1
|
Zhu L, Xu D, Wang Q. Fabrication of poly(vinyl alcohol)/sulfonated itaconic starch blend film with enhanced antibacterial performance and soil absorption capacity for environment-friendly packaging. Carbohydr Polym 2025; 357:123489. [PMID: 40159008 DOI: 10.1016/j.carbpol.2025.123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Plastic packaging is widely used due to its light weight, ease of processing, and cost-effectiveness, but improper disposal causes environmental pollution and resource waste. Developing environment-friendly packaging materials is urgent. Herein, a water-soluble poly(vinyl alcohol) (PVA)/starch blend film was proposed by combining modification and thermal processing, and its performance was evaluated. Starch was modified via a three-step process-acid hydrolysis, itaconic anhydride esterification, and sodium bisulfite sulfonation-to produce sulfonated itaconic starch. The introduction of carboxyl and sulfonic groups improved the hydrophilicity of PVA/starch blends. The water contact angle of the modified blend film was notably decreased in comparison to that unmodified one. The blend films also demonstrated an enhancement in UV shielding properties, effectively reducing rhodamine B photodegradation under extended UV exposure. Besides, the incorporated groups improved the antibacterial performance of the blend film, exhibiting the efficient enhancement on the antibacterial effects on both E. coli and S. aureus. Moreover, the film exhibited the good soil absorption capacity, dissolving completely in soil within 12 h, highlighting its potential for environment-friendly food packaging applications.
Collapse
Affiliation(s)
- Longji Zhu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Dawei Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China.
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China
| |
Collapse
|
2
|
Zhao T, Wang X, Li J, Wang C, Bakhtiyarovich Ibragimov A, Gao J, Yang X. Uranium Extraction from Seawater: A Novel Approach Using Aluminum Fumarate-Based Metal-Organic Framework Aerogels. Chem Asian J 2025; 20:e202401385. [PMID: 39932360 DOI: 10.1002/asia.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Efficient extraction of uranyl ions from seawater is crucial for the commercialization of nuclear technology. Metal-organic frameworks (MOFs), with their superior uranium extraction properties, face challenges in large-scale applications due to their powdery nature and the difficulty of assembling them into mechanically stable macroscopic composites. To address this, successfully synthesized 90 wt % nanoMOF (aluminum fumarate) loaded directional aerogels (AlFA-3-10) using polyvinyl alcohol (PVA) as an adhesive, which demonstrates robust strength longitudinally and transversely. Our uranium adsorption experiments reveal that at a pH of 8 (akin to that of seawater), the AlFA-3-10 achieves a maximum adsorption capacity of 1146.25 mg g-1, maintaining this exceptional performance over five cycles. Notably, in simulated seawater, AlFA-3-10 exhibits high selectivity for uranyl ions with minimal interference from other ions. The directional pores within AlFA-3-10 facilitate fluid transmission and exchange, ensuring optimal contact between the MOF and uranyl ions, thereby enhancing electrostatic attraction and electron transport for improved capture efficiency. This streamlined approach maximizes the intrinsic potential of nano-MOFs and heralds a new era for their integration into macroscopic composite materials.
