1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Zhao H, Zhang N, Zhang J, Matshazi B, Shi Y, Feng M, Xu W, Cai G, Yang H. Functional Wound Dressing Based on Natural Compounds from Traditional Chinese Medicines─Magnolol for Accelerating Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22266-22278. [PMID: 40190160 DOI: 10.1021/acsami.4c22176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Traditional petroleum-based foam dressings offer limitations due to poor biocompatibility, long preparation cycle, and serious environmental pollution. In addition, free small molecules of incomplete polymers and residual toxic cross-linkers pose a threat to the health of patients and hinder the rapid repair of wounds. Recently, natural compounds extracted from plants have gained a lot of interest in the field of wound repair due to their good biocompatibility, biodegradability, and therapeutic effects. In this study, we successfully prepared magnolol-based porous foams by a simple one-pot method using magnolol herbal exhibiting good mechanical properties, hydrophobicity, and biocompatibility, and meets the requirements of wound dressings. The Janus composite dressing was prepared using a magnolol-based porous foam as the inner layer, PVA nonwoven fabric as the middle layer, and polyacrylate as the outer layer. The three-layer structure of magnolol-based porous foam/PVA nonwoven fabric/polyacrylate (MPF/PVA/PAAS) has the capacity to realize unidirectional diversion and rapid water locking of liquid. In vivo experimental data showed that MPF/PVA/PAAS dressing significantly promoted collagen deposition and angiogenesis, and could shorten the wound healing cycle from 14 days to 10 days, significantly accelerating the wound healing process compared to traditional wound dressings. Hence, magnolol-based foam dressings show great application potential in the field of wound treatment.
Collapse
Affiliation(s)
- Huawang Zhao
- College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Naidan Zhang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jincheng Zhang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Bekezela Matshazi
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yawen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Minyuan Feng
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Guangming Cai
- College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Hongjun Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
3
|
Pei X, Feng Y, Wu Y, Zhang J, Li J, Jiang S, Huang H, Qin P, Li G, Guo X, Liu M, Wang C, Gao H. Morphology Effect of Puffball Spores on Hemostasis: A Promising Solution for Hemostatic Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417566. [PMID: 40019388 PMCID: PMC12021107 DOI: 10.1002/advs.202417566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/10/2025] [Indexed: 03/01/2025]
Abstract
Hemostatic materials play a crucial role in wound healing by promoting blood concentration or releasing procoagulant factors. While hydrophilic hemostatic materials are effective, they may cause excessive blood loss and difficulty removing from the wound. Conversely, hydrophobic hemostatic materials avoid these issues but may hinder blood concentration and the release of procoagulant factors due to their water-repellent nature. This study investigates the hemostatic properties and underlying mechanism of puffball (Bovistella sp.) spores, a traditional hemostatic material. The unique hollow ball-rod morphology and strong water affinity of puffball spores enable efficient water removal, leading to improved blood clotting without the drawbacks typically associated with hydrophilic hemostatic materials. Further analysis reveals that the nano-protrusions on the spore surface create a textured hydrophobic surface due to the pinning effect, which prevents adhesion to the wound after clotting. Overall, puffball spores exhibit hemostatic efficacy comparable to the commercial agent QuikClot, with enhanced safety and reduced side effects. Their characteristic morphology, physicochemical properties, and chemical compositions offer inspiration for advancing hemostatic materials and addressing current challenges in wound healing. Additionally, this work provides new perspectives for insight into the pharmacological substance basis of traditional medicine, expanding beyond the conventional component-focused mentality to a material-based insight.
Collapse
Affiliation(s)
- Xuechang Pei
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Yue Feng
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhouGuangdong511443P. R. China
| | - Yanru Wu
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Jie Zhang
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Jianlan Li
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Shutai Jiang
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Huijun Huang
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Ping Qin
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Guoqing Li
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Xinrui Guo
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Mingxian Liu
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhouGuangdong511443P. R. China
| | - Chuanxi Wang
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| |
Collapse
|
4
|
Lin HF, Wang YY, Liu FZ, Yang ZW, Cui H, Hu SY, Li FH, Pan P. Natural Bletilla striata Polysaccharide-Based Hydrogels for Accelerating Hemostasis. Gels 2025; 11:48. [PMID: 39852020 PMCID: PMC11764679 DOI: 10.3390/gels11010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Most of the existing hydrogel dressings have inadequacies in mechanical performance, biological activities, compatibility, or versatility, which results in the development of rapid, green, and cost-effective approaches for hydrogels in biochemical and biomedical applications becoming a top-priority task. Herein, inspired by the inherent bioactivity, water retention properties, and biocompatibility of natural polysaccharide hydrogels, we have prepared self-healing gels. Using Bletilla striata polysaccharide (BSP), carboxymethyl chitosan (CMCS), and borax via borate ester linkages, we created hemostatic and self-healing Chinese herbal medicine hydrogels in varying concentrations (2.5%, 3.0%, and 4.0%). A rotational rheometer was used to describe the hydrogels' shape and rheological characteristics. At all concentrations, it was found that the hydrogels' elastic modulus (G') consistently and significantly outperformed their viscous modulus (G″), suggesting a robust internal structure. All of the hydrogels had cell viability levels as high as 100% and hemolysis rates below 1%, indicating the hydrogels' outstanding biocompatibility. Furthermore, the hydrogels demonstrated superior hemostatic qualities in an in vivo mouse tail amputation model, as well as in in vitro coagulation tests. The results show that the hydrogel possesses excellent self-healing properties, as well as a good biocompatibility and hemostatic performance, thus paving the way for the development of a potential hemostatic green hydrogel.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng-He Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pei Pan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Yan R, Wang Y, Li W, Sun J. Promotion of chronic wound healing by plant-derived active ingredients and research progress and potential of plant polysaccharide hydrogels. CHINESE HERBAL MEDICINES 2025; 17:70-83. [PMID: 39949811 PMCID: PMC11814255 DOI: 10.1016/j.chmed.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Wound healing is a complex biochemical process. The use of herbal medicine in wound healing not only carries forward the wisdom of traditional medicine, with its anti-inflammatory and immune-regulating effects, but also reflects the direction of modern biopharmaceutical technology, such as its potential in developing new biomaterials like hydrogels. This article first outlines the inherent structural properties of healthy skin, along with the physiological characteristics related to chronic wounds in patients with diabetes and burns. Subsequently, the article delves into the latest advancements in clinical and experimental research on the impact of active constituents in herbal medicine on wound tissue regeneration, summarizing existing studies on the mechanisms of various herbal medicines in the healing of diabetic and burn wounds. Finally, the paper thoroughly examines the application and mechanisms of plant polysaccharide hydrogels containing active herbal compounds in chronic wound healing. The primary objective is to provide valuable resources for the clinical application and development of herbal medicine, thereby maximizing its therapeutic potential. It also represents the continuation of traditional medical wisdom, offering new possibilities for advancements in regenerative medicine and wound care.
Collapse
Affiliation(s)
- Ru Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Jialin Sun
- Department of Medicine, Heilongjiang Minzu College, Harbin 150066, China
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| |
Collapse
|
6
|
Zhang L, Yang J, Ding C, Sun S, Zhang S, Ding Q, Zhao T, Liu W. Application of polysaccharide-based crosslinking agents based on schiff base linkages for biomedical scaffolds. Carbohydr Polym 2024; 345:122585. [PMID: 39227125 DOI: 10.1016/j.carbpol.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Chemical crosslinking is a method widely used to enhance the mechanical strength of biopolymer-based scaffolds. Polysaccharides are natural and biodegradable carbohydrate polymers that can act as crosslinking agents to promote the formation of scaffolds. Compared to synthetic crosslinking agents, Polysaccharide-based crosslinking agents have better biocompatibility for cell adhesion and growth. Traditional Chinese medicine has special therapeutic effects on various diseases and is rich in various bioactive ingredients. Among them, polysaccharides have immune regulatory, antioxidant, and anti-inflammation effects, which allow them to not only act as crosslinking agents but endow the scaffold with greater bioactivity. This article focuses on the latest developments of polysaccharide-based crosslinking agents for biomedical scaffolds, including hyaluronic acid, chondroitin sulfate, dextran, alginate, cellulose, gum polysaccharides, and traditional Chinese medicine polysaccharides. Also, we provide a summary and prospects on the research of polysaccharide-based crosslinking agents.
Collapse
Affiliation(s)
- Lifeng Zhang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Shuwen Sun
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
7
|
Han MM, Fan YK, Zhang Y, Dong ZQ. Advances in herbal polysaccharides-based nano-drug delivery systems for cancer immunotherapy. J Drug Target 2024; 32:311-324. [PMID: 38269853 DOI: 10.1080/1061186x.2024.2309661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The boom in cancer immunotherapy has provided many patients with a better chance of survival, but opportunities often come with challenges. Single immunotherapy is not good enough to eradicate tumours, and often fails to achieve the desired therapeutic effect because of the low targeting of immunotherapy drugs, and causes more side effects. As a solution to this problem, researchers have developed several nano Drug Delivery Systems (NDDS) to deliver immunotherapeutic agents to achieve good therapeutic outcomes. However, traditional drug delivery systems (DDS) have disadvantages such as poor bioavailability, high cytotoxicity, and difficulty in synthesis, etc. Herbal Polysaccharides (HPS), derived from natural Chinese herbs, inherently possess low toxicity. Furthermore, the biocompatibility, biodegradability, hydrophilicity, ease of modification, and immunomodulatory activities of HPS offer unique advantages in substituting traditional DDS. This review initially addresses the current developments and challenges in immunotherapy. Subsequently, it focuses on the immunomodulatory mechanisms of HPS and their design as nanomedicines for targeted drug delivery in tumour immunotherapy. Our findings reveal that HPS-based nanomedicines exhibit significant potential in enhancing the efficacy of cancer immunotherapy, providing crucial theoretical foundations and practical guidelines for future clinical applications.
