1
|
Tatarchuk T, Shyichuk A, Danyliuk N, Lapchuk I, Macyk W. Water disinfection using hydrogen peroxide with fixed bed hematite catalyst - kinetic and activity studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26592-26605. [PMID: 38451458 DOI: 10.1007/s11356-024-32794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
A lab-scale reactor with a fixed-bed hematite catalyst for the effective decomposition of H2O2 and bacteria inactivation was designed. The bactericidal effect is the largest at a low initial bacterial count of 2·103 CFU/L, which is typical for natural surface waters. When using a 5 mM H2O2 solution and a residence time of 104 min, the reduction in the number of E. coli bacteria is about 3.5-log. At a higher initial bacterial count of 1-2·104 CFU/L, a 5 mM H2O2 solution reduces the bacteria number by about 4-log. The H2O2 decomposition follows the log-linear kinetics of a first-order reaction while the bacterial inactivation does not. The kinetics of bacterial inactivation was described using the Weibull model in the modified form: log10(N0/N) = b · tn. The values of the non-linearity parameter n were found to be lower than 1, indicating that bacterial inactivation slows down over time. With increasing initial H2O2 concentration, the rate parameter b increases while the non-linearity parameter n decreases. With increasing temperature, both parameters increase. The stability of the catalyst has been proved by XRD, FTIR, SEM, and ICP-OES. The concentration of iron leaching into water during disinfection is much lower than the limit declared by WHO for iron in drinking water. The results show that technical-grade hematite is a promising Fenton-like catalyst for water disinfection. The fixed-bed reactor can be the basis of the mobile installations for water purification in emergencies.
Collapse
Affiliation(s)
- Tetiana Tatarchuk
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76-018, Ukraine.
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland.
| | - Alexander Shyichuk
- Department of Chemistry, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76-018, Ukraine
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326, Bydgoszcz, Poland
| | - Nazarii Danyliuk
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76-018, Ukraine
| | - Ivanna Lapchuk
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76-018, Ukraine
| | - Wojciech Macyk
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| |
Collapse
|
2
|
Furlan Sandrini DM, Morgado DL, de Oliveira AJA, de Moraes DA, Varanda LC, Frollini E. Cellulose esters: Synthesis for further formation of films with magnetite nanoparticles incorporated. Int J Biol Macromol 2024; 264:130594. [PMID: 38437931 DOI: 10.1016/j.ijbiomac.2024.130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This study investigated the homogeneous synthesis of cellulose acetate (CA) and propionate (CP) with varying degrees of substitution (DS) from sisal cellulose in a N, N-dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system. These esters were used to prepare neat (CADSF/CPDSF) and nanocomposite films (CADSFFe/CPDSFFe) from prior synthesized magnetite nanoparticles (NPs, Fe3O4, 5.1 ± 0.5 nm). Among the CA and CP series, the composite CA0.7FFe and the neat CP0.7F films exhibited the highest modulus of elasticity, 2105 MPa and 2768 MPa, respectively, probably a consequence of the continuous fibrous structures present on the surface of these films. Microsphere formation on the film's surface was observed in scanning electron microscopy micrographs. This points to applications in the controlled release of targeted substances. The VSM analysis showed that the cellulosic matrices preserved the superparamagnetic characteristics of the NPs. This study suggested a reduced coupling effect between nanoparticles inside polymeric films due to magnetic saturation at low fields. CA0.7FFe and CA1.3FFe composite films reached a saturation magnetization (MSAT) of 46 emu/g around 7 kOe field. Hosting magnetite nanoparticles in cellulose ester matrices may be an interesting way to develop new functional cellulose-based materials, which have the potential for diverse applications, including microelectromechanical systems and microsensors.