Collapse
Affiliation(s)
- Tao Zhao
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xue Wang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiacheng Li
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chunqi Wang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Aziz Bakhtiyarovich Ibragimov
- Institute of General and Inorganic Chemistry, Uzbekistan Academy of Sciences, M.Ulugbek Str., 77a, Tashkent, 100170, Uzbekistan
| | - Junkuo Gao
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaogang Yang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
3
|
Dang X, Han S, Du Y, Fei Y, Guo B, Wang X. Engineered environment-friendly multifunctional food packaging with superior nonleachability, polymer miscibility and antimicrobial activity. Food Chem 2025; 466:142192. [PMID: 39591781 DOI: 10.1016/j.foodchem.2024.142192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/27/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
This study was conducted primarily to develop an environment-friendly food packaging boasting several advantages, including good water vapor barrier, UV resistance, antimicrobial activity, non-leachability, and polymer miscibility. Initially, the starch-based antimicrobial agent (OCSI) was synthesized through a simple esterification reaction between oxidized corn starch (OCS) and indoleacetic acid (IAA). Subsequently, OCSI was further blended separately with environmentally-friendly materials (PVA, PBAT, PCL), and a series of environment-friendly packaging films were successfully prepared. The resulting films exhibited desirable thermal stability and 100 % barrier against both UV-A and UV-B rays. Moreover, the films presented effective barriers against water vapor, antioxidant, and antimicrobial activity against E. coli and S. aureus. Meanwhile, the films could significantly inhibit the deterioration of fresh fruits and prolong shelf life, considerably expanding their utilization in safe packaging. The environment-friendly packaging not only realized the sustainable utilization of green polymers, but also offered novel insights into the exploration of sustainable packaging.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan 610041, PR China.
| | - Songyu Han
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yongmei Du
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yufei Fei
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Boyan Guo
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
4
|
He H, Wu Z, Xiao S, Yin P. Characterization of corn starch/chitosan composite films incorporated with amino-, carboxyl-,and hydroxyl-terminated hyperbranched dendrimers: A comparative study. Int J Biol Macromol 2024; 283:137573. [PMID: 39542309 DOI: 10.1016/j.ijbiomac.2024.137573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Bio-based materials are gaining traction as sustainable plastic replacements, but their performance in terms of mechanics, antibacterial action, and water resistance is often subpar. Our research sought to enhance these attributes by integrating nanoscale dendrimers into a starch/chitosan (SC) matrix. We introduced three varieties of dendrimers-amino-, carboxyl-, and hydroxyl-terminated-at a modest 2.5 % w/w concentration to fabricate NSC, CSC, and HSC films. Comprehensive analyses revealed that the dendrimers fostered intermolecular interactions, prompting an order-disorder shift in the matrix. This interaction textured the film surface and bolstered its thickness, opacity, and tensile strength. The HSC films achieved the highest tensile strength (9.96 MPa) and substantial elongation (254.30 %), attributed to their more disordered structure. The HSC films also showcased enhanced thermal stability and reduced moisture absorption. Notably, NSC films exhibited excellent antibacterial effects against S. aureus and E. coli. The performance improvement of CSC film is mediocre. This study underscores the promise of dendrimer-fortified SC films in the realm of biodegradable materials.
Collapse
Affiliation(s)
- Huan He
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhimin Wu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shigan Xiao
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Peng Yin
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
5
|
Li C, Ge J, Guo Q, Wang J, Wu J, Yan Z, Špitalský Z, Liu Y. Polyvinyl alcohol/collagen composite scaffold reinforced with biodegradable polyesters/gelatin nanofibers for adipose tissue engineering. Int J Biol Macromol 2024; 263:130237. [PMID: 38368980 DOI: 10.1016/j.ijbiomac.2024.130237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Breast cancer has become the most diagnosed cancer type, endangering the health of women. Patients with breast resection are likely to suffer serious physical and mental trauma. Therefore, breast reconstruction becomes an important means of postoperative patient rehabilitation. Polyvinyl alcohol hydrogel has great potential in adipose tissue engineering for breast reconstruction. However, its application is limited because of the lack of bioactive factors and poor structural stability. In this study, we prepared biodegradable polylactic acid-glycolic acid copolymer/polycaprolactone/gelatin (PPG) nanofibers. We then combined them with polyvinyl alcohol/collagen to create tissue engineering scaffolds to overcome limitations. We found that PPG fibers formed amide bonds with polyvinyl alcohol/collagen scaffolds. After chemical crosslinking, the number of amide bonds increased, leading to a significant improvement in their mechanical properties and thermal stability. The results showed that compared with pure PVA scaffolds, the maximum compressive stress of the scaffold doped with 0.9 g nanofibers increased by 500 %, and the stress loss rate decreased by 40.6 % after 10 cycles of compression. The presence of natural macromolecular gelatin and the changes in the pore structure caused by nanofibers provide cells with richer and more three-dimensional adsorption sites, allowing them to grow in three dimensions on the scaffold. So, the hydrogel scaffold by reinforcing polyvinyl alcohol hydrogel with PPG fibers is a promising breast reconstruction method.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Ge