Collapse
Affiliation(s)
- Miao-Miao Han
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, Department of Pharmaceutics, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yi-Kai Fan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, Department of Pharmaceutics, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, Department of Pharmaceutics, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, China
| | - Zheng-Qi Dong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, Department of Pharmaceutics, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, China
| |
Collapse
|
8
|
Chen K, Liang W, Zhang J, Lei K, Yang K, Lin F, Meng L, Hong Z, Li J, Xie Y. Chitosan-Based Composite Aerogel with a Rapid Tissue Hydration Layer-Triggered Response to Promote Hemostasis. Biomacromolecules 2024; 25:6570-6579. [PMID: 39305226 DOI: 10.1021/acs.biomac.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Aerogels exhibit poor adhesion to wet tissue surfaces, which is a significant factor that limits their hemostatic properties. In this work, we propose a new method for investigating aerogel hemostatic materials by introducing the concept of the 'rapid tissue hydration layer-triggered property' into the hemostatic material. A chitosan derivative (Csde) with a "swollen property" was prepared via an amide reaction, followed by the incorporation of the extracted bletilla striata complex (Bscai) into the chitosan derivative to fabricate the Bscai/Csde hemostatic material. The research results indicated that the Bscai/Csde hemostatic material exhibited a rapid tissue hydration layer-triggered response, outstanding hemostasis ability, as well as excellent hemocompatibility, antibacterial properties, and cytocompatibility. Additionally, the preparation method for the Bscai/Csde hemostatic material is straightforward, and the raw materials are readily available. Therefore, this study presents a novel method for developing a hemostatic material method, and the composite aerogel hemostatic material demonstrates considerable potential for future applications.
Collapse
Affiliation(s)
- Kaiqiang Chen
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Wencheng Liang
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Jiakang Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Keli Yang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, P. R. China
| | - Feng Lin
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Lingbin Meng
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Zongjian Hong
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| | - Jun Li
- Department of Sports and Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
| | - Yan Xie
- College of Chemical and Material Engineering, Quzhou University, Zhejiang 324000, P. R. China
| |
Collapse
|
9
|
Xu W, Huang J, Wang P, Yang Y, Fu S, Ying Z, Zhou Z. Using widely targeted metabolomics profiling to explore differences in constituents of three Bletilla species. Sci Rep 2024; 14:23873. [PMID: 39396087 PMCID: PMC11470930 DOI: 10.1038/s41598-024-74204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Bletilla striata has been used in traditional Chinese medicine for thousands of years to treat a variety of health diseases. Currently, metabolic causes of differences in medicinal values are unknown, due to the lack of a large-scale and comprehensive investigation of metabolites in Bletilla species. In order to gain a better understanding of the major chemical constituents responsible for the medicinal value, this study aimed to explore the metabolomic differences among three Bletilla species (Bletilla striata: Bs, Bletilla ochracea: Bo and Bletilla formosana: Bf). There were 258 different metabolites between 'Bo' and 'Bf', the contents of 109 metabolites had higher abundance, while 149 metabolites showed less accumulation. There were 165 different metabolites between the 'Bs' and 'Bf', content of 72 metabolites was increased and content of 93 metabolites was decreased. There were 239 different metabolites between the 'Bs' and 'Bo', content of 145 metabolites was increased and content of 94 metabolites was decreased. In the Bo_vs_Bf, Bs_vs_Bf and Bs_vs_Bo groups, the major differential categories were flavonoids, phenolic acids, organic acids and alkaloids. Moreover, the differential metabolites were clustered into clear and distinct profiles via K-means analysis. In addition, the major differential categories were flavonoids, phenolic acids, organic acids and alkaloids. The 'Flavonoid biosynthesis' (ko00941) and 'Phenylalanine metabolism' (ko00360) pathways were significantly enriched in Bo_vs_Bf, Bs_vs_Bf and Bs_vs_Bo comparisons. These results clarify the metabolomics in different Bletilla species, as well as providing basis for the phamaceutical value of novel species of Bletilla.
Collapse
Affiliation(s)
- Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Jian Huang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Peilong Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Yanping Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Shuangbin Fu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zhen Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zhuang Zhou
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China.
| |
Collapse
|
10
|
He Z, He Y, Meng X, Ge Z, Sun H. Structural characteristics and wound-healing effects of Bletilla striata fresh tuber polysaccharide. Int J Biol Macromol 2024; 278:134679. [PMID: 39137854 DOI: 10.1016/j.ijbiomac.2024.134679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/03/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
A homogeneous polysaccharide from Bletilla striata fresh tuber (BSPS) was prepared and extensively characterized using HP-GPC, colorimetry, FT-IR, methylation, GC-MS, NMR, Congo red experiment, SEM, and AFM. The molecular weight of BSPS was 722.90 kDa. BSPS consisted of glucose and mannose in the molar ratio of 1 : 2.5. BSPS had a linear chain structure consisting mainly of →4)-β-d-Glcp-(1→ and →4)-β-d-Manp-(1→ residues. O-acetyl group linked to C2 of →4)-β-d-Manp-(1→ residue. Its monosaccharide molar ratio, molecular weight, and O-acetyl substituted position were different from that of the polysaccharide from B. striata dried tuber reported previously. Furthermore, BSPS at concentrations of 3.125-25 μg/mL significantly promoted the viability (ca. 10%), differentiation (1.5-4 folds), migration (15%-70%), and invasion (1.84-4.65 folds) of C2C12 cells. Of note, BSPS remarkably accelerated the epidermal regeneration and wound healing in mice. This study for the first time reported the structure of polysaccharides in B. striata fresh tubers. The results demonstrated that BSPS could be explored as a novel natural wound-healing drug.
Collapse
Affiliation(s)
- Zining He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanfei He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Xiang Meng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Zhao C, Huang L, Tang J, Lv L, Wang X, Dong X, Yang F, Guan Q. Multifunctional nanofibrous scaffolds for enhancing full-thickness wound healing loaded with Bletilla striata polysaccharides. Int J Biol Macromol 2024; 278:134597. [PMID: 39127286 DOI: 10.1016/j.ijbiomac.2024.134597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The considerable challenge of wound healing remains. In this study, we fabricated a novel multifunctional core-shell nanofibrous scaffold named EGF@BSP-CeO2/PLGA (EBCP), which is composed of Bletilla striata polysaccharide (BSP), Ceria nanozyme (CeO2) and epidermal growth factor (EGF) as the core and poly(lactic-co-glycolic acid) (PLGA) as the shell via an emulsion electrospinning technique. An increase in the BSP content within the scaffolds corresponded to improved wound healing performance. These scaffolds exhibited increased hydrophilicity and porosity and improved mechanical properties and anti-UV properties. EBCP exhibited sustained release, and the degradation rate was <4 % in PBS for 30 days. The superior biocompatibility was confirmed by the MTT assay, hemolysis, and H&E staining. In addition, the in vitro results revealed that, compared with the other groups, the EBCP group presented excellent antioxidant and antibacterial effects. More importantly, the in vivo results indicated that the wound closure rate of the EBCP group reached 94.0 % on day 10 in the presence of H2O2. The results demonstrated that EBCP could comprehensively regulate the wound microenvironment, possess hemostatic abilities, and significantly promote wound healing. In conclusion, the EBCP is promising for facilitating the treatment of infected wounds and represents a potential material for clinical applications.
Collapse
Affiliation(s)
- Chaoyue Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Long Huang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jie Tang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Linlin Lv
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Xinying Wang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Xiyao Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Fengrui Yang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Qingxiang Guan
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
12
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
13
|
Chen M, Wang X, Ye Y, Li X, Li S, Li M, Jiang F, Zhang C. Combined metabolomics and transcriptomics reveal the secondary metabolite networks in different growth stages of Bletilla striata (Thunb.) Reichb.f. PLoS One 2024; 19:e0307260. [PMID: 39046970 PMCID: PMC11290943 DOI: 10.1371/journal.pone.0307260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Bletilla striata (Thunb.) Reichb.f. (B. striata) is a traditional Chinese medicinal herb. B. striata polysaccharides (BSP), stilbenes and 2-isobutyl malic acid glucosoxy-benzyl ester compounds are the main active ingredients in B. striata. However, there is limited report on the changes of medicinal components and their biosynthesis regulation mechanisms in the tubers of B. striata at different stages. METHOD The tubers of B. striata were collected during the flowering period, fruiting period, and harvest period to determine the total polysaccharide content using the phenol sulfuric acid method. The changes in secondary metabolites in the tubers at these stages were analyzed by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS), and transcriptomics was conducted for further exploration of their biosynthetic pathways. RESULT The BSP content gradually increases from the flowering period to the fruiting period as the tubers develop, reaching its peak, but subsequently decreases at harvest time, which may be associated with the germination of B. striata buds in later stage. A total of 294 compounds were identified in this study. Among them, a majority of the compounds, such as 2-isobutyl malate gluconoxy-benzyl ester, exhibited high content during the fruit stage, while stilbenes like coelonin, 3'-O-methylbatatasin III, and blestriarene A accumulated during the harvesting period. The transcriptome data also revealed a substantial number of differentially expressed genes at various stages, providing a partial explanation for the complex changes in metabolites. We observed a correspondence between the expression pattern of GDP-Man biosynthesis-related enzyme genes and cumulative changes in BSP. And identified a positive correlation between 9 transcription factors and genes associated with polysaccharide biosynthesis, while 5 transcription factors were positively correlated with accumulation of 2-isobutyl malate gluconoxy-benzyl ester compounds and 5 transcription factors exhibited negative correlated with stilbene accumulation. CONCLUSION It is imperative to determine the appropriate harvesting period based on the specific requirements of different active ingredients and the accumulation patterns of their metabolites. Considering the involvement of multiple transcription factors in the biosynthesis and accumulation of its active ingredients, a comprehensive investigation into the specific regulatory mechanisms that facilitate high-quality cultivation of B. striata is imperative.
