1
|
Feng C, Cheng X, Na M, Zhang F, Duan J, Ji L, Jiang J. Green preparation of low-molecular-weight galactomannan from Gleditsia sinensis and mechanistic investigation on ameliorating nonalcoholic fatty liver disease. Food Res Int 2025; 201:115647. [PMID: 39849749 DOI: 10.1016/j.foodres.2024.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Galactomannan comes from a wide range of plant resources and has some biological activities, but its bioavailability is limited due to its large molecular weight and complex structure. In this study, three degradation methods (H2O2, ultrasound, and β-mannanase) combined with ethanol fractional precipitation (25 %, 50 %, and 75 %) were used to degrade and separate Gleditsia sinensis galactomannans (GSG), and the physicochemical properties and biological activities of GSG after degradation were analyzed. Comprehensive comparison indicates that H2O2 exhibits had a better degradation effect. After 4 h of degradation using 4 % H2O2, the yield of GSG precipitated with 50 % ethanol was 37.06 % (the yield of undigested GSG is 1.80 %). Simultaneously, the molecular weight (reduced from 225.25 to 36.87 kDa) and viscosity were significantly reduced under this condition, while the solubility was increased. In addition, the low-molecular-weight GSG (LGSG) obtained by 4 % H2O2/50 % ethanol showed the strongest free radical scavenging activity in vitro. Furthermore, the results of in vivo antioxidant assays showed that LGSG inhibited Aflatoxin B1-induced developmental toxicity by regulating gene expression in the Keap1/Nrf2 pathway. LGSG also promoted Nrf2-mediated expression of the lipid metabolism genes ppar-α and cpt1, while suppressing expression of the fatty acid synthesis genes fas and scd-1. Therefore, the liver recovered from lipid peroxidation induced nonalcoholic fatty liver disease (NAFLD). The present study introduces a method for green and efficient preparation of LGSG, indicates its potential as a nutritional product.
Collapse
Affiliation(s)
- Chi Feng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Mula Na
- Inner Mongolia Minzu Universities, Coll Anim Sci & Technol, Tongliao, Inner Mongolia 028000, China
| | - Fenglun Zhang
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jiufang Duan
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Tan Y, Gu Q, Xu Q, Ji Z, Su C, Ling Z. Regulating natural galactomannan into composite hydrogels for improved adhesion, anti-swelling capability and efficient dye pollution removal. Int J Biol Macromol 2024; 279:135466. [PMID: 39250991 DOI: 10.1016/j.ijbiomac.2024.135466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Constructing bio-based composite hydrogel materials are receiving much interest, while regulating the interactions of the hydrogel components and integrating functions for multi-application meet various challenges. Herein, composite hydrogels were prepared by cross-linking of poly-acrylamide (PAM) and poly-N-[3-(Dimethylamino) propyl] acrylamide (PDMAPAA), assisted by natural galactomannan (GM) regulation. Even distribution and compatibility of GM in the three-dimensional materials were proved by a series of chemical and morphological characterizations, which favored the improvement of mechanical properties (~80 kPa) and flexibility. Besides, the hydrogels were well-connected with double networks of noncovalent intermolecular hydrogen bonding interactions and hydrophobic interactions, in addition to covalent-linked polymers. Due to great amount of inner hydrogen bond linkages, the hydrogels present satisfying anti-swelling capabilities (<15 %), exhibiting high potential for application in water treatment. Meanwhile, abundant surface functional groups provided possibilities to form interactive layer with the various substrates surface, exhibiting highly adhesive properties. Significant dyes adsorption capabilities were revealed on the hydrogels according to the electrostatic attraction with Congo red and hydrogen bond interactions with Brilliant green respectively. Thus, the proposed composite hydrogels integrated multi-functions due to the tuning the surface groups and cross-linking interactions, which provided deeper understanding on bio-based materials on fields of water treatment and environmental protection.