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanyi Guo
- Institute of Orthopedics, the Fourth Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiandong Wang
- Division of Breast Surgery, Department of General Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang Wu
- Institute of Orthopedics, the Fourth Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zineng Yan
- Institute of Orthopedics, the Fourth Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zdenko Špitalský
- Polymer Institute Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 41, Slovakia
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Alhulaybi ZA, Dubdub I. Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA. Polymers (Basel) 2024; 16:629. [PMID: 38475312 DOI: 10.3390/polym16050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Thermogravimetric Analysis (TGA) serves a pivotal technique for evaluating the thermal behavior of Polyvinyl alcohol (PVA), a polymer extensively utilized in the production of fibers, films, and membranes. This paper targets the kinetics of PVA thermal degradation using high three heating rate range 20, 30, and 40 K min-1. The kinetic study was performed using six model-free methods: Freidman (FR), Flynn-Wall-Qzawa (FWO), Kissinger-Akahira-Sunose (KAS), Starink (STK), Kissinger (K), and Vyazovkin (VY) for the determination of the activation energy (Ea). TGA showed two reaction stages: the main one at 550-750 K and the second with 700-810 K. But only the first step has been considered in calculating Ea. The average activation energy values for the conversion range (0.1-0.7) are between minimum 104 kJ mol-1 by VY to maximum 199 kJ mol-1 by FR. Model-fitting has been applied by combing Coats-Redfern (CR) with the master plot (Criado's) to identify the most convenient reaction mechanism. Ea values gained by the above six models were very similar with the average value of (126 kJ mol-1) by CR. The reaction order models-Second order (F2) was recommended as the best mechanism reaction for PVA pyrolysis. Mechanisms were confirmed by the compensation effect. Finally, (∆H, ∆G, and ∆S) parameters were presented and proved that the reaction is endothermic.
Collapse
Affiliation(s)
| | - Ibrahim Dubdub
- Chemical Engineering Department, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Xi W, Liu P, Ling J, Xian D, Wu L, Yuan Y, Zhang J, Xie F. Pre-gelatinized high-amylose starch enables easy preparation of flexible and antimicrobial composite films for fresh fruit preservation. Int J Biol Macromol 2024; 254:127938. [PMID: 37944723 DOI: 10.1016/j.ijbiomac.2023.127938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
While high-amylose starch (HAS) possesses advantageous properties such as high resistant starch content and favorable mechanical attributes, its gelatinization constraints have limited its applicability. This study enhances its versatility by focusing on pre-gelatinized (PG) HAS with exceptional rehydratability, achieved by disorganizing native HAS granules (with amylose contents of 55 % and 68 %, respectively) using a 33 % CaCl2 solution, followed by water-ethanol precipitation and freeze-drying. The resulting PG-HAS exhibited elevated amylose content (61 % and 75 %) with minimal changes in amylose molecular weight. PG-HAS displayed superior water-absorption index (WAI) and water-soluble index (WSI) compared to native HAS, further improved by 2 % CaCl2 solution incorporation. Furthermore, composite films were prepared by mixing PG-HAS with PVA at a 6:4 (w/w) ratio. The PG-G50 (61 % amylose content)/PVA composite film exhibited remarkable elongation (131.1 ± 5.4 %), nearly three times that of a normal corn starch (NCS, with 27 % amylose)/PVA film, attributed to improved starch dispersity and higher amylose content. Nonetheless, the PG-G70 (75 % amylose content)/PVA film at the same ratio showed lower elongation (54.7 ± 8.0 %), potentially due to strong cohesive forces between amylose chains that impede starch-PVA interactions. Moreover, the PG-HAS/PVA composite films, enriched with antibacterial agents, demonstrated effective antibacterial properties with a gradual and sustained release of active compounds. Notably, the PG-G50/PVA/tannic acid (TA) film effectively preserved fresh apple slices by inhibiting bacteria growth and preventing browning. These findings underscore the excellent rehydration of PG-HAS and its potential as an inner packaging material for irregularly shaped foods, such as sliced fruits or meats, due to its nontoxic nature, softness and flexibility, which allows the film to maintain close contact with food surfaces.