Collapse
Affiliation(s)
- Man Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyu Ye
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiqing Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fusheng Jiang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunchun Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Huang F, Fan Y, Liu X, Chen Y, Huang Y, Meng Y, Liang Y. Structural characterization and innate immunomodulatory effect of glucomannan from Bletilla striata. Int J Biol Macromol 2024; 273:133206. [PMID: 38885853 DOI: 10.1016/j.ijbiomac.2024.133206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The crude polysaccharide of Bletilla striata in this study was extracted by water extraction and alcohol precipitation and further purified by gel column to yield the purified component Bletilla striata polysaccharide (BSP). Its structure and innate immune regulation activity were studied. BSP mainly comprises mannose and glucose, with a monosaccharide molar ratio of 2.9:1 and a weight-average molecular weight of 28,365 Da. It is a new low-molecular-weight water-soluble neutral glucomannan. BSP contains a → 6)-β-Manp-(1→, →4)-β-Glcp-(1→, →4)-β-Manp-(1 → and →3)-α-Manp-(1 → linear main chain, containing β-Glcp-(1 → and β-Manp-(1 → two branched chain fragments were connected to the Man residue at position 4. BSP can enhance the anti-infection ability of Caenorhabditis elegans against Pseudomonas aeruginosa, significantly improve the phagocytic ability of RAW264.7 macrophages, stimulate the secretion of NO and TNF-α, and have good innate immune regulation activity. These findings guide the use of Bletilla striata polysaccharides with immunomodulatory action.
Collapse
Affiliation(s)
- Fang Huang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yibin Fan
- Health Management Center, Department of Dermatology, Zhejiang provincial people's hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Xinxin Liu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Youming Huang
- Health Management Center, Department of Dermatology, Zhejiang provincial people's hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Yanmei Meng
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
15
|
Luo Y, Tan Z, Zhang H, Tang S, Sooranna SR, Xie J. Optimization of an Ultrasound-Assisted Extraction Technique and the Effectiveness of the Sunscreen Components Isolated from Bletilla striata. Molecules 2024; 29:2786. [PMID: 38930851 PMCID: PMC11206547 DOI: 10.3390/molecules29122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Bletilla striata is the dried tuber of B. striata (Thund.) Reichb.f., which has antibacterial, anti-inflammatory, anti-tumor, antioxidant and wound healing effects. Traditionally, it has been used for hemostasis therapy, as well as to treat sores, swelling and chapped skin. In this study, we used the ultraviolet (UV) absorbance rate of B. striata extracts as the index, and the extraction was varied with respect to the solid-liquid ratio, ethanol concentration, ultrasonic time and temperature in order to optimize the extraction process for its sunscreen components. The main compounds in the sunscreen ingredients of Baiji (B. striata) were analyzed using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry. The sunscreen properties were subsequently evaluated in vitro using the 3M tape method. The results show that the optimal extraction conditions for the sunscreen components of B. striata were a solid-liquid ratio of 1:40 (g/mL), an ethanol concentration of 50%, an ultrasonic time of 50 min and a temperature of 60 °C. A power of 100 W and an ultrasonic frequency of 40 Hz were used throughout the experiments. Under these optimized conditions, the UV absorption rate of the isolated sunscreen components in the UVB region reached 84.38%, and the RSD was 0.11%. Eighteen compounds were identified, including eleven 2-isobutyl malic acid glucose oxybenzyl esters, four phenanthrenes, two bibenzyl and one α-isobutylmalic acid. An evaluation of the sunscreen properties showed that the average UVB absorption values for the sunscreen samples from different batches of B. striata ranged from 0.727 to 1.201. The sunscreen ingredients of the extracts from B. striata had a good UV absorption capacity in the UVB area, and they were effective in their sunscreen effects under medium-intensity sunlight. Therefore, this study will be an experimental reference for the extraction of sunscreen ingredients from the B. striata plant, and it provides evidence for the future development of B. striata as a candidate cosmetic raw material with UVB protection properties.
Collapse
Affiliation(s)
- Yan Luo
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China;
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, China
| | - Zhenyuan Tan
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China; (Z.T.); (H.Z.); (S.T.)
| | - Hancui Zhang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China; (Z.T.); (H.Z.); (S.T.)
| | - Shuai Tang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China; (Z.T.); (H.Z.); (S.T.)
| | - Suren R. Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK;
- Life Science and Clinical Research Center, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jizhao Xie
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China; (Z.T.); (H.Z.); (S.T.)
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Nanning 530021, China
| |
Collapse
|
16
|
Zhang X, Mu Y, Zhao L, Hong Y, Shen L. Self-healing, antioxidant, and antibacterial Bletilla striata polysaccharide-tannic acid dual dynamic crosslinked hydrogels for tissue adhesion and rapid hemostasis. Int J Biol Macromol 2024; 270:132182. [PMID: 38723806 DOI: 10.1016/j.ijbiomac.2024.132182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Biomaterials capable of achieving effective sealing and hemostasis at moist wounds are in high demand in the clinical management of acute hemorrhage. Bletilla striata polysaccharide (BSP), a natural polysaccharide renowned for its hemostatic properties, holds promising applications in biomedical fields. In this study, a dual-dynamic-bonds crosslinked hydrogel was synthesized via a facile one-pot method utilizing poly(vinyl alcohol) (PVA)-borax as a matrix system, followed by the incorporation of BSP and tannic acid (TA). Chemical borate ester bonds formed around borax, coupled with multiple physical hydrogen bonds between BSP and other components, enhanced the mechanical properties and rapid self-healing capabilities. The catechol moieties in TA endowed the hydrogel with excellent adhesive strength of 30.2 kPa on the surface of wet tissues and facilitated easy removal without residue. Benefiting from the synergistic effect of TA and the preservation of the intrinsic properties of BSP, the hydrogel exhibited outstanding biocompatibility, antibacterial, and antioxidant properties. Moreover, it effectively halted acute bleeding within 31.3 s, resulting in blood loss of 15.6 % of that of the untreated group. As a superior hemostatic adhesive, the hydrogel in this study is poised to offer a novel solution for addressing future acute hemorrhage, wound healing, and other biomedical applications.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China
| | - Yingying Mu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China; Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| |
Collapse
|
17
|
Zhong G, Lei P, Guo P, Yang Q, Duan Y, Zhang J, Qiu M, Gou K, Zhang C, Qu Y, Zeng R. A Photo-induced Cross-Linking Enhanced A and B Combined Multi-Functional Spray Hydrogel Instantly Protects and Promotes of Irregular Dynamic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309568. [PMID: 38461520 DOI: 10.1002/smll.202309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Indexed: 03/12/2024]
Abstract
Wounds in harsh environments can face long-term inflammation and persistent infection, which can slow healing. Wound spray is a product that can be rapidly applied to large and irregularly dynamic wounds, and can quickly form a protective film in situ to inhibit external environmental infection. In this study, a biodegradable A and B combined multi-functional spray hydrogel is developed with methacrylate-modified chitosan (CSMA1st) and ferulic acid (FA) as type A raw materials and oxidized Bletilla striata polysaccharide (OBSP) as type B raw materials. The precursor CSMA1st-FA/OBSP (CSOB-FA1st) hydrogel is formed by the self-cross-linking of dynamic Schiff base bonds, the CSMA-FA/OBSP (CSOB-FA) hydrogel is formed quickly after UV-vis light, so that the hydrogel fits with the wound. Rapid spraying and curing provide sufficient flexibility and rapidity for wounds and the hydrogel has good injectability, adhesive, and mechanical strength. In rats and miniature pigs, the A and B combined spray hydrogel can shrink wounds and promote healing of infected wounds, and promote the enrichment of fibrocyte populations. Therefore, the multifunctional spray hydrogel combined with A and B can protect irregular dynamic wounds, prevent wound infection and secondary injury, and be used for safe and effective wound treatment, which has a good prospect for development.
Collapse
Affiliation(s)
- Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Pengkun Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yun Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kaijun Gou
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Chengdu, 610041, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Chengdu, 610041, China
| |
Collapse
|
18
|
Zhou M, Lin X, Wang L, Yang C, Yu Y, Zhang Q. Preparation and Application of Hemostatic Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309485. [PMID: 38102098 DOI: 10.1002/smll.202309485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Hemorrhage remains a critical challenge in various medical settings, necessitating the development of advanced hemostatic materials. Hemostatic hydrogels have emerged as promising solutions to address uncontrolled bleeding due to their unique properties, including biocompatibility, tunable physical characteristics, and exceptional hemostatic capabilities. In this review, a comprehensive overview of the preparation and biomedical applications of hemostatic hydrogels is provided. Particularly, hemostatic hydrogels with various materials and forms are introduced. Additionally, the applications of hemostatic hydrogels in trauma management, surgical procedures, wound care, etc. are summarized. Finally, the limitations and future prospects of hemostatic hydrogels are discussed and evaluated. This review aims to highlight the biomedical applications of hydrogels in hemorrhage management and offer insights into the development of clinically relevant hemostatic materials.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Lin
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Li Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
19
|
Du L, Ma C, Liu B, Liu W, Zhu Y, Wang Z, Chen T, Huang L, Pang Y. Green Synthesis of Blumea balsamifera Oil Nanoemulsions Stabilized by Natural Emulsifiers and Its Effect on Wound Healing. Molecules 2024; 29:1994. [PMID: 38731484 PMCID: PMC11085480 DOI: 10.3390/molecules29091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.
