1
|
Wang Y, Di K, Sun Y, Li X, Zheng J, Zhang F. An Experimental and Computational Study on the Effects of Ball Milling on the Physicochemical Properties and Digestibility of a Canna Starch/Tea Polyphenol Complex. Foods 2025; 14:208. [PMID: 39856876 PMCID: PMC11765055 DOI: 10.3390/foods14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
To investigate the impact of tea polyphenols on the thermodynamic properties, gelatinization properties, rheological properties, and digestion characteristics of starch after ball milling, canna starch and tea polyphenols were mixed at a 10:1 ratio (w/w) in an experiment and processed with different ball milling times. After ball milling for 3 h, the tea polyphenols and starch fragments formed complexes. Compared with the unmilled mixture, the solubility increased by 199.4%; the shear stress decreased by 89.48%; and the storage modulus and loss modulus decreased. The content of resistant starch first decreased and then increased. Infrared results revealed that ball milling led to a non-covalent interaction between the tea polyphenols and starch. Molecular dynamics simulations were used to study the interaction between the starch and tea polyphenols. The binding free energy of the main component, epigallocatechin gallate (EGCG), in tea polyphenols with starch was reduced from -23.20 kcal/mol to -26.73 kcal/mol. This experiment can provide a reference for the development of functional starch with high resistant starch content.
Collapse
Affiliation(s)
- Yizhou Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.W.); (K.D.); (Y.S.); (X.L.); (J.Z.)
| | - Kejun Di
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.W.); (K.D.); (Y.S.); (X.L.); (J.Z.)
| | - Ying Sun
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.W.); (K.D.); (Y.S.); (X.L.); (J.Z.)
| | - Xiaojing Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.W.); (K.D.); (Y.S.); (X.L.); (J.Z.)
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.W.); (K.D.); (Y.S.); (X.L.); (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.W.); (K.D.); (Y.S.); (X.L.); (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
2
|
Tao H, Fang XH, Cai WH, Zhang S, Wang HL. Retrogradation behaviors of damaged wheat starch with different water contents. Food Chem X 2024; 22:101258. [PMID: 38444557 PMCID: PMC10912606 DOI: 10.1016/j.fochx.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The retrogradation behaviors of five damaged wheat starches (DS) after milling 0, 30, 60, 90, and 120 min with different water contents (33, 50, 60 %) were evaluated. Milling treatment increased DS content and developed an agglomeration of small particles. After 7 days of storage, the recrystallinity and long-range ordered structure of starch pastes were increased with the contents of DS and water. This process led to a lower setback viscosity and poor leaching of amylose. LF-NMR indicated a conversion from tightly bound water and free water to weakly bound water. During storage, DS12 with 60 % water content had the highest retrogradation tendency where the retrogradation enthalpy increased by 1.5 J/g and 2.2 J/g compared with DS0 with 60 % and DS12 with 33 % water content. DS with higher water content promoted the water mobility and made the starch molecular chains migrated conveniently. These changes facilitated the recrystallinity process during retrogradation period.
Collapse
Affiliation(s)
- Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiao-Han Fang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
| | - Wan-Hao Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
3
|
Wang X, Hao Z, Liu N, Jin Y, Wang B, Bian Y, Yu Y, Wang T, Xiao Y, Yu Z, Zhou Y. Influence of the structure and physicochemical properties of OSA modified highland barley starch based on ball milling assisted treatment. Int J Biol Macromol 2024; 259:129243. [PMID: 38199535 DOI: 10.1016/j.ijbiomac.2024.129243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.
Collapse
Affiliation(s)
- Xin Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Nini Liu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongqing Jin
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Baixue Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiran Bian
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiyang Yu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Taosuo Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Zhang H, Zhang W, Wang S, Zhu Z, Dong H. Microbial composition play the leading role in volatile fatty acid production in the fermentation of different scale of corn stover with rumen fluid. Front Bioeng Biotechnol 2024; 11:1275454. [PMID: 38239916 PMCID: PMC10794738 DOI: 10.3389/fbioe.2023.1275454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Rumen fluid is a natural and green biocatalyst that can efficiently degrade biomass into volatile fatty acid (VFA) used to produce value-added materials. But the essence of high degradation efficiency in the rumen has not been fully analyzed. This study investigated the contribution of substrate structure and microbial composition to volatile fatty acid production in the fermentation of corn stover. The ball milled corn stover were innovatively applied to ferment with the rumen fluid collected at different digestion times. Exogeneous cellulase was also added to the ruminal fermentation to further reveal the inner mechanism. With prolonged digestion time, the microbial community relative abundance levels of Bacteroidetes and Firmicutes increased from 29.98% to 72.74% and decreased from 51.76% to 22.11%, respectively. The highest VFA production of the corn stover was achieved via treatment with the rumen fluid collected at 24 h which was up to 9508 mg/L. The ball milled corn stover achieved high VFA production because of the more accessible substrate structure. The application of exogenous cellulase has no significant influence to the ruminal fermentation. The microbial community abundance contributed more to the VFA production compared with the substrate structures.