Collapse
Affiliation(s)
- Yang Tan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qihui Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Qingqing Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ji
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chen Su
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Zhang C, Wang Y, Yin Z, Yan Y, Wang Z, Wang H. Quantitative characterization of the crosslinking degree of hydroxypropyl guar gum fracturing fluid by low-field NMR. Int J Biol Macromol 2024; 277:134445. [PMID: 39098685 DOI: 10.1016/j.ijbiomac.2024.134445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
As a widely used water-based fracturing fluid, the performance of hydroxypropyl guar gum fracturing fluid is closely related to the degree of crosslinking, the quantitative characterization of which can reveal a detailed crosslinking mechanism and guide the preparation of fracturing fluid gels with an excellent performance. However, the commonly used high-temperature rheology method for evaluating the performance of fracturing fluids only qualitatively reflects the degree of crosslinking. In this study, low-field nuclear magnetic resonance (LF-NMR) was used to characterize the degree of crosslinking in guar gum fracturing fluid gels. The spin-spin relaxation time of the H proton in guar gum was molecularly analyzed using LF-NMR. The viscoelastic properties met the requirements when the crosslinking degree of the gel was 88-94 %. The transformation of the linear structure into a membrane structure during the crosslinking process of the guar gum fracturing fluid was confirmed by freeze-drying and scanning electron microscopy (SEM) from a microscopic perspective. The changing trend of the microstructure and viscoelastic properties of the fracturing fluid gel under different crosslinker dosages was consistent with changes in the degree of crosslinking. The LF-NMR test process is non-destructive to the gel structure, and the test results demonstrate good accuracy and repeatability.
Collapse
Affiliation(s)
- Chuanbao Zhang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yanling Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Zichen Yin
- Jinan Vocational College, Jinan 250103, PR China
| | - Yujie Yan
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ziyue Wang
- The University of North Carolina at Chapel Hill, 216 Lenoir Dr, Chapel Hill NC27599, USA
| | - Hangyu Wang
- The University of North Carolina at Chapel Hill, 216 Lenoir Dr, Chapel Hill NC27599, USA
| |
Collapse
|
4
|
Zhou Y, Tang S, Lv Y, Zhang D, Huang X, Chen Y, Lai C, Yong Q. The prebiotic impacts of galactose side-chain of tamarind xyloglucan oligosaccharides on gut microbiota. Heliyon 2024; 10:e37864. [PMID: 39323792 PMCID: PMC11422031 DOI: 10.1016/j.heliyon.2024.e37864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
To explore the impacts of galactose side-chain on the prebiotic activity of xyloglucan oligosaccharides (XGOS), XGOS and de-galactosylated XGOS (DG-XGOS) were prepared from tamarind using an enzymatic method. The differences in structural features of XGOS and DG-XGOS were systematically analyzed. Their in vitro fermentation characteristics of human fecal microbiota were explored. These results indicated that both XGOS and DG-XGOS promoted short-chain fatty acids (SCFAs) production, decreased pH, and changed the microbiota composition of the fermentation broth. Comparatively, DG-XGOS was more effective than XGOS in producing SCFAs, inhibiting the phylum Proteobacteria prevalence, and promoting the phyla Bacteroidetes and Actinobacteria prevalence. In summary, the xyloglucan degradation products exert potential prebiotic activity. Removing the galactose side-chains further enhances oligosaccharide utilization by fecal microbiota, offering a valuable approach to improve the biological efficacy of oligosaccharides.