Collapse
Affiliation(s)
- Lingfeng Du
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Chunfang Ma
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Bingnan Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Wei Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuxin Pang
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Database Management Center, Yunfu 527325, China
| |
Collapse
|
20
|
Yin C, Li Y, Yu J, Deng Z, Liu S, Shi X, Tang D, Chen X, Zhang L. Dragon's Blood-Loaded Mesoporous Silica Nanoparticles for Rapid Hemostasis and Antibacterial Activity. Molecules 2024; 29:1888. [PMID: 38675708 PMCID: PMC11054711 DOI: 10.3390/molecules29081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Dragon's blood (DB) is a traditional Chinese medicine (TCM) with hemostatic effects and antibacterial properties. However, it is still challenging to use for rapid hemostasis because of its insolubility. In this study, different amounts of DB were loaded on mesoporous silica nanoparticles (MSNs) to prepare a series of DB-MSN composites (5DB-MSN, 10DB-MSN, and 20DB-MSN). DB-MSN could quickly release DB and activate the intrinsic blood coagulation cascade simultaneously by DB and MSN. Hemostasis tests demonstrated that DB-MSN showed superior hemostatic effects than either DB or MSNs alone, and 10DB-MSN exhibited the best hemostatic effect. In addition, the antibacterial activities of DB-MSN against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) improved with the increase in DB. Furthermore, the hemolysis assay and cytocompatibility assay demonstrated that all DB-MSNs exhibited excellent biocompatibility. Based on these results, 10DB-MSN is expected to have potential applications for emergency hemostatic and antibacterial treatment in pre-hospital trauma.
Collapse
Affiliation(s)
- Cuiyun Yin
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Yihang Li
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Jing Yu
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Zhaoyou Deng
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Shifang Liu
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Xuanchao Shi
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Deying Tang
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Xi Chen
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Lixia Zhang
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| |
Collapse
|
21
|
Shang J, Duan L, Zhang W, Zhuang Q, Ren X, Gu D. The effect of Bletilla striata polysaccharide on the physical and healing properties of curdlan-based hydrogel for wound healing. J Biomater Appl 2024; 38:943-956. [PMID: 38462970 DOI: 10.1177/08853282241238409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Bletilla striata polysaccharide (BSP) was added to curdlan to form a blend hydrogel through a simple heating-cooling procedure to improve the hydrophilicity and healing efficacy of curdlan-based hydrogel used in wound healing. We explored the interplay between BSP and curdlan, studied how BSP concentration affects the physical properties and microstructures of hydrogels, and examined the biocompatibility and healing properties of the blend hydrogel. It was proved that the hydrogel framework was primarily formed by ordered arranged curdlan molecules, with BSP uniformly dispersed and intertwined with curdlan through hydrogen bonding. This effectively improved its hydrophilicity and strengthened the microstructure. Curdlan was found to be compatible with BSP. The blend hydrogel B3Cd3 (containing 1.5% BSP and 1.5% curdlan, w/v) was identified as the optimal formulation based on its higher water adsorption, water retention, thermal stability and interconnected microstructure, and was thus selected for further research. In vitro experiments revealed the highest cell viability of L929 in B3Cd3 extracts compared to those extracts of single-component curdlan hydrogel (Cd). In vivo, animal studies indicated that the B3Cd3 accelerated wound healing compared to the control group by improving re-epithelialization and blood vessel regeneration. On Days 3 and 11, the therapeutic benefits of B3Cd3 exceeded those of the Cd group, and no significant differences were observed in wound healing rates between the B and B3Cd3 groups from Day 7. The study proves that BSP enhances the physical and healing properties, as well as cell proliferation, of the curdlan-based hydrogel. The blend hydrogel B3Cd3, with its exceptional properties, holds potential for future application as a material for non-infected wound healing.
Collapse
Affiliation(s)
- Jin Shang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liangliang Duan
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Weimin Zhang
- Administration for Drug and Instrument Supervision and Inspection of PLAJLSF, Beijing, China
| | - Qibin Zhuang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Xiaomei Ren
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dale Gu
- Technical Department, Anhui Xiletianyuan Food Co., Ltd, Anqing, China
| |
Collapse
|
22
|
Jiang F, Hua C, Pan J, Peng S, Ning D, Chen C, Li S, Xu X, Wang L, Zhang C, Li M. Effect fraction of Bletilla striata (Thunb.) Reichb.f. alleviates LPS-induced acute lung injury by inhibiting p47 phox/NOX2 and promoting the Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155186. [PMID: 38387272 DOI: 10.1016/j.phymed.2023.155186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND & AIMS The effect fraction of Bletilla striata (Thunb.) Reichb.f. (EFBS), a phenolic-rich extract, has significant protective effects on lipopolysaccharide (LPS)-induced acute lung injury (ALI), but its composition and molecular mechanisms are unclear. This study elucidated its chemical composition and possible protective mechanisms against LPS-induced ALI from an antioxidant perspective. METHODS EFBS was prepared by ethanol extraction, enriched by polyamide column chromatography, and characterized using ultra-performance liquid chromatography/time-of-flight mass spectrometry. The LPS-induced ALI model and the RAW264.7 model were used to evaluate the regulatory effects of EFBS on oxidative stress, and transcriptome analysis was performed to explore its possible molecular mechanism. Then, the pathway by which EFBS regulates oxidative stress was validated through inhibitor intervention, flow cytometry, quantitative PCR, western blotting, and immunofluorescence techniques. RESULTS A total of 22 compounds in EFBS were identified. The transcriptome analyses of RAW264.7 cells indicated that EFBS might reduce reactive oxygen species (ROS) production by inhibiting the p47phox/NADPH oxidase 2 (NOX2) pathway and upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Both in vitro and in vivo data confirmed that EFBS significantly inhibited the expression and phosphorylation of p47phox protein, thereby weakening the p47phox/NOX2 pathway and reducing ROS production. EFBS significantly increased the expression of Nrf2 in primary peritoneal macrophages and lung tissue and promoted its nuclear translocation, dose-dependent increase in HO-1 levels, and enhancement of antioxidant activity. In vitro, both Nrf2 and HO-1 inhibitors significantly reduced the scavenging effects of EFBS on ROS, further confirming that EFBS exerts antioxidant effects at least partially by upregulating the Nrf2/HO-1 pathway. CONCLUSIONS EFBS contains abundant phenanthrenes and dibenzyl polyphenols, which can reduce ROS production by inhibiting the p47phox/NOX2 pathway and enhance ROS clearance activity by upregulating the Nrf2/HO-1 pathway, thereby exerting regulatory effects on oxidative stress and improving LPS-induced ALI.
Collapse
Affiliation(s)
- Fusheng Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenglong Hua
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jieli Pan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Suyu Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dandan Ning
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cheng Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shiqing Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaohua Xu
- People's Hospital of Quzhou, Quzhou 324002, China
| | - Linyan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chunchun Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Meiya Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
23
|
He X, Liu L, Gu F, Huang R, Liu L, Nian Y, Zhang Y, Song C. Exploration of the anti-inflammatory, analgesic, and wound healing activities of Bletilla Striata polysaccharide. Int J Biol Macromol 2024; 261:129874. [PMID: 38307430 DOI: 10.1016/j.ijbiomac.2024.129874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Bletilla Striata (BS) Polysaccharide (BSP) is one of the main components of the traditional Chinese medicinal plant Bletilla striata Rchb. F. BSP has been widely used in antimicrobial and hemostasis treatments in clinics. Despite its use in skin disease treatment and cosmetology, the effects of BSP on wound healing remain unclear. Here we investigated the anti-inflammatory, antioxidant, and analgesic effects of BSP and explored its impact on morphological changes and inflammatory mediators during wound healing. A carrageenan-induced mouse paw edema model was established to evaluate the anti-inflammatory effect of BSP. Antioxidant indicators, including NO, SOD, and MDA, were measured in the blood and liver. The increased pain threshold induced by BSP was also determined using the hot plate test. A mouse excisional wound model was applied to evaluate the wound healing rate, and HE staining and Masson staining were used to detect tissue structure changes. In addition, ELISA was employed to detect the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in serum. BSP significantly decreased the concentration of NO and MDA in serum and liver while increasing SOD activity. It exhibited a notable improvement in mouse paw edema induced by carrageenan. BSP dose-dependently delayed the appearance of licking behavior in mice, indicating its analgesic effect. Compared to the control group, the wound healing rate was significantly improved in the BSP treatment group. HE and Masson staining results showed that the BSP and 'Jingwanhong' ointment groups had slightly milder inflammatory responses and significantly promoted more new granulation tissue formation. The levels of serum inflammatory mediators TNF-α, IL-1β, and IL-6 were reduced to varying degrees. The results demonstrated that BSP possesses anti-inflammatory, antioxidant, analgesic, and wound healing properties, and it may promote wound healing through inhibition of inflammatory cytokine synthesis and release.
Collapse
Affiliation(s)
- Xiaomei He
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Longyun Liu
- School of Biotechnology, Hefei Vocational and Technical College, Hefei 230000, China
| | - Fangli Gu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Renshu Huang
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Li Liu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
| | - Yuting Nian
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Cheng Song
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China.
| |
Collapse
|
24
|
Tang Z, Dan N, Chen Y. Utilizing epoxy Bletilla striata polysaccharide collagen sponge for hemostatic care and wound healing. Int J Biol Macromol 2024; 259:128389. [PMID: 38000600 DOI: 10.1016/j.ijbiomac.2023.128389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Hemostatic materials that are lightweight and possess good blood absorption performance have been widely considered for use in modern wound care. Natural hemostatic ingredients derived from traditional Chinese medicine have also received extensive attention. Bletilla polysaccharides are valued by researchers for their excellent hemostatic performance and good reactivity. Collagen is favored by researchers due to its high biocompatibility and low immunogenicity. In this study, Bletilla striata polysaccharide, the main hemostatic component of Bletilla striata, was activated by epoxy groups, and epoxidized Bletilla striata polysaccharide (EBSP) was prepared. Then, EBSP was crosslinked with collagen under alkaline conditions, and a new hemostatic material that was an epoxidized Bletilla polysaccharide crosslinked collagen hemostatic sponge was prepared. We demonstrated that endowing collagen with better hemostatic performance, cytocompatibility, and blood compatibility does not destroy its original three-stranded helical structure. Compared with the medical gauze, hemostasis time was shorter (26.75 ± 2.38 s), and blood loss was lower (0.088 ± 0.051 g) in the rat liver injury hemostasis model. In the rat model of severed tail hemostasis, hemostasis time was also shorter (47.33 ± 2.05 s), and the amount of blood loss was lower (0.330 ± 0.122 g). The sponge possessed good hemostatic and healing performance.