Collapse
Affiliation(s)
- Daiana M Furlan Sandrini
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Daniella Lury Morgado
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Daniel A de Moraes
- Colloidal Materials Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Laudemir C Varanda
- Colloidal Materials Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Elisabete Frollini
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil.
| |
Collapse
|
3
|
Oxytetracycline removal and E. Coli inactivation by decomposition of hydrogen peroxide in a continuous fixed bed reactor using heterogeneous catalyst. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Combining Experimental Data with Statistical Methods to Evaluate Hydrolyzed Reactive Dye Removal by α-Fe2O3 in a Cellulose-Based Membrane. FIBERS 2021. [DOI: 10.3390/fib9100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water contaminated with toxic dyes poses serious problems for human health and environmental ecosystems. Unfixed reactive dyes and their hydrolyzed form are soluble in water, thus, their removal is particularly challenging. Among the different methodologies, adsorption is probably the most common since it is easy to handle and has a low cost. Here, the removal by adsorption of hydrolyzed Reactive Black 5 (hydRB5) from a model wastewater through cellulose acetate/hematite membranes (CA/α-Fe2O3), designated as M1, M2 and M3, was performed. The pristine cellulose acetate membrane (CA) was designated as M0. Toward understanding the adsorption mechanism of hydRB5 on membranes, the rate of adsorption and maximum value of the adsorption capacity were evaluated using kinetic and isothermal studies, respectively. The results showed that the adsorption mechanism follows pseudo-first-order kinetics, and data are best fitted by the Langmuir isotherm method with a maximum adsorption capacity of 105.26 mg g−1 in pH~7. Furthermore, these membranes can be also regenerated by washing with NaOH and NaCl solutions, and the regeneration efficiency remains effective over five cycles. To complete the work, two statistical models were applied, an Analysis of Variance (ANOVA) and a Response Surface Methodology (RSM). The optimum value found is located in the usable region, and the experimental validation shows good agreement between the predicted optimum values and the experimental data. These composite membranes are also good candidates for the adsorption of other pollutants, even at industrial scale, due to their effective regeneration process and low production costs.
Collapse
|
5
|
Vihodceva S, Šutka A, Sihtmäe M, Rosenberg M, Otsus M, Kurvet I, Smits K, Bikse L, Kahru A, Kasemets K. Antibacterial Activity of Positively and Negatively Charged Hematite ( α-Fe 2O 3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:652. [PMID: 33800165 PMCID: PMC7999532 DOI: 10.3390/nano11030652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
In the current study, the antibacterial activity of positively and negatively charged spherical hematite (α-Fe2O3) nanoparticles (NPs) with primary size of 45 and 70 nm was evaluated against clinically relevant bacteria Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) as well as against naturally bioluminescent bacteria Vibrio fischeri (an ecotoxicological model organism). α-Fe2O3 NPs were synthesized using a simple green hydrothermal method and the surface charge was altered via citrate coating. To minimize the interference of testing environment with NP's physic-chemical properties, E. coli and S. aureus were exposed to NPs in deionized water for 30 min and 24 h, covering concentrations from 1 to 1000 mg/L. The growth inhibition was evaluated following the postexposure colony-forming ability of bacteria on toxicant-free agar plates. The positively charged α-Fe2O3 at concentrations from 100 mg/L upwards showed inhibitory activity towards E. coli already after 30 min of contact. Extending the exposure to 24 h caused total inhibition of growth at 100 mg/L. Bactericidal activity of positively charged hematite NPs against S. aureus was not observed up to 1000 mg/L. Differently from positively charged hematite NPs, negatively charged citrate-coated α-Fe2O3 NPs did not exhibit any antibacterial activity against E. coli and S. aureus even at 1000 mg/L. Confocal laser scanning microscopy and flow cytometer analysis showed that bacteria were more tightly associated with positively charged α-Fe2O3 NPs than with negatively charged citrate-coated α-Fe2O3 NPs. Moreover, the observed associations were more evident in the case of E. coli than S. aureus, being coherent with the toxicity results. Vibrio fischeri bioluminescence inhibition assays (exposure medium 2% NaCl) and colony forming ability on agar plates showed no (eco)toxicity of α-Fe2O3 (EC50 and MBC > 1000 mg/L).
