coating by β-CDP not only enhanced the degradation of SMX (>95%, under 10 min) by the nanoparticles in a wide pH range (3-9) and enabled their efficient reusability (for three cycles) but also made the coated nZVI less toxic to the model bioindicator microalga Raphidocelis subcapitata. Moreover, degradation products of SMX were found to be less toxic to Escherichia coli bacteria and R. subcapitata microalga, contrary to the SMX antibiotic itself, indicating a simple and eco-friendly cleaning process. This research aims to further stimulate and develop novel remedial techniques based on nZVI, and provides a potential application in the degradation of antibiotics in a wide pH range. Moreover, the wealth of available cyclodextrin materials used for surface modification may open a way to discover more efficient and attractive composites for environmental applications.
Collapse
Affiliation(s)
- Kamil Krawczyk
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Daniele Silvestri
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Dariusz Łukowiec
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice, Poland
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Michal Řezanka
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU.
| |
Collapse
|
8
|
Usman M, Ahmed A, Ji Z, Yu B, Shen Y, Cong H. Environmentally friendly fabrication of new β-Cyclodextrin/ZrO 2 nanocomposite for simultaneous removal of Pb(II) and BPA from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147207. [PMID: 34088073 DOI: 10.1016/j.scitotenv.2021.147207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals and endocrine disrupters often co-exist in wastewater, while their possible competition behaviours make uptake removal more challenging. Therefore, β-Cyclodextrin based nanocomposite adsorbent was successfully fabricated (β-Cyclodextrin/ZrO2) for the simultaneous uptake of Pb(II) and Bisphenol A from wastewater. FTIR, XRD, and XPS confirmed the successful fabrication of the β-Cyclodextrin/ZrO2 nanocomposite. In this setting, oxygen-containing groups are primarily responsible for the Pb(II) binding, while the β-Cyclodextrin cavities adsorb Bisphenol A through host-guest interaction, enabling the simultaneous removal of Pb(II) and Bisphenol A. In the mono contaminant system, the nanocomposite displayed prominent removal ability toward Pb(II) and Bisphenol A with adsorption characteristics of pseudo-second-order, Langmuir, and Freundlich isotherm model. The maximum adsorption capacities were identified for Pb(II) and Bisphenol A to be 274.4 mg/g and 174.9 mg/g at 298 K, respectively. Most importantly, the β-Cyclodextrin/ZrO2 could efficiently attain simultaneous removal of Pb(II) and Bisphenol A by avoiding their competitive behaviours was due to the different adsorption mechanisms (electrostatic interaction and host-guest interaction). Moreover, the adsorbed Pb(II) and Bisphenol A could be successfully recovered with a slight decline in nanocomposite removal performance even after 4 cycles in the binary-component system. All these findings provide insights into the fabrication of highly effective adsorbent with separated adsorption sites to treat wastewater bearing heavy metal and endocrine disrupters.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, School of Automation, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, School of Automation, Qingdao University, Qingdao 266071, China
| | - Adeel Ahmed
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, School of Automation, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, School of Automation, Qingdao University, Qingdao 266071, China
| | - Zhijian Ji
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, School of Automation, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, School of Automation, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, School of Automation, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, School of Automation, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, School of Automation, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, School of Automation, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, School of Automation, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Comparison of the Efficiency of Ultraviolet/Zinc Oxide (UV/ZnO) and Ozone/Zinc Oxide (O3/ZnO) Techniques as Advanced Oxidation Processes in the Removal of Trimethoprim from Aqueous Solutions. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/9640918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Nowadays, advanced oxidation processes, particularly photocatalyst process and catalytic ozonation by ZnO nanoparticles, are the most efficient method of eliminating pharmaceuticals. The purpose of this study was to compare the efficiency of ultraviolet/zinc oxide (UV/ZnO) and ozone/zinc oxide (O3/ZnO) techniques as advanced oxidation processes in the removal of trimethoprim (TMP) from aqueous solutions. The process consisted of 0.6 g/L of ozone (O3), pH = 7.5 ± 0.5, TMP with a concentration of 0.5–5 mg/L, ZnO with a dose of 50–500 mg/L, 5–30 min reaction time, and 30–180 min contact time with UV radiation (6 W, 256 nm) in a continuous reactor. The high removal efficiency was achieved after 25 minutes when ZnO is used in 1 mg/L TMP under an operational condition at pH 7.5. When the concentration of the pollutant increased from 0.5 to 1, the average removal efficiency increased from 78% to 94%, and then, it remained almost constant. An increase in the reaction time from 5 to 25 minutes will cause the average elimination to increase from 84% to 94%. The results showed that the efficiency of O3/ZnO process in the removal of TMP was 94%, while the removal efficiency of UV/ZnO process was 91%. The findings exhibited that the kinetic study followed the second-order kinetics, both processes. With regard to the results, the photocatalyst process and catalytic ozonation by ZnO nanoparticles can make acceptable levels for an efficient posttreatment. Finally, this combined system is proven to be a technically effective method for treating antibiotic contaminants.