Collapse
Affiliation(s)
- Zhongyu Tang
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
25
|
Li H, Wang PP, Lin ZZ, Wang YL, Gui XJ, Fan XH, Dong FY, Zhang PP, Li XL, Liu RX. Identification of Bletilla striata and related decoction pieces: a data fusion method combining electronic nose, electronic tongue, electronic eye, and high-performance liquid chromatography data. Front Chem 2024; 11:1342311. [PMID: 38268760 PMCID: PMC10806155 DOI: 10.3389/fchem.2023.1342311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: We here describe a new method for distinguishing authentic Bletilla striata from similar decoctions (namely, Gastrodia elata, Polygonatum odoratum, and Bletilla ochracea schltr). Methods: Preliminary identification and analysis of four types of decoction pieces were conducted following the Chinese Pharmacopoeia and local standards. Intelligent sensory data were then collected using an electronic nose, an electronic tongue, and an electronic eye, and chromatography data were obtained via high-performance liquid chromatography (HPLC). Partial least squares discriminant analysis (PLS-DA), support vector machines (SVM), and back propagation neural network (BP-NN) models were built using each set of single-source data for authenticity identification (binary classification of B. striata vs. other samples) and for species determination (multi-class sample identification). Features were extracted from all datasets using an unsupervised approach [principal component analysis (PCA)] and a supervised approach (PLS-DA). Mid-level data fusion was then used to combine features from the four datasets and the effects of feature extraction methods on model performance were compared. Results and Discussion: Gas chromatography-ion mobility spectrometry (GC-IMS) showed significant differences in the types and abundances of volatile organic compounds between the four sample types. In authenticity determination, the PLS-DA and SVM models based on fused latent variables (LVs) performed the best, with 100% accuracy in both the calibration and validation sets. In species identification, the PLS-DA model built with fused principal components (PCs) or fused LVs had the best performance, with 100% accuracy in the calibration set and just one misclassification in the validation set. In the PLS-DA and SVM authenticity identification models, fused LVs performed better than fused PCs. Model analysis was used to identify PCs that strongly contributed to accurate sample classification, and a PC factor loading matrix was used to assess the correlation between PCs and the original variables. This study serves as a reference for future efforts to accurately evaluate the quality of Chinese medicine decoction pieces, promoting medicinal formulation safety.
Collapse
Affiliation(s)
- Han Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Pan-Pan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhao-Zhou Lin
- Beijing Zhongyan Tongrentang Medicine R&D Co., Ltd., Beijing, China
| | - Yan-Li Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin-Jing Gui
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue-Hua Fan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Feng-Yu Dong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Pan-Pan Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue-Lin Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
| | - Rui-Xin Liu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, China
| |
Collapse
|
26
|
Bai L, Wang T, Deng Q, Zheng W, Li X, Yang H, Tong R, Yu D, Shi J. Dual properties of pharmacological activities and preparation excipient: Bletilla striata polysaccharides. Int J Biol Macromol 2024; 254:127643. [PMID: 37898246 DOI: 10.1016/j.ijbiomac.2023.127643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Bletilla striata has been used for thousands of years and shows the functions of stopping bleeding, reducing swelling, and promoting healing in traditional applications. For Bletilla striata, Bletilla striata polysaccharides (BSP) is the main active ingredient, exhibiting biological functions of anti-inflammatory, anti-oxidant, anti-fibrotic, immune modulation, anti-glycation, and so on. In addition, BSP has exhibited the characteristics of excipient such as bio-adhesion, bio-degradability, and bio-safety and has been prepared into a series of preparations such as nanoparticles, microspheres, microneedles, hydrogels, etc. BSP, as both a drug and an excipient, has already aroused more and more attention. In this review, publications in recent years related to the extraction and identification, biological activities, and excipient application of BSP are reviewed. Specifically, we focused on the advances in the application of BSP as a formulation excipient. We hold opinion that BSP not only needed more researches in the mechanisms, but also the development into hydrogels, nano-formulations, tissue engineering, and so on. And we believe that this paper provides a beneficial reference for further BSP innovation and in-depth research and promotes the use of these natural products in pharmaceutical applications.
Collapse
Affiliation(s)
- Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zheng
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
27
|
Wang Y, Ding T, Jiang X. Network Pharmacology Study on Herb Pair Bletilla striata-Galla chinensis in the Treatment of Chronic Skin Ulcers. Curr Pharm Des 2024; 30:1354-1376. [PMID: 38571354 DOI: 10.2174/0113816128288490240322055201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Herb pair Bletilla striata-Galla chinensis (BS-GC) is a classic combination of topical traditional Chinese medicine formulae in the treatment of chronic skin ulcers (CSUs). OBJECTIVE The aim of this study is to explore the effective active ingredients of BS-GC, as well as the core targets and signal transduction pathways of its action on CSUs. METHODS The ingredients of BS-GC were obtained from TCMSP and HERB databases. The targets of all active ingredients were retrieved from the SwissTargetPrediction database. The targets of CSUs were obtained from OMIM, GeneCards, Drugbank, and DisGeNET databases. A drug-disease target protein-protein interaction (PPI) network was constructed to select the most core targets, and an herb-ingredient-target network was built by utilizing Cytoscape 3.7.2. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG) analysis and verified the results of network pharmacology through molecular docking. RESULTS A total of 40 active ingredients from the herb pair BS-GC were initially screened, and a total of 528 targets were retrieved. Meanwhile, the total number of CSU targets was 1032. Then, the number of common targets between BS-GC and CSUs was 107. The 13 core targets of herb pair BS-GC with CSUs were filtered out according to the PPI network, including AKT1, TNF, EGFR, BCL2, HIF1A, MMP-9, etc. The 5 main core active ingredients were 1-(4-Hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene-4,7-diol, 1-(4- Hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol, physcion, dihydromyricetin, and myricetin. The main biological processes were inflammation, oxidative stress, and immune response, involving the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, NF-κB signaling pathway, and calcium signaling pathway. Molecular docking results showed good binding activity between the 5 main core active ingredients and 13 core targets. CONCLUSION This study predicted the core targets and signal transduction pathways in the treatment of CSUs to provide a reference for further molecular mechanism research.
Collapse
Affiliation(s)
- Yue Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tengteng Ding
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Zeng W, Qian J, Wang Y, Shou M, Kai G. Bletilla Striata polysaccharides thermosensitive gel for photothermal treatment of bacterial infection. Int J Biol Macromol 2023; 253:127430. [PMID: 37838114 DOI: 10.1016/j.ijbiomac.2023.127430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Skin is the most important defense shield which touched external environment directly. Effectively clearing microbes in infected wound via non-antibiotic therapy is crucial for the promotion of recovery in complex biological environments, and the wound healing is a crucial process after sterilization to avoid superinfection. Herein, a kind of Prussian blue-based photothermal responsive gel, Bletilla striata polysaccharide-mingled, isatin-functionalized Prussian blue gel (PB-ISA/BSP gel) was reported for effective treatment of bacterial infection and wound healing. The introduction of effective components of traditional Chinese medicine (TCM), isatin (ISA), enhanced the efficiency of sterilization synergistically. Furthermore, the process of wound healing was promoted by Bletilla striata polysaccharides (BSP). PB-ISA@BSP had a considerable antibacterial rate with 98.5 % under an 808 nm laser for 10 min in vitro. Besides, PB-ISA/BSP gel showed an effective antibacterial efficacy in vivo and a fast wound healing rate as well. The as-prepared functional particles can invade and destroy bacteria membrane to kill microbes. This work highlights that PB-ISA/BSP gel is a promising antibacterial agent based on synergistically enhanced photothermal effect and wound healing promotion ability and provides inspiration for future therapy based on the synergy between photothermal agent and active components in TCM.
Collapse
Affiliation(s)
- Weihuan Zeng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Jun Qian
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Yue Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Minyu Shou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
29
|
Zhang HY, Wang KT, Zhang Y, Cui YL, Wang Q. A self-healing hydrogel wound dressing based on oxidized Bletilla striata polysaccharide and cationic gelatin for skin trauma treatment. Int J Biol Macromol 2023; 253:127189. [PMID: 37783245 DOI: 10.1016/j.ijbiomac.2023.127189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Skin trauma presents significant treatment challenges in clinical settings. Hydrogels made from naturally-derived polysaccharide have demonstrated great potential in wound healing. Here, a novel in-situ crosslinked self-healing hydrogel was prepared using oxidized Bletilla striata polysaccharide (BSP) and cationic gelatin via a Schiff-base reaction without the need for any chemical crosslinkers. Similar to the natural extracellular matrix, the BSP-gelatin hydrogel (BG-gel) exhibited typical viscoelastic characteristics. The rheological properties, mechanical behavior, porous structure, and degradation performance of BG-gel could be adjusted by changing the aldehyde group content of BSP. Importantly, the hydrogel showed superior hemostatic performance in mouse tail amputation and rat liver incision models. It significantly facilitated wound healing by promoting hair follicles regeneration, blood vessels repair, collagen deposition, and inducing skin tissue remodeling via increased CD31 expression in a full-thickness skin wound rat model. This multifunctional hydrogel holds potential as a wound dressing for skin trauma, offering both hemostasis and expedited healing.
