1
|
Liu G, Shi K, Sun H, Yang B, Weng Y. Enhancing Hydrophobicity and Oxygen Barrier of Xylan/PVOH Composite Film by 1,2,3,4-Butane Tetracarboxylic Acid Crosslinking. Polymers (Basel) 2023; 15:2811. [PMID: 37447457 DOI: 10.3390/polym15132811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Hemicellulose has potential advantages in food packaging because of its abundant reserves, degradability and regeneration. However, compared with fossil-derived plastic films, hemicellulose-based films show inferior hydrophobicity and barrier properties because of their low degree of polymerization and strong hydrophilicity. Focusing on such issues, this work covers the modification of a xylan/polyvinyl alcohol (PVOH) film using 1,2,3,4-butane tetracarboxylic acid (BTCA) as esterifying agent. The thus prepared composite film was more compact owing to the esterification reaction with xylan and PVOH forming a crosslinked network structure and reducing the distance between molecular chains. The results showed that BTCA had a positive effect on the oxygen barrier, hydrophobicity and mechanical properties of the composite film. The tensile strength of the xylan/PVOH composite film with 10% BTCA content increased from 11.19 MPa to 13.99 MPa. A 20% BTCA loading resulted in an increase in the contact angle of the composite film from 87.1° to 108.2°, and a decrease in the oxygen permeability from 2.11 to 0.43 (cm3·µm)/(m2·d·kPa), corresponding to increase in the contact angle by 24% and a decrease in oxygen permeability by 80%. The overall performance enhancement indicates the potential application of such composites as food packaging.
Collapse
Affiliation(s)
- Guoshuai Liu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Kang Shi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Shijie Xu, Zhang P, Ma W, Yang H, Cao Z, Gong F, Zhong J. High Water Resistance Polyvinyl Alcohol Hydrogel Film Prepared by Melting Process Combining with Citric Acid Cross-Linking. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Rashed MN, El Taher M, Fadlalla SMM. Photocatalytic degradation of Rhodamine‐B dye using composite prepared from drinking water treatment sludge and nano TiO 2. ENVIRONMENTAL QUALITY MANAGEMENT 2022; 31:175-185. [DOI: 10.1002/tqem.21772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/09/2021] [Indexed: 02/05/2023]
Abstract
AbstractIn this study, composite Sludge adsorbent (ASN)/TiO2 was prepared from the drinking water treatment sludge ASN (activated with nitric acid) and nanoparticle TiO2 by the sol‐gel method, followed by using it to remove Rhodamine‐B (RB) dye from polluted water. The prepared composite was characterized by transmission electron microscopy, X‐ray fluorescence spectrometry, X‐ray diffraction, and surface area N2‐adsorption/desorption analysis. Photocatalytic degradation of RB dye was investigated by UV and UV/hydrogen peroxide (H2O2) irradiation. Parameters such as composite dosage, initial dye concentration, UV irradiation time, and solution pH were applied to obtain the optimum conditions for high RB dye degradation. The results showed that the highest RB dye degradation (96.7%) was using a 2:1 ratio of ASN/TiO2. High degradation of dye was achieved within 4 h at pH 7, 50 ppm dye concentration, and 0.125 g/50 ml composite dose. The maximum degradation of RB dye using the prepared composite under UV irradiation with H2O2 (99.85%) was higher than that with UV irradiation only (96.85%). The rate of the dye photocatalytic degradation followed the first‐order kinetics.
Collapse
|
4
|
Ramalingam G, Pachaiappan R, Kumar PS, Dharani S, Rajendran S, Vo DVN, Hoang TKA. Hybrid metal organic frameworks as an Exotic material for the photocatalytic degradation of pollutants present in wastewater: A review. CHEMOSPHERE 2022; 288:132448. [PMID: 34619253 DOI: 10.1016/j.chemosphere.2021.132448] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this world, water is considered as the Elixir for all living creatures. Human life rolls with water, and every activity depends upon water. Worldwide water resources are being contaminated due to the elevation in the population count, industrialization and urbanization. Ejection of chemicals by industries and domestic sewages remains the major reason in the destruction of natural water resources. Contaminated water with harmful microbes, chemical dyes, pesticides, and carcinogens are the root cause of many diseases and deaths of living species. In this scenario, researchers engaged in producing ultra components to remove the contaminants. Metal organic frameworks (MOF) are the desired combination of organic and inorganic materials to achieve the required target. MOFs possess unique characteristics like tunable internal structure, porosity, crystallinity and high surface area which enable them for energy and environmental application. For the past years, MOFs are concentrated more as a photocatalyst in the treatment of polluted water. These research studies discuss the improvement of photocatalytic performance of MOF by the incorporation of metals, metal coupled with nanoparticles like polymers, graphene, etc., into it to achieve the enhanced photocatalytic activity by scavenging entire chemicals and harmful microbes to retain the quality of water. The target of this review article is to focus on the state of the art research work on MOFs in photocatalytic water treatment technique.