Collapse
Affiliation(s)
- Svetlana Vihodceva
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia;
| | - Andris Šutka
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia;
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Krisjanis Smits
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (K.S.); (L.B.)
| | - Liga Bikse
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (K.S.); (L.B.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| |
Collapse
|
6
|
Silva MA, Belmonte-Reche E, de Amorim MTP. Morphology and water flux of produced cellulose acetate membranes reinforced by the design of experiments (DOE). Carbohydr Polym 2020; 254:117407. [PMID: 33357894 DOI: 10.1016/j.carbpol.2020.117407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
Cellulose acetate (CA) ultrafiltration membranes were successfully prepared using the non-solvent induced phase separation (NIPS) methodology. This technique is used to produce porous membranes for a large variety of applications. However, the formation of a dense skin during the process reduces membrane pure water flux (PWF). To overcome this issue, three parameters were investigated: CA/NMP (N-methyl-2-pyrrolidone) ratio in the casting solution, acetone (Ac)/water (W) ratio in the precipitation bath composition (PBC) and support material (glass/polyethylene). The effect of each factor on the mean pore size, water contact angle, porosity and PWF was supported by Taguchi design. The increase in the CA/NMP ratio reduced mean pore size and porosity. In contrast, there was an increase in porosity and hydrophilicity with increasing Ac/W ratio. The maximum value of PWF was obtained for membranes prepared using a PE support. ANOVA showed that most, but not all, factors had significant effects on the parameters measured.
Collapse
Affiliation(s)
- Mónica A Silva
- Center for Science and Textile Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Efres Belmonte-Reche
- Life Sciences Department, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - M T Pessoa de Amorim
- Center for Science and Textile Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
7
|
Recent Advances in Magnetic Nanoparticles and Nanocomposites for the Remediation of Water Resources. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Water resources are of extreme importance for both human society and the environment. However, human activity has increasingly resulted in the contamination of these resources with a wide range of materials that can prevent their use. Nanomaterials provide a possible means to reduce this contamination, but their removal from water after use may be difficult. The addition of a magnetic character to nanomaterials makes their retrieval after use much easier. The following review comprises a short survey of the most recent reports in this field. It comprises five sections, an introduction into the theme, reports on single magnetic nanoparticles, magnetic nanocomposites containing two of more nanomaterials, magnetic nanocomposites containing material of a biologic origin and finally, observations about the reported research with a view to future developments. This review should provide a snapshot of developments in what is a vibrant and fast-moving area of research.
Collapse
|
8
|
Physical, Thermal, and Antibacterial Effects of Active Essential Oils with Potential for Biomedical Applications Loaded onto Cellulose Acetate/Polycaprolactone Wet-Spun Microfibers. Biomolecules 2020; 10:biom10081129. [PMID: 32751893 PMCID: PMC7465996 DOI: 10.3390/biom10081129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
New approaches to deal with the growing concern associated with antibiotic-resistant bacteria are emerging daily. Essential oils (EOs) are natural antimicrobial substances with great potential to mitigate this situation. However, their volatile nature, in their liquid-free form, has restricted their generalized application in biomedicine. Here, we propose the use of cellulose acetate (CA)/polycaprolactone (PCL) wet-spun fibers as potential delivery platforms of selected EOs to fight infections caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Twenty EOs were selected and screened for their minimal inhibitory concentration (MIC), using the antibiotic ampicillin as positive control. The cinnamon leaf oil (CLO), cajeput oil (CJO), and the clove oil (CO) were the most effective EOs, against the Gram-positive (MIC < 22.38 mg/mL) and the Gram-negative (MIC < 11.19 mg/mL) bacteria. Uniform microfibers were successfully wet-spun from CA/PCL with an averaged diameter of 53.9 ± 4.5 µm, and then modified by immersion with CLO, CJO and CO at 2 × MIC value. EOs incorporation was confirmed by UV-visible spectroscopy, Fourier-transformed infrared spectroscopy, and thermal gravimetric analysis. However, while microfibers contained ampicillin at MIC (control) after the 72 h modification, the CLO, CO and CJO-loaded fibers registered ≈ 14%, 66%, and 76% of their MIC value, respectively. Data showed that even at small amounts the EO-modified microfibers were effective against the tested bacteria, both by killing bacteria more quickly or by disrupting more easily their cytoplasmic membrane than ampicillin. Considering the amount immobilized, CLO-modified fibers were deemed the most effective from the EOs group. These results indicate that CA/PCL microfibers loaded with EOs can be easily produced with increased antibacterial action, envisioning their use as scaffolding materials for the treatment of infections.
Collapse
|