Collapse
|
10
|
Tian B, Hua S, Tian Y, Liu J. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1317-1340. [PMID: 33079345 DOI: 10.1007/s11356-020-11168-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Water is a vital substance that constitutes biological structures and sustains life. However, water pollution is currently among the major environmental challenges and has attracted increasing study attention. How to handle contaminated water now mainly focuses on removing or reducing the pollutants from the wastewater. Cyclodextrin derivatives, possessing external hydrophilic and internal hydrophobic properties, have been recognized as new-generation adsorbents to exert positive effects on water pollution treatment. This article outlines recent contributions of cyclodextrin-based adsorbents on wastewater treatment, highlighting different adsorption mechanisms of cyclodextrin-based adsorbents under different influencing factors. The crosslinked and immobilized cyclodextrin-based adsorbents all displayed outstanding adsorption capacities. Particularly, according to specific pollutants including metal ions, organic chemicals, pesticides, and drugs in wastewater, this article has classified and organized various cyclodextrin-based adsorbents into tables, which could pave an intuitive shortcut for designing and developing efficient cyclodextrin-based adsorbents for targeted wastewater pollutants. Besides, this article specially discusses cost-effectiveness and regeneration performance of current cyclodextrin-based adsorbents. Finally, the challenges and future directions of cyclodextrin-based adsorbents are prospected in this article, which may shed substantial light on practical industrial applications of cyclodextrin-based adsorbents.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi, 830046, China.
| | - Shiyao Hua
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu Tian
- School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Jiayue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
11
|
Qu J, Yuan Y, Meng Q, Zhang G, Deng F, Wang L, Tao Y, Jiang Z, Zhang Y. Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β-cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123142. [PMID: 32593944 DOI: 10.1016/j.jhazmat.2020.123142] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 05/27/2023]
Abstract
Heavy metals and pesticides often coexist in contaminated water, while their potential competition behaviors make the adsorptive removal more challenging. Thus, decorating an adsorbent with independent functional sites could be a promising alternative to radically prevent the competitive process for improving the adsorption performance. Herein, β-cyclodextrin functionalized rice husk-based cellulose (β-CD@RH-C) was designed and applied for synchronous removal of atrazine and Pb(II). The characterization results supported the successful grafting of β-cyclodextrin onto the cellulose. The β-CD@RH-C presented a pH-dependent adsorption performance for Pb(II) with a theoretical monolayer adsorption capacity of 283.00 mg/g, while was mostly unrelated to pH for atrazine adsorption with a heterogeneous uptake of 162.21 mg/g in the mono-component system. Most importantly, the β-CD@RH-C could efficiently achieve simultaneous removal of atrazine and Pb(II) via avoiding their competitive behaviors, which was due to the different adsorption mechanisms for atrazine (i.e. host-guest interaction) and Pb(II) (i.e. complexation and electrostatic interaction). Moreover, the adsorbed atrazine and Pb(II) could be sequentially desorbed with slight decrease in the adsorption performance of β-CD@RH-C even after four cycles in the atrazine-Pb(II) multi-component system. All these results suggested β-CD@RH-C to be a tailored adsorbent with high-performance elimination of co-existing heavy metals and organic pollutants in water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yihang Yuan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Removal of 17β-Estradiol (E2) from Aqueous Solutions Using Potassium Permanganate Combined with Ultraviolet (KMnO4/UV). INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1155/2020/8877601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
17β-Estradiol (E2) has a significant health risk to humans, even at the ng/L level, and is discharged to the aqueous environment through wastewater. Advanced oxidation processes were proposed as an efficient process for the removal of E2. In this study, a combination of ultraviolet-C (UV-C) and KMnO4 was applied for the removal of E2. Results have shown that the removal efficiency of E2 in pH 4 (acidic condition) was 93.80 ± 0.42%. But, removal efficiency in neutral (7) and alkaline (10) conditions was 78.3 ± 2.12% and 84 ± 0.71%, respectively. The effect of Fe+2, Ca+2, Mg+2, Mn+2, and Fe+3 ions (1 mg/L) was investigated in optimized pH (4). Mn+2, Fe+2, and Ca+2 ions enhanced the removal efficiency to 94.8 ± 0.84%, 95.55 ± 0.07%, and 94.7 ± 0.14%, respectively
, while Mg+2 and Fe+3 ions decreased the removal efficiency significantly to 76.15 ± 1% and 83.91 ± 0.3%
. The efficiency of E2 removal in the presence of 5 mg/L of PAC reduced significantly to 85 ± 4.24%
. Also, humic substances like humic acid, fulvic acid, and a combination of them could enhance the efficiency to 99.87 ± 0.01%, 99.9 ± 0.06%, and 99.93 ± 0.014%, respectively
. The result indicates that the rate of oxidation of E2 is related to the second exponent of the initial concentration of E2 for optimum pH and the presence of all ions. But, in the presence of humic substances, the first-order kinetic reaction was best applicable in describing oxidation of E2. Removal of chemical oxygen demand for E2 after 120 minutes’ of contact time at optimum pH (86 ± 4.2%) demonstrated mineralization of these compounds at acceptable levels. Results presented that the UV-C/KMnO4 process is efficient for the removal of hormones from the aqueous solution.
Collapse
|
13
|
Effective removal of acetaminophen from aqueous solution using Ca (II)-doped chitosan/β-cyclodextrin composite. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112454] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Abstract
After introducing the concept of cyclodextrin polymers, their classification and applications have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumchi 830001
- China
| | - Jiayue Liu
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| |
Collapse
|