Collapse
Affiliation(s)
- Gomathi Ramalingam
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Shanmugapriya Dharani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Tuan K A Hoang
- Institut de Recherche d'Hydro-Québec 1806, boul. Lionel-Boulet, Varennes (Québec), J3X 1S1, Canada
| |
Collapse
|
5
|
Wang T, Liu X, Liu M, Liao R, Zhan H, Qi X, Wang Y, Huang Y. The enhanced photocatalytic activity of TiO 2(B)/MIL-100(Fe) composite via Fe–O clusters. NEW J CHEM 2022. [DOI: 10.1039/d1nj04569e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An integrated TiO2(B)/MIL-100(Fe) composite was designed for improving photocatalytic activity via Fe–O–Ti electronic tunnel and Fe–O clusters.
Collapse
Affiliation(s)
- Tao Wang
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen 333403, P. R. China
| | - Xiqing Liu
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen 333403, P. R. China
| | - Mei Liu
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen 333403, P. R. China
| | - Runhua Liao
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen 333403, P. R. China
| | - Hongquan Zhan
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen 333403, P. R. China
| | - Xiaoxue Qi
- Haiyang Branch of Yantai Ecological Environment Bureau, Yantai 264000, P. R. China
| | - Yongqing Wang
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen 333403, P. R. China
| | - Yanju Huang
- Department of Chemistry, Tonghua Normal University, Tonghua 134002, P. R. China
| |
Collapse
|
6
|
Novel Sodium Alginate/Polyvinylpyrrolidone/TiO2 Nanocomposite for Efficient Removal of Cationic Dye from Aqueous Solution. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of adsorption and photodegradation processes is an effective technique for the removal of dye contaminants from water, which is motivating the development of novel adsorbent-photocatalyst materials for wastewater treatment. Herein, novel nanocomposite porous beads were developed using titanium dioxide (TiO2) nanotubes embedded in a sodium alginate (SA)/polyvinylpyrrolidone (PVP) matrix using calcium chloride solution as a crosslinker. The prepared nanocomposite beads’ performance was examined as an adsorbent-photocatalyst for the breakdown of methylene blue in aqueous solutions. Several operation factors influencing the dye decomposition process, including photocatalyst dosage, illumination time, light intensity, and stability were investigated. The findings demonstrated that the removal activity of the beads changed with the TiO2 weight ratio in the composite. It was found that SA/PVP/TiO2-3 nanocomposite beads presented the greatest deterioration efficiency for methylene blue dye (98.9%). The cycling ability and reusability of the prepared SA/PVP/TiO2 nanocomposite beads recommend their use as efficient, eco-friendly materials for the treatment of wastewaters contaminated with cationic dyes.
Collapse
|
7
|
Karpuraranjith M, Chen Y, Rajaboopathi S, Ramadoss M, Srinivas K, Yang D, Wang B. Three-dimensional porous MoS 2 nanobox embedded g-C 3N 4@TiO 2 architecture for highly efficient photocatalytic degradation of organic pollutant. J Colloid Interface Sci 2021; 605:613-623. [PMID: 34343734 DOI: 10.1016/j.jcis.2021.07.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023]
Abstract
Herein, a simple, highly efficient and stable MoS2 nanobox embedded graphitic-C3N4@TiO2 (g-CN@TiO2) nanoarchitecture was synthesized by a facile solvothermal approach. The nano-hybrid photocatalyst was constructed by TiO2 nanoparticles anchored on the surface of g-CN nanosheets. Then highly crystalline three-dimensional porous MoS2 nanobox was homogeneously distributed on the g-CN@TiO2 surface. The g-CN@TiO2/MoS2 hybrid achieved a high photocatalytic degradation efficiency of 97.5% for methylene blue (MB) dye pollutant under visible-light irradiant in an hour which was much better than TiO2@MoS2, g-CN@TiO2, MoS2, TiO2 and g-CN. Furthermore, the reaction rate (k) value of g-CN@TiO2/MoS2 for MB dye is as high as 3.18 X 10-2 min-1, which is ~ 2.65 times better than those of g-CN@TiO2 and MoS2. This work presents a rational structure design, interfacial construction and suitable band gap strategy to synthesize advanced nano-hybrid photocatalyst for degradation of organic pollutant with excellent performance and long-term stability.