Collapse
Affiliation(s)
- Haiyan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanqin Zhang
- China Huadian Engineering Co., Ltd., Beijing, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Shen H, Yan M, Liu Y, Liu X, Ge X, Muratkhan M, Ospankulova G, Zhang G, Li W. Multiscale structure-property relationships of oxidized wheat starch prepared assisted with electron beam irradiation. Int J Biol Macromol 2023; 235:123908. [PMID: 36870652 DOI: 10.1016/j.ijbiomac.2023.123908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, two promising eco-friendly modification techniques, electron beam (EB) irradiation and hydrogen peroxide (H2O2) oxidation, were used to prepare oxidized wheat starch. Neither irradiation nor oxidation changed starch granule morphology, crystalline pattern, and Fourier transform infrared spectra pattern. Nevertheless, EB irradiation decreased the crystallinity and the absorbance ratios of 1047/1022 cm-1 (R1047/1022), but oxidized starch exhibited the opposite results. Both irradiation and oxidation treatments reduced the amylopectin molecular weight (Mw), pasting viscosities, and gelatinization temperatures, while increasing the amylose Mw, solubility and paste clarity. Notably, EB irradiation pretreatment dramatically elevated the carboxyl content of oxidized starch. In addition, irradiated-oxidized starches displayed higher solubility, paste clarity, and lower pasting viscosities than single oxidized starches. The main reason was that EB irradiation preferentially attacks the starch granules, degrades the starch molecules, and depolymerizes the starch chains. Therefore, this green method of irradiation-assisted oxidation of starch is promising and may promote the appropriate application of modified wheat starch.
Collapse
Affiliation(s)
- Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Mengting Yan
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yili Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Marat Muratkhan
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Gulnazym Ospankulova
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Guoquan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
6
|
Li C, An X, Ren Q, Liu L, Long Y, Zhang H, Yang J, Nie S, Tian Z, Yang G, Cheng Z, Cao H, Liu H. Nanogrinding/ethanol activation facilitating lignin fractionation for preparation of monodispersed lignin nanoparticles. Int J Biol Macromol 2023; 227:608-618. [PMID: 36495988 DOI: 10.1016/j.ijbiomac.2022.12.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Lignin nanoparticles (LNPs), as one of green and sustainable biological macromolecules, have attracted great attention owing to their promising potentials in many valorized fields. However, the lignin heterogeneity seriously restricts the controllable preparation of LNPs. Herein, a facile nanogrinding activation combining anhydrous ethanol dissolution process was developed to efficiently homogenize lignin prior to gradient ethanol fractionation. Two lignin fractions were obtained from nanogrinding activation/ethanol dissolution followed by gradient ethanol fractionation: L-fractions and S-fractions. Therefore, monodispersed LNPs with unique concave hollow nanostructure and large particle size, and monodispersed LNPs with solid core nanostructure and small particle size were successfully prepared from L-fractions and S-fractions, respectively, via a GVL/water anti-solvent method. The proposed LNPs formation mechanisms facilitated by nanogrinding activation/ethanol dissolution treatment were demonstrated. This study put forwards a facile and green integrated approach for monodispersed LNPs preparation with controllable morphology and particle size.