Collapse
Affiliation(s)
- Wanting Xi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China; School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - Jiandi Ling
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Dongni Xian
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Linlin Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Jianguo Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
8
|
Guan F, Li Z, Tian J, Zhang Y, Sun J, Guo J, Liu Y. Sheath-core structured Ca-alginate/PVA aerogel fibers via directed freezing wet-spinning. Int J Biol Macromol 2023; 229:931-942. [PMID: 36587650 DOI: 10.1016/j.ijbiomac.2022.12.306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Biomass-based aerogel fibers have attracted increasing attention due to their renewable nature. However, their disadvantages, such as low mechanical strength, poor long-range order, and easy combustion, are still significant challenges. Herein, a directed freezing-assisted forced stretching strategy is developed to fabricate sheath-core structured Ca-alginate/polyvinyl alcohol (Ca-A/PVA) aerogel fibers with Long-range-ordered pores. The Ca-A/PVA aerogel fibers (3:2 m/m) exhibit the best comprehensive mechanical properties in terms of low thermal conductivity of 0.0524 W·m-1·K-1, a density of 0.1614 g·cm-3, a porosity of 89.9 %, a tensile strength of 8.72 MPa, a tensile modulus of 249.7 MPa, a toughness of 1.98 MJ∙m-3, and a self-extinguishing time from the fire of <1.2 s. The Ca-A/PVA fabrics showed a maximum absolute temperature difference of 11.4 °C at -20 °C and 14.0 °C at 60 °C compared to the plate temperature. The presented strategy is generalizable to other alginate-based aerogel fibers (e.g., alginate/guar gum).
Collapse
Affiliation(s)
- Fucheng Guan
- College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Zheng Li
- College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Jun Tian
- College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Yihang Zhang
- College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Jianbing Sun
- College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Jing Guo
- College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| | - Yuanfa Liu
- College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| |
Collapse
|
9
|
Wu L, Lv S, Wei D, Zhang S, Zhang S, Li Z, Liu L, He T. Structure and properties of starch/chitosan food packaging film containing ultra-low dosage GO with barrier and antibacterial. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Zhang M, Zheng Y, Jin Y, Wang D, Wang G, Zhang X, Li Y, Lee S. Ag@MOF-loaded p-coumaric acid modified chitosan/chitosan nanoparticle and polyvinyl alcohol/starch bilayer films for food packing applications. Int J Biol Macromol 2022; 202:80-90. [PMID: 35038467 DOI: 10.1016/j.ijbiomac.2022.01.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Developing novel bilayer food packing film having the ability to prevent bacterial infections and capable of inhibiting oxidation is utmost important, since bacterial infections and oxidation can cause food spoilage. Ag-Metal-organic framework loaded p-coumaric acid modified chitosan (P-CS/Ag@MOF) or chitosan nanoparticles (P-CSNPs/Ag@MOF) and polyvinyl alcohol/starch (PVA/ST) were used as the upper film and lower layer film to successfully prepare a bilayer composite film. The microscopic morphology, water resistance, oil resistance, oxidation resistance, optical properties, cytotoxicity and antibacterial properties of the composite films were compared. The results showed that the surface of P-CS/Ag@MOF bilayer was relatively smooth and its tensile strength (TS) was higher (27.67 MPa). Among them, P-CS/Ag@MOF bilayer films had better oil resistance and oxidation resistance activity. In addition, the P-CS/Ag@MOF bilayer film had good UV-blocking properties and transparency. P-CSNPs/Ag@MOF bilayer film had higher antibacterial activity and cytotoxicity.