Collapse
Affiliation(s)
- Yubo Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shuo Tang
- Nanjing Institute of Comprehensive Utilization of Wild Plants, Nanjing, 211111, PR China
| | - Ying Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, PR China
| | - Xiaode Huang
- Nanjing Institute of Comprehensive Utilization of Wild Plants, Nanjing, 211111, PR China
| | - Yanan Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| |
Collapse
|
5
|
Tao Y, Zhao Y, Sheng Y, Ruan L, Ge W, Lin H, Qing Q, Zhang Y, Wang L. High efficient preparation of low molecular weight galactomannan from Leucaena leucocephala galactomannan through the combination of hydrogen peroxide and oxalic acid. Int J Biol Macromol 2024; 265:130721. [PMID: 38479660 DOI: 10.1016/j.ijbiomac.2024.130721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Researchers have always been interested in polysaccharide degradation because of the increased biological activity and usability following degradation. In this work, low molecular weight galactomannan (LMW-GM) was produced through the degradation of galactomannan by H2O2 and oxalic acid (OA). The optimal reaction conditions were found by conducting the response surface optimization experiment based on single-factor experiment and kinetics analysis. Under these conditions, the LMW-GM yield was 69.48 ± 1.02 %. Ultimately, an analysis of the degradation process revealed that OA attacked GM indiscriminately, and H2O2 has a stronger effect on the removal of branched chains while degrading GM. Hence, the degradation steps were rearranged as H2O2 was added 20 min before OA at a constant total time. The LMW-GM yield was successfully increased to 76.49 ± 1.27 %. The goal of this work is hopefully to give a theoretical foundation for the low-cost preparation and industrial production of the degradation of galactomannan.
Collapse
Affiliation(s)
- Yuheng Tao
- School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yuqi Zhao
- School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, People's Republic of China
| | - Lingyu Ruan
- School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Wenhao Ge
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Hongyan Lin
- School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Qing Qing
- School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yue Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Liqun Wang
- School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China.
| |
Collapse
|
6
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
7
|
Dai L, Wang T, Liu Y, Lan Y, Ji L, Jiang J, Li P. Fluorescence probe technique for determining the hydrophobic interactions and critical aggregation concentrations of Gleditsia microphylla gum, circular Gleditsia sinensis gum, and tara gum. Int J Biol Macromol 2023; 247:125707. [PMID: 37423453 DOI: 10.1016/j.ijbiomac.2023.125707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Circular Gleditsia sinensis gum, Gleditsia microphylla gum, and tara gum are galactomannans (GMs) with similar mannose/galactose (M/G) molar ratios, which complicates the characterization of physicochemical properties using conventional methods. Herein, the hydrophobic interactions and critical aggregation concentrations (CACs) of the GMs were compared using a fluorescence probe technique, in which the I1/I3 ratio of pyrene indicated polarity changes. With increasing GM concentration, the I1/I3 ratio decreased slightly in dilute solutions below the CAC but decreased sharply in semidilute solutions above the CAC, indicating that the GMs formed hydrophobic domains. However, increases in temperature destroyed the hydrophobic microdomains and increased the CACs. Higher concentrations of salts (SO42-, Cl-, SCN-, and Al3+) promoted hydrophobic microdomain formation, and the CACs in Na2SO4 and NaSCN solutions were lower than those in pure water. Hydrophobic microdomain formation also occurred upon Cu2+ complexation. Although urea addition promoted hydrophobic microdomain formation in dilute solutions, the microdomains were destroyed in semidilute solutions and the CACs increased. The formation or destruction of hydrophobic microdomains depended on the molecular weight, M/G ratio and galactose distribution of GMs. Therefore, the fluorescent probe technique enables the characterization of hydrophobic interactions in GM solutions, which can provide valuable insight into molecular chain conformations.
Collapse
Affiliation(s)
- Lanxiang Dai
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Yantao Liu
- Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China.