Collapse
Affiliation(s)
- Hai-Yun Zhang
- State key laboratory of Component based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device, (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China
| | - Kun-Tang Wang
- State key laboratory of Component based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device, (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China
| | - Yuan-Lu Cui
- State key laboratory of Component based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Qiangsong Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device, (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
30
|
Ding L, He L, Wang Y, Zhao X, Ma H, Luo Y, Guan F, Xiong Y. Research progress and challenges of composite wound dressings containing plant extracts. CELLULOSE 2023; 30:11297-11322. [DOI: 10.1007/s10570-023-05602-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2025]
|
31
|
Gong YR, Zhang C, Xiang X, Wang ZB, Wang YQ, Su YH, Zhang HQ. Baicalin, silver titanate, Bletilla striata polysaccharide and carboxymethyl chitosan in a porous sponge dressing for burn wound healing. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:487-495. [PMID: 37544834 DOI: 10.1016/j.joim.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/18/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE This study tests the efficacy of Bletilla striata polysaccharide (BSP), carboxymethyl chitosan (CMC), baicalin (BA) and silver titanate (ST) in a wound dressings to fight infection, promote healing and provide superior biocompatibility. METHODS The antibacterial activity of BA and ST was evaluated in vitro using the inhibition zone method. BA/ST/BSP/CMC porous sponge dressings were prepared and characterized. The biocompatibility of BA/ST/BSP/CMC was assessed using the cell counting kit-8 assay. The therapeutic effect of BA/ST/BSP/CMC was further investigated using the dorsal skin burn model in Sprague-Dawley rats. RESULTS The wound dressing had good antibacterial activity against Escherichia coli and Staphylococcus aureus through BA and ST, while the combination of BSP and CMC played an important role in promoting wound healing. The BA/ST/BSP/CMC porous sponge dressings were prepared using a freeze-drying method with the concentrations of BA and ST at 20 and 0.83 mg/mL, respectively, and the optimal ratio of 5% BSP to 4% CMC was 1:3. The average porosity, water absorption and air permeability of BA/ST/BSP/CMC porous sponge dressings were measured to be 90.43%, 746.1% and 66.60%, respectively. After treatment for 3 and 7 days, the healing rates of the BA/ST/BSP/CMC group and BA/BSP/CMC group were significantly higher than those of the normal saline (NS) group and silver sulfadiazine (SSD) group (P < 0.05). Interleukin-1β expression in the BA/ST/BSP/CMC group at 1 and 3 days was significantly lower than that in the other three groups (P < 0.05). After being treated for 3 days, vascular endothelial growth factor expression in the BA/BSP/CMC group and BA/ST/BSP/CMC group was significantly higher than that in the NS group and SSD group (P < 0.05). Inspection of histological sections showed that the BA/ST/BSP/CMC group and BA/BSP/CMC group began to develop scabbing and peeling of damaged skin after 3 days of treatment, indicating accelerated healing relative to the NS group and SSD group. CONCLUSION The optimized concentration of BA/ST/BSP/CMC dressing was as follows: 6 mg BSP, 14.4 mg CMC, 0.5 mg ST and 12 mg BA. The BA/ST/BSP/CMC dressing, containing antibacterial constituents, was non-cytotoxic and effective in accelerating the healing of burn wounds, making it a promising candidate for wound healing. Please cite this article as: Gong YR, Zhang C, Xiang X, Wang ZB, Wang YQ, Su YH, Zhang HQ. Baicalin, silver titanate, Bletilla striata polysaccharide and carboxymethyl chitosan in a porous sponge dressing for burn wound healing. J Integr Med. 2023; 21(5): 487-495.
Collapse
Affiliation(s)
- Yan-Rong Gong
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Cheng Zhang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China; Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xing Xiang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Zhi-Bo Wang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yu-Qing Wang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yong-Hua Su
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hui-Qing Zhang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
32
|
Zhu Z, Liang T, Dai G, Zheng J, Dong J, Xia C, Duan B. Extraction, structural-activity relationships, bioactivities, and application prospects of Bletilla striata polysaccharides as ingredients for functional products: A review. Int J Biol Macromol 2023:125407. [PMID: 37327937 DOI: 10.1016/j.ijbiomac.2023.125407] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Bletilla striata is a well-known medicinal plant with high pharmaceutical and ornamental values. Polysaccharide is the most important bioactive ingredient in B. striata and has various health benefits. Recently, B. striata polysaccharides (BSPs) have attracted much attention from industries and researchers due to their remarkable immunomodulatory, antioxidant, anti-cancer, hemostatic, anti-inflammatory, anti-microbial, gastroprotective, and liver protective effects. Despite the successful isolation and characterization of B. striata polysaccharides (BSPs), there is still limited knowledge regarding their structure-activity relationships (SARs), safety concerns, and applications, which hinders their full utilization and development. Herein, we provided an overview of the extraction, purification, and structural features, as well as the effects of different influencing factors on the components and structures of BSPs. We also highlighted and summarized the diversity of chemistry and structure, specificity of biological activity, and SARs of BSP. The challenges and opportunities of BSPs in the food, pharmaceutical, and cosmeceutical fields are discussed, and the potential development and future study direction are scrutinized. This article provides comprehensive knowledge and underpinnings for further research and application of BSPs as therapeutic agents and multifunctional biomaterials.
Collapse
Affiliation(s)
- Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Tingting Liang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
33
|
Xu N, Gao Y, Li Z, Chen Y, Liu M, Jia J, Zeng R, Luo G, Li J, Yu Y. Immunoregulatory hydrogel decorated with Tannic acid/Ferric ion accelerates diabetic wound healing via regulating Macrophage polarization. CHEMICAL ENGINEERING JOURNAL 2023; 466:143173. [DOI: 10.1016/j.cej.2023.143173] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Zhong G, Qiu M, Zhang J, Jiang F, Yue X, Huang C, Zhao S, Zeng R, Zhang C, Qu Y. Fabrication and characterization of PVA@PLA electrospinning nanofibers embedded with Bletilla striata polysaccharide and Rosmarinic acid to promote wound healing. Int J Biol Macromol 2023; 234:123693. [PMID: 36806778 DOI: 10.1016/j.ijbiomac.2023.123693] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
In this study, a novel nanofiber material with Polylactic acid (PLA), natural plant polysaccharides-Bletilla striata polysaccharide (BSP) and Rosmarinic acid (RA) as the raw materials to facilitate wound healing was well prepared through coaxial electrospinning. The morphology of RA-BSP-PVA@PLA nanofibers was characterized through scanning electron microscopy (SEM), and the successful formation of core-shell structure was verified under confocal laser microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR). RA-BSP-PVA@PLA exhibited suitable air permeability for wound healing, as indicated by the result of the water vapor permeability (WVTR) study. The results of tension test results indicated the RA-BSP-PVA@PLA nanofiber exhibited excellent flexibility and better accommodates wounds. Moreover, the biocompatibility of RA-BSP-PVA@PLA was examined through MTT assay. Lastly, RA-BSP-PVA@PLA nanofibers can induce wound tissue growth, as verified by the rat dorsal skin wound models and tissue sections. Furthermore, RA-BSP-PVA@PLA can facilitate the proliferation and transformation of early wound macrophages, and down-regulate MPO+ expression of on the wound, thus facilitating wound healing, as confirmed by the result of immunohistochemical. Thus, RA-BSP-PVA@PLA nanofibers show great potential as wound dressings in wound healing.
Collapse
Affiliation(s)
- Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
35
|
Wang YL, Zhang HX, Chen YQ, Yang LL, Li ZJ, Zhao M, Li WL, Bian YY, Zeng L. Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion. Chin J Integr Med 2023; 29:556-565. [PMID: 37052766 DOI: 10.1007/s11655-023-3735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 04/14/2023]
Abstract
Postoperative adhesion (PA) is currently one of the most unpleasant complications following surgical procedures. Researchers have developed several new strategies to alleviate the formation of PA to a great extent, but so far, no single measure or treatment can meet the expectations and requirements of clinical patients needing complete PA prevention. Chinese medicine (CM) has been widely used for thousands of years based on its remarkable efficacy and indispensable advantages CM treatments are gradually being accepted by modern medicine. Therefore, this review summarizes the formating process of PA and the efficacy and action mechanism of CM treatments, including their pharmacological effects, therapeutic mechanisms and advantages in PA prevention. We aim to improve the understanding of clinicians and researchers on CM prevention in the development of PA and promote the in-depth development and industrialization process of related drugs.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Xiang Zhang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Qi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng-Jun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao-Yao Bian
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
36
|
Chen J, Zhao L, Ling J, Yang LY, Ouyang XK. A quaternized chitosan and carboxylated cellulose nanofiber-based sponge with a microchannel structure for rapid hemostasis and wound healing. Int J Biol Macromol 2023; 233:123631. [PMID: 36775224 DOI: 10.1016/j.ijbiomac.2023.123631] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
A hemostatic sponge should perform rapid hemostasis and exhibit antibacterial properties, whilst being non-toxic, breathable, and degradable. This study prepared a hemostatic sponge (CQTC) with microchannels, specifically a microchannel structure based on quaternized chitosan (QCS) and carboxylated cellulose nanofibers (CCNF) obtained by using tannic acid and Cu2+ complex (crosslinking agent). The sponge had low density and high porosity, while being degradable. The combination of microchannels and three-dimensional porous structure of CQTC leads to excellent liquid absorption and hemostasis ability, based on a liquid absorption rate test and in vitro hemostasis experiment. In addition, CQTC exhibited excellent antibacterial activity against both gram-negative and gram-positive bacteria, and it promoted wound healing. In conclusion, this porous and microchannel hemostatic sponge has broad application prospects as a clinical wound hemostatic material.