Collapse
Affiliation(s)
- Meng Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Yuqi Zheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Yang Jin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.
| | - Guohui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Xin Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Yanxin Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Shaoxiang Lee
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
11
|
Chen C, Zong L, Wang J, Xie J. Microfibrillated cellulose reinforced starch/polyvinyl alcohol antimicrobial active films with controlled release behavior of cinnamaldehyde. Carbohydr Polym 2021; 272:118448. [PMID: 34420711 DOI: 10.1016/j.carbpol.2021.118448] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
The starch/polyvinyl alcohol (ST/PVA) films incorporated with cinnamaldehyde (CIN) and microfibrillated cellulose (MFC) were developed. The effect of MFC content on the films' properties was studied. The SEM results showed that MFC promoted compatibility among starch, PVA and CIN. With increased content of MFC, the strength of the films was improved and their flexibility reduced, the films' crystallinity degree and hydrophobicity were improved. The oxygen and water vapor permeability of the films both reduced first and then increased as a whole. The release of CIN from films into the food stimulant (10% ethanol) could be controlled by MFC. When MFC content was between 1% and 7.5%, it decelerated the release of CIN but high MFC content exceeded 10% promoted the release of CIN. It revealed that films containing CIN could inhibit growth of S. putrefaciens. It showed a good prospect of using MFC to develop controlled release active ST/PVA films.
Collapse
Affiliation(s)
- Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China
| | - Lin Zong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaxi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
12
|
Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer. Polymers (Basel) 2021; 13:polym13213692. [PMID: 34771249 PMCID: PMC8588134 DOI: 10.3390/polym13213692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022] Open
Abstract
Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young’s modulus (E), 53–250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37 °C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.
Collapse
|
13
|
Metal Organic Frameworks Derived Sustainable Polyvinyl Alcohol/Starch Nanocomposite Films as Robust Materials for Packaging Applications. Polymers (Basel) 2021; 13:polym13142307. [PMID: 34301062 PMCID: PMC8309366 DOI: 10.3390/polym13142307] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Bio-nanocomposites-based packaging materials have gained significance due to their prospective application in rising areas of packaged food. This research aims to fabricate biodegradable packaging films based upon polyvinyl alcohol (PVA) and starch integrated with metal-organic frameworks (MOFs) or organic additives. MOFs offer unique features in terms of surface area, mechanical strength, and chemical stability, which make them favourable for supporting materials used in fabricating polymer-based packaging materials. zeolitic imidazolate frameworks (ZIFs) are one of the potential candidates for this application due to their highly conductive network with a large surface area and high porosity. Present research illustrates a model system based on ZIF-67 (C8H10N4Co) bearing 2–10 wt.% loading in a matrix of PVA/starch blend with or without pyrolysis to probe the function of intermolecular interaction in molecular packing, tensile properties, and glass transition process. ZIF-67 nanoparticles were doped in a PVA/starch mixture, and films were fabricated using the solution casting method. It was discovered through scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) that addition of ZIF-67 and pyrolyzed ZIF-67 changed and enhanced the thermal stability of the membrane. Moreover, 2–10 wt.% loading of ZIF-67 effected the thermal stability, owing to an interlayer aggregation of ZIF-67. The membranes containing pyrolyzed ZIF-67 showed mechanical strength in the order of 25 MPa in a moderate loading of pyrolyzed ZIF-67 (i.e., at 4 wt.%). The crystallinity enhanced by an increment in ZIF-67 loading. On the other hand, pyrolyzed ZIF-67 carbon became amorphous because of the inert environment and elevated temperature. The surface area also increased after the pyrolysis, which helped to increase the strength of the composite films.