Collapse
Affiliation(s)
- Marimuthu Karpuraranjith
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Yuanfu Chen
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China; College of Science and Institute of Oxygen Supply, Tibet University, Lhasa 850000, PR China.
| | - Sivamoorthy Rajaboopathi
- Department of Chemistry, Government Arts College for Women, Sivagangai 630561, Tamil Nadu, India
| | - Manigandan Ramadoss
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Katam Srinivas
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Dongxu Yang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Bin Wang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| |
Collapse
|
8
|
Li CB, Xiao F, Xu W, Chu Y, Wang Q, Jiang H, Li K, Gao XW. Efficient self-photo-degradation of cationic textile dyes involved triethylamine and degradation pathway. CHEMOSPHERE 2021; 266:129209. [PMID: 33316468 DOI: 10.1016/j.chemosphere.2020.129209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Cationic textile dyes such as astrazon brilliant red (ABR), are frequently used in the textile industry and contaminait the water ecology. Photodegradation of such dyes in wastewater is considered as a promising method, while the existing approaches are usually involved complicated and costly materials as photocatalysts. Facial, effective and low-cost approaches for their decontamination are needed. What's more, the detailed decomposition path of ABR is not revealed. The present study shows that ABR could suffer effective self-photo-degradation under triethylamine treatment without a photocatalyst. Almost 100% of the dye degraded within 1 h under visible light irradiation. UV-vis, FTIR and UPLC-MS analysis conformed the degradation of ABR. Factors involved in the degradation system were investigated clearly. What's more, the accurate and detailed analysis of UV-vis, FTIR and UPLC-MS data combined with computational analysis revealed the decomposition process of ABR. Reactive oxygen species (ROS) was investigated from ROS trapping experiments and EPR measurements, which revealed that O2- was the critical ROS in the degradation process, while 1O2 and OH had slightly influence on the degradation progression.
Collapse
Affiliation(s)
- Cheng-Bo Li
- The Energy and Catalysis Hub, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China.
| | - Fenghua Xiao
- The Energy and Catalysis Hub, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Wenhua Xu
- The Energy and Catalysis Hub, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China.
| | - Yilong Chu
- The Energy and Catalysis Hub, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Qian Wang
- The Energy and Catalysis Hub, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Haiying Jiang
- The Energy and Catalysis Hub, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Kebin Li
- The Energy and Catalysis Hub, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xue-Wang Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
9
|
Mohamed Isa ED, Che Jusoh NW, Hazan R, Shameli K. Photocatalytic degradation of methyl orange using pullulan-mediated porous zinc oxide microflowers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5774-5785. [PMID: 32975756 DOI: 10.1007/s11356-020-10939-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 05/27/2023]
Abstract
One of mankind's biggest concerns is water pollution. Textile industry emerged as one of the main contributors with dyes as the main pollutant. Presence of dyes in water is very dangerous due to their toxicity; thus, it is important to remove them from water. In these recent years, heterogeneous advance oxidation process surfaced as a possible dyes' removal technique. This process utilizes semiconductor as photocatalyst to degrade the dyes in presence of light and zinc oxide (ZnO) appears to be a promising photocatalyst for this process. In this study, pullulan, a biopolymer, was used to produce porous ZnO microflowers (ZnO-MFs) through green synthesis via precipitation method. The effects of pullulan's amount on the properties of ZnO-MFs were investigated. The ZnO-MF particle size decreased with the increased of pullulan amount. Interestingly, formation of pores occurred in presence of pullulan. The synthesized ZnO-MFs have the surface area ranging from 6.22 to 25.65 m2 g-1 and pore volume up to 0.1123 cm3 g-1. The ZnO-MF with the highest surface area was chosen for photocatalytic degradation of methyl orange (MO). The highest degradation occurred in 300 min with 150 mg catalyst dosage, 10 ppm initial dye concentration, and pH 7 experimental conditions. However, through comparison of photodegradation of MO with all synthesized ZnO-MFs, 25PZ exhibited the highest degradation rate. This shows that photocatalytic activity is not dependent on surface area alone. Based on these results, ZnO-MF has the potential to be applied in wastewater treatment. However, further improvement is needed to increase its photocatalytic activity.