| | - Yanjiao Lan
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| | - Pengfei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
8
|
Xu W, Han M, Liu Y, Zhu Y, Zhang F, Lei F, Wang K, Ji L, Jiang J. Changes in structure and physicochemical properties of Sophora japonica f. pendula galactomannan in late growth stage. Carbohydr Polym 2023; 304:120496. [PMID: 36641164 DOI: 10.1016/j.carbpol.2022.120496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Galactomannan (GM) has been widely applied in food and other fields due to its appealing physicochemical properties. In this work, considering the changes in structural and physicochemical properties of Sophora japonica f. pendula (SJ-GM) with very high mannose to galactose (M/G) ratio in the late deposition stage, extensive exploration is conducted. The core of structural change is the change of M/G ratio (4.94-5.68), which is caused by the loss of galactose side residues modulated by α-d-galactosidase during seed maturation. Afterwards, the more compact conformation, the higher molecular weight, the increased hydrophobicity, and the greater solution viscosity of SJ-GM can be caused. Notably, the gel strength of SJ-GM with the highest M/G surpasses other GMs, including fenugreek gum (M/G = 1.20), guar gum (M/G = 1.80), Gleditsia microphylla gum (M/G = 2.77), and LBG (M/G = 4.00). Finally, SJ-GM is proven to be an attractive alternative to other GMs.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Minghui Han
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Yantao Liu
- Glyn O. Phillips Hydrocolloid Research Centre, Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yana Zhu
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Tao Y, Wang T, Huang C, Lai C, Ling Z, Zhou Y, Yong Q. Incomplete degradation products of galactomannan from Sesbania cannabina modulated the cecal microbial community of laying hens. J Anim Sci 2022; 100:6550850. [PMID: 35304897 PMCID: PMC9030128 DOI: 10.1093/jas/skac087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Galactomannan and its degradation products have been gaining attention based on their possible means for improving the natural defense of the host through modulation of the bacterial population in the gut. Herein, incomplete degradation products of galactomannan (IDPG) was supplemented into the diet of aged laying hens to investigate the efficacy of IDPG on the gut microbiome. Four treatments with six replicates of twelve 68-wk-old laying hens (Hy-Line variety brown) each were fed a basal diet supplemented with 0%, 0.01%, 0.025%, and 0.05% IDPG for 8 wk. Results showed that the propionate concentration significantly increased in laying hens fed a diet supplemented with 0.025% or 0.05% IDPG relative to the control diet (P < 0.05). Moreover, the results of 16S rRNA gene sequencing revealed that there was a notable elevation of microbiome species diversity due to the addition of IDPG, with a noted enrichment to phyla Bacteroidetes at the expense of Firmicutes and Proteobacteria. Metabolic prediction of the cecal microbiome suggested significant improvements to carbohydrate and lipid metabolism and a significant depletion for energy metabolism and infectious diseases. More importantly, a strong positive correlation between levels of genera Bacteroides, Rikenellaceae_RC9_gut_group, and Prevotellaceae_UCG-001 with high production of propionate was found using multivariate analysis. Our study demonstrated that IDPG acted by mainly enriching the phyla Bacteroidetes in the cecum, increasing species diversity, and cecal propionate concentrations. It seems that IDPG can be used as feed additives in laying hen farming due to its capacity to positively modulate the cecal microbiome and aid improve overall health.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
10
|
Yan B, Tao Y, Huang C, Lai C, Yong Q. Using One-pot Fermentation Technology to Prepare Enzyme Cocktail to Sustainably Produce Low Molecular Weight Galactomannans from Sesbania cannabina Seeds. Appl Biochem Biotechnol 2022; 194:3016-3030. [PMID: 35334068 DOI: 10.1007/s12010-022-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Enzymatic hydrolysis using β-mannanase and α-galactosidase is necessary to produce low molecular weight galactomannan (LMW-GM) from galactomannans (GM) in the leguminous seeds. In this study, different ratios of avicel and melibiose were used as the inductors (carbon sources) for Trichoderma reesei to metabolize the enzyme cocktail containing β-mannanase and α-galactosidase using one-pot fermentation technology. The obtained enzyme cocktail was used to efficiently produce LMW-GM from GM in Sesbania cannabina seeds. Results showed that 15 g/L avicel and 10 g/L melibiose were the best carbon sources to prepare enzyme cocktail containing β-mannanase and α-galactosidase with activities of 3.69 ± 0.27 U/mL and 0.51 ± 0.02 U/mL, respectively. Specifically, melibiose could effectively induce the metabolite product of α-galactosidase by T. reesei, which showed good performance in degrading the galactose substituent from GM backbone. The degradation of galactose alleviated the spatial site-blocking effect for enzymatic hydrolysis by β-mannanase and improved the yield of LMW-GM. This research can lay the foundation for the industrial technology amplification of LMW-GM production for further application.