Collapse
Affiliation(s)
- Chenxi Li
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Xingye An
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China; Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Qian Ren
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Liqin Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China; Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Yinying Long
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Hao Zhang
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Jian Yang
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Zhengbai Cheng
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., No. 1, Jing Xing Industry Zone, Jing Xing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Haibing Cao
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., No. 1, Jing Xing Industry Zone, Jing Xing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China.
| |
Collapse
|
7
|
Electron beam irradiation regulates the structure and functionality of ball-milled corn starch: The related mechanism. Carbohydr Polym 2022; 297:120016. [DOI: 10.1016/j.carbpol.2022.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
|
8
|
Hao Z, Han S, Xu H, Li C, Wang Y, Gu Z, Hu Y, Zhang Q, Deng C, Xiao Y, Liu Y, Liu K, Zheng M, Zhou Y, Yu Z. Insights into the rheological properties, multi-scale structure and in vitro digestibility changes of starch-β-glucan complex prepared by ball milling. Int J Biol Macromol 2022; 224:1313-1321. [DOI: 10.1016/j.ijbiomac.2022.10.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
9
|
Adewale P, Yancheshmeh MS, Lam E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr Polym 2022; 291:119590. [DOI: 10.1016/j.carbpol.2022.119590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
10
|
Chorfa N, Nlandu H, Belkacemi K, Hamoudi S. Physical and Enzymatic Hydrolysis Modifications of Potato Starch Granules. Polymers (Basel) 2022; 14:polym14102027. [PMID: 35631908 PMCID: PMC9143340 DOI: 10.3390/polym14102027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
In this work, a valorization of the starch stemming from downgraded potatoes was approached through the preparation of starch nanoparticles using different physical methods, namely liquid and supercritical carbon dioxide, high energy ball milling (HEBM), and ultrasonication on the one hand and enzymatic hydrolysis on the other hand. Starch nanoparticles are beneficial as a reinforcement in food packaging technology as they enhance the mechanical and water vapor resistance of polymers. Also, starch nanoparticles are appropriate for medical applications as carriers for the delivery of bioactive or therapeutic agents. The obtained materials were characterized using X-ray diffraction as well as scanning and transmission electron microscopies (SEM and TEM), whereas the hydrolysates were analyzed using size exclusion chromatography coupled with pulsed amperometric detection (SEC-PAD). The acquired results revealed that the physical modification methods led to moderate alterations of the potato starch granules’ size and crystallinity. However, enzymatic hydrolysis conducted using Pullulanase enzyme followed by nanoprecipitation of the hydrolysates allowed us to obtain very tiny starch nanoparticles sized between 20 and 50 nm, much smaller than the native starch granules, which have an average size of 10 μm. The effects of enzyme concentration, temperature, and reaction medium pH on the extent of hydrolysis in terms of the polymer carbohydrates’ fractions were investigated. The most promising results were obtained with a Pullulanase enzyme concentration of 160 npun/g of starch, at a temperature of 60 °C in a pH 4 phosphate buffer solution resulting in the production of hydrolysates containing starch polymers with low molecular weights corresponding mainly to P-10, P-5, and fractions with molecular weights lower than P-5 Pullulan standards.
Collapse
Affiliation(s)
| | | | | | - Safia Hamoudi
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 408460)
| |
Collapse
|
11
|
Han N, Fan JL, Chen N, Chen HQ. Effect of ball milling treatment on the structural, physicochemical and digestive properties of wheat starch, A- and B-type starch granules. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Li L, Chang R, Zhan J, Lu H, Lu X, Tian Y. Preparation and characterization of non-crystalline granular starch with low processing viscosity. Int J Biol Macromol 2022; 195:483-491. [PMID: 34920068 DOI: 10.1016/j.ijbiomac.2021.12.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022]
Abstract
Non-crystalline granular starch (NCGS) has advantages in the deep processing of starch owing to its unique structure and function. In this study, NCGS was successfully prepared at a baking temperature of 210 °C, and the morphology, structure, pasting properties, and rheological properties of the NCGS were systematically studied. Compared with native starch, NCGS showed a lower processing viscosity and rapid reduction in the peak viscosity from 3795 to 147 cP. Furthermore, NCGS exhibited impaired short- and long-range ordered structures, as indicated by the lower ratio of absorbance at 1047/1015 cm-1 and decreased crystallinity compared to native starch. Additionally, amylose and amylopectin with long and medium chains in NCGS were degraded into short chains, resulting in an increase in amylose content and branch density. The analysis of the physicochemical properties of NCGS, especially the low processing viscosity, is of great importance for the industrial application of starch, particularly in terms of improving the yield, saving energy, and reducing environmental pollution.
Collapse
Affiliation(s)
- Liping Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ranran Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|