Collapse
Affiliation(s)
- Eleen Dayana Mohamed Isa
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | | | - Kamyar Shameli
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Multifunctional La(OH)3@cellulose nanofibrous membranes for efficient oil/water separation and selective removal of dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117603] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Wang L, Wang J, Fan C, Bi C, Zhang X, Zhang D, Wang M, Fan Y. Two novel Co (II)‐coordination polymers as bifunctional materials for efficient photocatalytic degradation of dyes and electrocatalytic water oxidation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Chuanbin Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Caifeng Bi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Dongmei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 China
| |
Collapse
|
12
|
Elsayed EM, S. Elnouby M, Gouda MH, Elessawy NA, Santos DMF. Effect of the Morphology of Tungsten Oxide Embedded in Sodium Alginate/Polyvinylpyrrolidone Composite Beads on the Photocatalytic Degradation of Methylene Blue Dye Solution. MATERIALS 2020; 13:ma13081905. [PMID: 32316607 PMCID: PMC7216279 DOI: 10.3390/ma13081905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Tungsten oxide nanostructures were modified by oxygen vacancies through hydrothermal treatment. Both the crystalline structure and morphological appearance were completely changed. Spherical WO3·H2O was prepared from tungstic acid solution by aging at room temperature, while rod-like WO3·0.33H2O was prepared by hydrothermal treatment of tungstic acid solution at 120 °C. These structures embedded in sodium alginate (SA)/polyvinylpyrrolidone (PVP) were synthesized as novel porous beads by gelation method into calcium chloride solution. The performance of the prepared materials as photocatalysts is examined for methylene blue (MB) degradation in aqueous solutions. Different operation parameters affecting the dye degradation process, such as light intensity, illumination time, and photocatalyst dosage are investigated. Results revealed that the photocatalytic activity of novel nanocomposite changed with the change in WO3 morphology. Namely, the beads with rod nanostructure of WO3 have shown better effectiveness in MB removal than the beads containing WO3 in spherical form. The maximum degradation efficiency was found to be 98% for WO3 nanorods structure embedded beads, while the maximum removal of WO3 nanospheres structure embedded beads was 91%. The cycling-ability and reuse results recommend both prepared structures to be used as effective tools for treating MB dye-contaminated wastewaters. The results show that the novel SA/PVP/WO3 nanocomposite beads are eco-friendly nanocomposite materials that can be applied as photocatalysts for the degradation of cationic dyes in contaminated water.
Collapse
Affiliation(s)
- Eman M. Elsayed
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt;
| | - Mohamed S. Elnouby
- Composites and Nanomaterials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt;
| | - M. H. Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt;
| | - Noha A. Elessawy
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt
- Correspondence: (N.A.E.); (D.M.F.S.)
| | - D. M. F. Santos
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence: (N.A.E.); (D.M.F.S.)
| |
Collapse
|
13
|
Abstract
In the present comprehensive review we have specifically focused on polymer nanocomposites used as photocatalytic materials in fine organic reactions or in organic pollutants degradation. The selection of the polymer substrates for the immobilization of the active catalyst particles is motivated by several advantages displayed by them, such as: Environmental stability, chemical inertness and resistance to ultraviolet radiations, mechanical stability, low prices and ease availability. Additionally, the use of polymer nanocomposites as photocatalysts offers the possibility of a facile separation and reuse of the materials, eliminating thus the post-treatment separation processes and implicitly reducing the costs of the procedure. This review covers the polymer-based photocatalytic materials containing the most popular inorganic nanoparticles with good catalytic performance under UV or visible light, namely TiO2, ZnO, CeO2, or plasmonic (Ag, Au, Pt, Pd) NPs. The study is mainly targeted on the preparation, photocatalytic activity, strategies directed toward the increase of photocatalytic efficiency under visible light and reuse of the hybrid polymer catalysts.
Collapse
|