Collapse
Affiliation(s)
- Jing Chen
- Zhoushan Maternal and Child Care Hospital, Zhoushan 316000, PR China
| | - Lijuan Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Ye Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
37
|
Shang J, Duan L, Zhang W, Li X, Ma C, Xin B. Characterization and evaluation of Bletilla striata polysaccharide/konjac glucomannan blend hydrogel for wound healing. J Appl Biomater Funct Mater 2023; 21:22808000231176202. [PMID: 37798869 DOI: 10.1177/22808000231176202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Bletilla striata polysaccharide (BSP) is effective for wound healing and has important applications in health care. A series of blend hydrogels was designed with BSP and konjac glucomannan (KGM) in this study to overcome the deficient mechanical performance caused by the excessive dissolution of BSP without affecting its physiological activity. The interplay between them, as well as the effects of KGM concentration on the physical properties and microstructures of hydrogels, were also explored. It was proved that the frame of the hydrogel was primarily formed by KGM. BSP was dispersed uniformly and linked to KGM through hydrogen bonding, which effectively improved the physical properties, such as increasing the water-holding capacity, improving the swelling degree, and enhancing the mechanical properties. Blend hydrogel BK2-2 (containing 1.0% BSP and 1.0% KGM, w/v) was found to be the optimal formulation based on the thermal stability and microstructure, which was used for further research. In vitro experiments revealed the L929 cell proliferative effects of the blend hydrogel, and no difference was found with BSP sponge extract after 72 h of exposure. In vivo animal studies indicated that the BK2-2 accelerated wound healing compared with the control group; however, no difference was found with dressings only made of BSP. These results demonstrated that KGM improved the physical properties of BSP-based material without negatively affecting its physiological properties. Also, the BSP/KGM blend hydrogel had good comprehensive properties and is expected to be used as a wound healing material in the future.
Collapse
Affiliation(s)
- Jin Shang
- Shaanxi University of Chinese Medicine, School of Public Health, Xianyang, PR China
| | - Liangliang Duan
- Shaanxi University of Chinese Medicine, School of Public Health, Xianyang, PR China
| | - Weimin Zhang
- Shaanxi University of Chinese Medicine, School of Public Health, Xianyang, PR China
| | - Xiangwen Li
- Shaanxi University of Chinese Medicine, School of Public Health, Xianyang, PR China
| | - Cheng Ma
- Shaanxi University of Chinese Medicine, School of Public Health, Xianyang, PR China
| | - Bao Xin
- Shaanxi University of Chinese Medicine, School of Public Health, Xianyang, PR China
| |
Collapse
|
38
|
Chen T, Guo X, Huang Y, Hao W, Deng S, Xu G, Bao J, Xiong Q, Yang W. Bletilla Striata polysaccharide - Waterborne polyurethane hydrogel as a wound dressing. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022:1-14. [DOI: 10.1080/09205063.2022.2157673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tianyu Chen
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Xiaoyan Guo
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Yiping Huang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Wentao Hao
- Anhui Key Laboratory of advanced catalytic materials and reaction engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China, 230009
| | - Sunyan Deng
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Gewen Xu
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Junjie Bao
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Qiansheng Xiong
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Wen Yang
- Anhui Key Laboratory of advanced catalytic materials and reaction engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China, 230009
| |
Collapse
|
39
|
A Polysaccharide Isolated from the Herb Bletilla striata Combined with Methylcellulose to Form a Hydrogel via Self-Assembly as a Wound Dressing. Int J Mol Sci 2022; 23:ijms231912019. [PMID: 36233321 PMCID: PMC9569984 DOI: 10.3390/ijms231912019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 12/30/2022] Open
Abstract
The Bletilla striata Polysaccharide (BSP), a natural polysaccharide derived from the east Asian terrestrial orchid Bletilla striata, is an anti-inflammatory, antiviral, and antioxidant polysaccharide. Traditionally, it has been used to treat hemostasis and for wound healing. In this study, BSP was blended with methylcellulose (MC) and methylparaben (MP) to create a hydrogel through a self-assembly route as a wound dressing. The developed hydrogels were designed as M2Bx, M5Bx, and M8Bx. M stands for MC, and the number represents a percentage. Whereas the second letter of B stands for BSP, and x refers to the percentage variation of BSP: x = 0.5%, 1%, and 2%. All the developed MB hydrogels contained β-glucopyranosyl and α-mannopyranosyl, and rheology test had a tan δ value ≥ 0.5. The pore sizes of the hydrogels decreased by increasing the MC and BSP content, and they had better properties with respect to water loss and their swelling ratio. Evaluations in vitro and in vivo showed that all of the developed MB hydrogels have good cell viability and wound-healing properties. The M8B2 hydrogel group was found to be superior to the others from within the developed MB hydrogels. Therefore, we believe that the M8B2 hydrogel formulation has a high potential for development as a wound dressing.
Collapse
|
40
|
Oxidized Bletilla rhizome polysaccharide-based aerogel with synergistic antibiosis and hemostasis for wound healing. Carbohydr Polym 2022; 293:119696. [DOI: 10.1016/j.carbpol.2022.119696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
|
41
|
Ouyang XK, Zhao L, Jiang F, Ling J, Yang LY, Wang N. Cellulose nanocrystal/calcium alginate-based porous microspheres for rapid hemostasis and wound healing. Carbohydr Polym 2022; 293:119688. [DOI: 10.1016/j.carbpol.2022.119688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
42
|
Wang N, Tian X, Cheng B, Guang S, Xu H. Calcium alginate/silk fibroin peptide/Bletilla striata polysaccharide blended microspheres loaded with tannic acid for rapid wound healing. Int J Biol Macromol 2022; 220:1329-1344. [PMID: 36116592 DOI: 10.1016/j.ijbiomac.2022.09.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/01/2023]
Abstract
Biodegradable natural polymers are receiving increasing attention as potential candidates for wound dressing. In the present study, composite microspheres (mCSB) based on calcium alginate (CA), silk fibroin peptide (SP), and Bletilla striata polysaccharide (BSP) were prepared by the reverse emulsion method. The excellent swelling properties of microspheres enable them to rapidly promote thrombosis. Microspheres can increase the platelet aggregation index to 1.5 and the aggregation rate of red blood cells to as high as 80 %. Furthermore, tannic acid (TA)-loaded microspheres demonstrate a slow-release effect on TA; this allows the microspheres to exhibit good long-lasting antibacterial properties. Due to the synergistic effects of SP and TA, the cell senescence was delayed, with a 126.69 % survival rate of fibroblasts after 3 days of incubation. In addition, TA led to a rapid reduction in inflammation levels, with a wound closure rate of >92.80 % within 7 days. The multifunctional TA-loaded mCSB has great application potential for rapid wound healing and the treatment of wound hemostasis.
Collapse
Affiliation(s)
- Nan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baijie Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shanyi Guang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
43
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
44
|
Ning S, Zang J, Zhang B, Feng X, Qiu F. Botanical Drugs in Traditional Chinese Medicine With Wound Healing Properties. Front Pharmacol 2022; 13:885484. [PMID: 35645789 PMCID: PMC9133888 DOI: 10.3389/fphar.2022.885484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic and unhealed wound is a serious public problem, which brings severe economic burdens and psychological pressure to patients. Various botanical drugs in traditional Chinese medicine have been used for the treatment of wounds since ancient time. Nowadays, multiple wound healing therapeutics derived from botanical drugs are commercially available worldwide. An increasing number of investigations have been conducted to elucidate the wound healing activities and the potential mechanisms of botanical drugs in recent years. The aim of this review is to summarize the botanical drugs in traditional Chinese medicine with wound healing properties and the underlying mechanisms of them, which can contribute to the research of wound healing and drug development. Taken together, five botanical drugs that have been developed into commercially available products, and 24 botanical drugs with excellent wound healing activities and several multiherbal preparations are reviewed in this article.
Collapse
Affiliation(s)
| | | | | | | | - Feng Qiu
- *Correspondence: Feng Qiu, ; Xinchi Feng,
| |
Collapse
|
45
|
Hu B, Yang H, Chen G, Sun X, Zou X, Ma J, Yao X, Liang Q, Liu H. Structural characterization and preventive effect on non-alcoholic fatty liver disease of oligosaccharides from Bletilla striata. Food Funct 2022; 13:4757-4769. [PMID: 35389416 DOI: 10.1039/d1fo03899k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, Bletilla striata polysaccharides were degraded into oligosaccharides. The structural features were analyzed by HPLC, HPLC-MS, FT-IR, and NMR spectroscopy. The results indicated that Bletilla striata oligosaccharides (BOs) were composed of mannose and glucose with a molar ratio of 5.2 : 1, and the main backbones of BOs contained (1→4)-linked-α-D-Man, (1→2)-linked-α-D-Man, and (1→2)-linked-α-D-Glc. By using a high-fat diet (HFD)-induced mouse model, we demonstrated that BOs had an improving effect on non-alcoholic fatty liver disease (NAFLD). Using the metabolomics assay, we found that BOs significantly regulated the hepatic metabolism of fatty acids, arachidonic acid, and other related metabolites in HFD-fed mice, accompanied by the reduction of lipid accumulation and fibrosis in liver tissues. In summary, BOs displayed high potential for the treatment of NAFLD as a functional food.