Collapse
|
14
|
Hajiali F, Tajbakhsh S, Marić M. Epoxidized Block and Statistical Copolymers Reinforced by Organophosphorus-Titanium-Silicon Hybrid Nanoparticles: Morphology and Thermal and Mechanical Properties. ACS OMEGA 2021; 6:11679-11692. [PMID: 34056323 PMCID: PMC8153999 DOI: 10.1021/acsomega.1c00993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Glycidyl methacrylate (GMA) and a mixture of alkyl methacrylates (average chain length of 13 carbons; termed C13MA; derived from vegetable oils) were copolymerized by nitroxide-mediated polymerization to form epoxidized statistical and block copolymers with similar compositions (F GMA ∼0.8), which were further cross-linked by a bio-based diamine. Hybrid plate-like nanoparticles containing organophosphorus-titanium-silicon (PTS) with an average size of ∼130 nm and high decomposition temperature (485 °C) were synthesized via a hydrothermal reaction to serve as additives to simultaneously enhance the thermal and mechanical properties of the blend. Nanocomposites filled with PTS were prepared at different filler-loading levels (0.5, 2, 4 wt %). Transmission electron microscopy (TEM) of the cured block copolymer displayed reaction-induced macrophase-separated domains. TEM also showed an effective dispersion of PTS hybrids in the matrix without intense agglomeration. Thermogravimetric analysis at different heating rates revealed the activation energy of poly (GMA-stat-C13MA) at maximum decomposition increased from 143.5 to 327.2 kJ mol-1 with 4 wt % PTS. Decomposition temperature and char residue improved 12 °C and ∼7 wt %, respectively, and T g increased 12 °C by adding 4 wt % PTS. Targeting various PTS concentrations enabled tuning of the tensile modulus (up to 75%), tensile strength (up to 46%), and storage modulus in both glassy state (up to 59%) and rubbery plateau regions (up to 88%). Oscillatory frequency sweeps indicated that PTS makes the storage modulus frequency dependent, suggesting that the inclusion of the nanoparticles alters the relaxation of the surrounding matrix polymer.
Collapse
Affiliation(s)
| | - Saeid Tajbakhsh
- Department of Chemical Engineering, McGill University, 3610 University St, Montreal, Quebec H3A 0C5, Canada
| | - Milan Marić
- Department of Chemical Engineering, McGill University, 3610 University St, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
15
|
Lee S, Zhang M, Wang G, Meng W, Zhang X, Wang D, Zhou Y, Wang Z. Characterization of polyvinyl alcohol/starch composite films incorporated with p-coumaric acid modified chitosan and chitosan nanoparticles: A comparative study. Carbohydr Polym 2021; 262:117930. [PMID: 33838808 DOI: 10.1016/j.carbpol.2021.117930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
In this paper, polyvinyl alcohol/starch composite films with p-coumaric acid modified chitosan (P-CS) and chitosan nanoparticles (P-CSNPs) at different concentrations were successfully prepared. The films were compared for their mechanical, thermal, physical, antioxidant, antibacterial, cytotoxicity and optical barrier properties. The results suggested that P-CS could significantly increase the tensile strength (TS) of the film from 15.67 MPa to a maximum of 24.32 MPa. The compact structure of P-CSNPs film prevented water diffusion, reducing the water amount within. Both films showed a reduction in water solubility, the extent of swelling, and water vapor transmittance. Specifically, P-CSNPs films showed better thermal stability while P-CS films revealed higher antioxidant activity. Besides, the P-CS films exhibited excellent transparency and good ultraviolet-barrier at 200-280 nm. P-CSNPs films demonstrated higher antibacterial activity on both Gram-negative and Gram-positive bacteria. Additionally, P-CS films were less cytotoxic compared to P-CSNPs films.