Collapse
Affiliation(s)
- Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Guangming Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Xiongjie Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Xiaojuan Zou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Jun Ma
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Xiaowei Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| |
Collapse
|
46
|
Liu J, Qu M, Wang C, Xue Y, Huang H, Chen Q, Sun W, Zhou X, Xu G, Jiang X. A Dual-Cross-Linked Hydrogel Patch for Promoting Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106172. [PMID: 35319815 DOI: 10.1002/smll.202106172] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Diabetic wound treatment faces significant challenges in clinical settings. Alternative treatment approaches are needed. Continuous bleeding, disordered inflammatory regulation, obstruction of cell proliferation, and disturbance of tissue remodeling are the main characteristics of diabetic wound healing. Hydrogels made of either naturally derived or synthetic materials can potentially be designed with a variety of functions for managing the healing process of chronic wounds. Here, a hemostatic and anti-inflammatory hydrogel patch is designed for promoting diabetic wound healing. The hydrogel patch is derived from dual-cross-linked methacryloyl-substituted Bletilla Striata polysaccharide (B) and gelatin (G) via ultraviolet (UV) light. It is demonstrated that the B-G hydrogel can effectively regulate the M1/M2 phenotype of macrophages, significantly promote the proliferation and migration of fibroblasts in vitro, and accelerate angiogenesis. It can boost wound closure by normalizing epidermal tissue regeneration and depositing collagen appropriately in vivo without exogenous cytokine supplementation. Overall, the B-G bioactive hydrogel can promote diabetic wound healing in a simple, economical, effective, and safe manner.
Collapse
Affiliation(s)
- Jing Liu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Moyuan Qu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Canran Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Huang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Guihua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
47
|
Liu C, Dai KY, Ji HY, Jia XY, Liu AJ. Structural characterization of a low molecular weight Bletilla striata polysaccharide and antitumor activity on H22 tumor-bearing mice. Int J Biol Macromol 2022; 205:553-562. [PMID: 35202634 DOI: 10.1016/j.ijbiomac.2022.02.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 02/13/2022] [Indexed: 01/04/2023]
Abstract
In this study, a novel low molecular weight polysaccharide (named LMW-BSP) was extracted from Bletilla striata at 4 °C. The results of structural characteristics analysis showed that LMW-BSP was a 23 kDa neutral polysaccharide contained glucose and mannose at a molar ratio of 1.00:1.26. Structural investigations of the periodate oxidation studies, Smith-degradation as well as methylation were performed, and combined with 1D and 2D NMR spectroscopy, the main chain residues sequence of LMW-BSP was concluded to be: α-D-Manp-(1 → 3)-β-D-Manp-(1 → [4)-β-D-Glcp-(1]2 → 4)-β-D-Manp-(1 → 3)-β-D-Manp-(1→. Moreover, the antitumor activity of LMW-BSP was evaluated in H22 tumor-bearing mice. And the results suggested that LMW-BSP could effectively improve immune cells activities and lymphocytes subsets proportions dose-dependently in tumor-bearing mice, leading to the apoptosis of H22 cells via G1 phase arrested. LMW-BSP inhibited tumor growth and exhibited antitumor effects in vivo. And it supported considering the novel polysaccharide as a potential drug component in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Chao Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke-Yao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao-Yu Jia
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
48
|
Xiang J, Wang Y, Yang L, Zhang X, Hong Y, Shen L. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: Synthesis, characterization and evaluation. Int J Biol Macromol 2022; 196:1-12. [PMID: 34843815 DOI: 10.1016/j.ijbiomac.2021.11.166] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023]
Abstract
The purpose of this study is to develop a new polysaccharide-based hydrogel. The Box-Behnken design was used to optimize the optimal synthesis conditions of the hydrogel, with the swelling parameters as indicators. The findings of rheologic tests confirm that free radical polymerization and the introduction of linear polymers improved the mechanical strength of the hydrogel. Combined with the characterization results, the gel mechanism of BSP-g-PAA/PVA DN hydrogel was proposed. The intermolecular association and entanglement increase, which effectively dissipates energy, thereby enhancing the mechanical properties of the hydrogel. In vitro blood compatibility experiments show that DN hydrogel has a low hemolysis rate and a good coagulation effect. The material is non-cytotoxic to L929 cells. The hepatic haemorrhage and mouse-tail amputation models of rats and mice were used to further evaluate the in vivo wound sealing and hemostatic properties of the hydrogel. The blood loss and hemostatic time were significantly lower than those of the control group, indicating that the hydrogel has excellent hemostatic effects. Therefore, the obtained BSP-g-PAA/PVA DN network hydrogel has good comprehensive properties and is expected to be used as a hemostatic material or a precursor of a drug carrier and a tissue engineering scaffold.
Collapse
Affiliation(s)
- Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Youjie Wang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese medicine of Ministry of Education, Shanghai University of TraditionalChinese Medicine, Shanghai 201203, China
| | - Luping Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai University of Traditional Chinese Medicine, Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai 201203,China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Modern Preparation Technology of Traditional Chinese medicine of Ministry of Education, Shanghai University of TraditionalChinese Medicine, Shanghai 201203, China.
| |
Collapse
|
49
|
Geographical Distribution and Relationship with Environmental Factors of Paphiopedilum Subgenus Brachypetalum Hallier (Orchidaceae) Taxa in Southwest China. DIVERSITY 2021. [DOI: 10.3390/d13120634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The determination of the geographic distributions of orchid species and their relationships with environmental factors are considered fundamental to their conservation. Paphiopedilum subgenus Brachypetalum is one of the most primitive, ornamental, and threatened groups of Orchidaceae. However, little is known about the distribution of Brachypetalum orchids and how they are influenced by environmental factors. In this study, we developed a database on the geographical distribution of Brachypetalum orchids based on a large-scale field investigation in the Guangxi, Guizhou, and Yunnan provinces of southwest China (2019–2020). Using this database, we first adopted the nonparametric Mann–Whitney U test to analyze the differences in the geographical distributions and growth environments of Brachypetalum orchids. In addition, we also used the method of principal component analysis (PCA) to explore distribution patterns of Brachypetalum orchids in relation to environmental factors (topography, climate, anthropogenic disturbance, productivity, and soil) in southwest China. Our results indicated that Brachypetalum orchid species were mainly distributed in the karst limestone habitats of southwest China. In general, there were 194 existing localities with the occurrence of seven target orchids in the investigated area. Of the discovered species in our study, 176 locations (~90.7%) were distributed primarily in the karst habitat. Among them, the range of 780–1267 m was the most concentrated elevation of Brachypetalum orchids. In addition, the findings also suggested that the distribution of Brachypetalum orchids in southwest China was relatively scattered in geographical space. However, the density of the distribution of Brachypetalum orchids was high, between 104° and 108° E and between 25° and 26° N. The results of the Mann–Whitney U test revealed that there are obviously different geographical distributions and growth environments of Brachypetalum in southwest China. More specifically, we found some extremely significant differences (p < 0.001) in elevation, mean diurnal range, precipitation of coldest quarter, solar radiation, and exchangeable Ca2+ between the provinces of southwest China. The PCA analysis revealed that elevation, solar radiation, temperature (mean diurnal range, annual temperature range) and precipitation (precipitation seasonality, precipitation of the warmest quarter) were found to be the most significant factors in determining Brachypetalum orchids’ distribution. These findings have implications in assessing conservation effectiveness and determining niche breadth to better protect the populations of these Brachypetalum orchid species in the future.
Collapse
|
50
|
Jiang S, Wang M, Jiang L, Xie Q, Yuan H, Yang Y, Zafar S, Liu Y, Jian Y, Li B, Wang W. The medicinal uses of the genus Bletilla in traditional Chinese medicine: A phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114263. [PMID: 34144194 DOI: 10.1016/j.jep.2021.114263] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Different orchids are important in traditional medicine, and species belonging to the genus Bletilla are important. Bletilla species have been used for thousands of years in Traditional Chinese Medicine (TCM) for the treatment of several health disorders, such as gastrointestinal disorders, peptic ulcer, lung disorders, and traumatic bleeding etc. AIM OF THIS REVIEW: This review aims to provide a systematic overview and objective analysis of Bletilla species and to find the probable relationship between their traditional use, chemical constituents, and pharmacological activities, while assessing their therapeutic potential in treatment of different human diseases. MATERIALS AND METHODS Relevant literatures on Bletilla species have been collected using the keywords "Bletilla", "phytochemistry", and "pharmacology" in scientific databases, such as "PubMed", "Scifinder", "The Plant List", "Elsevier", "China Knowledge Resource Integrated databases (CNKI)", "Google Scholar", "Baidu Scholar", and other literature sources, etc. RESULTS: This review indicates the isolation and identification of over 261 compounds from this genus, till December 2020. These chemical isolates belong to the stilbenes (bibenzyls and phenanthrenes), flavonoids, triterpenoids, steroids, simple phenolics, and glucosyloxybenzyl 2-isobutylmalates classes of compounds. These compounds have been reported to be characteristically distributed in Bletilla striata (Thunb.) Rchb. f. (BS), Bletilla ochracea Schltr. (BO), and Bletilla formosana (Hayata) Schltr. (BF). The crude extracts and pure compounds derived from the three Bletilla species have reportedly exhibited a wide spectrum of in vitro and in vivo pharmacological effects, such as hemostatic, anti-inflammatory, anti-tumor, and anti-microbial activities. As a Traditional Chinese Medicine (TCM), Bletilla species or preparations containing Bletilla species have been used for the treatment of epistaxis, gastrointestinal bleeding, cough and hemoptysis, gastric and duodenal ulcer, and traumatic injuries. Thus, Bletilla species have proven potential both in traditional uses and scientific studies. CONCLUSIONS Pharmacological studies have validated the use of Bletilla species in the traditional medicine, especially hemorrhagic diseases. Polysaccharides and stilbenes are the major bioactive chemical constituents of Bletilla genus according to the literatures. However, the mechanism of action of these molecules is yet to be studied. In addition, a detailed comparative analysis of the phytochemistry and biological activities of the three Bletilla species (BS, BO and BF) is highly recommended for understanding their ethnopharmacological uses and applications in clinics. Clinical toxicity tests on BS have been found to be negative, but it can't be used with Aconitum carmichaeli in traditional uses. Furthermore, not many reports are present in the literature regarding the conservation of Bletilla species.
Collapse
Affiliation(s)
- Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Mengyun Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Lin Jiang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, PR China
| | - Qian Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| |
Collapse
|