Collapse
Affiliation(s)
- Shaoxiang Lee
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Meng Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Guohui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Wenqiao Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xin Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Yue Zhou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhonghua Wang
- Yantai Taparan Advanced Manufacturing Technology Co., Ltd., People's Republic of China
| |
Collapse
|
16
|
Recent trends in the application of modified starch in the adsorption of heavy metals from water: A review. Carbohydr Polym 2021; 269:117763. [PMID: 34294282 DOI: 10.1016/j.carbpol.2021.117763] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The presence of polyfunctional ligands on the bio-macromolecules acts as an efficient adsorbent for heavy metal ions. Starch is one of the most abundant, easily available and cheap biopolymer of plant origin. However, native starch exhibits significantly low adsorption capacity due to the absence of some essential functional groups like carboxyl, amino or ester groups and is thus modified using various reaction routes like grafting, cross-linking, esterification, oxidation and irradiation for addition of functional groups to increase its adsorption capacity. The present review provides a comprehensive discussion on the above mentioned modification schemes of starch over the last 10-15 years highlighting their preparation methods, physico-chemical characteristics along with their adsorption capacities and mechanisms of heavy metal ions from water.
Collapse
|
17
|
Ma C, Shi W, Liu J, Xing J, Li S, Huang Y. Simultaneous phase change energy storage and thermoresponsive shape memory properties of porous poly(vinyl alcohol)/phase change microcapsule composites. POLYM INT 2021. [DOI: 10.1002/pi.6164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chao‐Qun Ma
- College of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
- Westtex Textile Industry Innovative Research Institute Zhejiang China
| | - Wen‐Zhao Shi
- College of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
- Westtex Textile Industry Innovative Research Institute Zhejiang China
| | - Jin‐Shu Liu
- College of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
- Key Laboratory of Special Function and Intelligent Polymer Materials, Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an China
| | - Jian‐Wei Xing
- College of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Su‐Song Li
- College of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
- Westtex Textile Industry Innovative Research Institute Zhejiang China
| | - Ya‐Yi Huang
- College of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
- Westtex Textile Industry Innovative Research Institute Zhejiang China
| |
Collapse
|
18
|
Ding Y, Zhou Q, Han A, Zhou H, Chen R, Guo S. Fabrication of Poly(ε-caprolactone)-Based Biodegradable Packaging Materials with High Water Vapor Barrier Property. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yitong Ding
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Qian Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Aichun Han
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Hongxun Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Chengdu 610065, China
| |
Collapse
|
19
|
Plota A, Masek A. Lifetime Prediction Methods for Degradable Polymeric Materials-A Short Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4507. [PMID: 33053659 PMCID: PMC7599543 DOI: 10.3390/ma13204507] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
The determination of the secure working life of polymeric materials is essential for their successful application in the packaging, medicine, engineering and consumer goods industries. An understanding of the chemical and physical changes in the structure of different polymers when exposed to long-term external factors (e.g., heat, ozone, oxygen, UV radiation, light radiation, chemical substances, water vapour) has provided a model for examining their ultimate lifetime by not only stabilization of the polymer, but also accelerating the degradation reactions. This paper presents an overview of the latest accounts on the impact of the most common environmental factors on the degradation processes of polymeric materials, and some examples of shelf life of rubber products are given. Additionally, the methods of lifetime prediction of degradable polymers using accelerated ageing tests and methods for extrapolation of data from induced thermal degradation are described: the Arrhenius model, time-temperature superposition (TTSP), the Williams-Landel-Ferry (WLF) model and 5 isoconversional approaches: Friedman's, Ozawa-Flynn-Wall (OFW), the OFW method corrected by N. Sbirrazzuoli et al., the Kissinger-Akahira-Sunose (KAS) algorithm, and the advanced isoconversional method by S. Vyazovkin. Examples of applications in recent years are given.
Collapse
Affiliation(s)
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland;
| |
Collapse
|