Collapse
Affiliation(s)
- Bowen Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuheng Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
11
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. Rheological properties of Sesbania cannabina galactomannan as a new source of thickening agent. J Food Sci 2022; 87:1527-1539. [PMID: 35275400 DOI: 10.1111/1750-3841.16094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
The present study evaluated the rheological properties of galactomannan from Sesbania cannabina. The intrinsic viscosity of galactomannan was determined to be 8.63 ± 0.06 dl/g. Moreover, the onset of galactomannan coil overlap occurred at 5.12 ± 0.13 g/L. With increasing concentration, galactomannan showed a more distinct shear-thinning behavior, which was well characterized by the Cross model. Notably, the viscosity of polysaccharide showed a negative relationship with the temperature, while the activation energy decreased with increasing polysaccharide concentration. Furthermore, at high concentrations, the galactomannan solution showed stability after heating or freezing, as well as over the wide pH range of 5.0-9.0. Dynamic viscoelasticity measurements reveal a gradual transition from viscous to elastic behavior of galactomannans with an increasing frequency. It is anticipated that S. cannabina galactomannan will find interesting applications as a natural thickener due to the comprehensive description of its rheological properties presented herein. PRACTICAL APPLICATION: The investigated S. cannabina galactomannan has shown a higher viscosity and heat stability at high concentration, as well as a good stability at the pH range of 5-9. The S. cannabina galactomannan may be employed as stabilizers in the food field.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. Int J Biol Macromol 2022; 205:530-538. [PMID: 35217078 DOI: 10.1016/j.ijbiomac.2022.02.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
Galactomannan (GM) is widely recognized as an immune enhancer; however, the underlying molecular mechanism is still unknown. Herein, four products with molecular weights in descending order, namely GM40, GM50, GM65, and GMOS, were separated from incomplete degradation products of Sesbania cannabina GM by ethanol precipitation, followed by their immunomodulatory activity. Through FTIR and XPS spectra, the amount of free hydroxyl groups was shown to decrease in the following order: GM > GM50 > GMOS > GM40 > GM65. Moreover, the immunomodulatory activity of different products decreased in abovementioned order. The TNF-α, IL-6 and TLR4 content in RAW 264.7 cells treated with different GM products in the presence or absence of TAK-242 (TLR4 inhibitor) suggested that the immunomodulatory activity of GM and its degradation products is TLR4-dependent. Overall, the preliminary relationship indicated here between the hydroxyl groups or the possible deeper structural changes of GM and the immunomodulatory activity need to be further investigated.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
13
|
Chen J, Ren Y, Liu W, Wang T, Chen F, Ling Z, Yong Q. All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure. Int J Biol Macromol 2021; 193:1324-1331. [PMID: 34742850 DOI: 10.1016/j.ijbiomac.2021.10.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Herein, nanocomposites films were prepared via the facile casting method by incorporating cellulose nanocrystals (CNCs) with arabinogalactan (AG), galactomannan (GM) or konjac glucomannan (KGM) respectively. The introduced polysaccharides maintained the transparency of CNCs films and promoted the UV blocking properties. In addition, mechanical strength of the nanocomposite films was greatly improved after the combination of polysaccharides. The interactions of hydroxyl-abundant macromolecules, smoother and tighter morphological structures, as well as the disturbed crystal structure were proved to be responsible for the improved properties. Hydrophilic lattice planes of cellulose crystallites were determined to interact with polysaccharides resulting in lower crystallite sizes and crystallinity. The cell culture assay revealed that the films had no cytotoxicity and presented a satisfactory cytocompatibility, because of the polysaccharides from plant cell walls introduced into the films. Therefore, the biocompatible nanocomposites films can be tuned by the addition of polysaccharides, which show great potentials for materials modification in optical, packaging and biomedical fields.
Collapse
Affiliation(s)
- Jie Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanying Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Feier Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Pulp Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Characterization of hydrophobic interaction of galactomannan in aqueous solutions using fluorescence-based technique. Carbohydr Polym 2021; 267:118183. [PMID: 34119151 DOI: 10.1016/j.carbpol.2021.118183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probing was used to study hydrophobic interactions of galactomannan (GM) obtained from fenugreek gum (FG), guar gum (GG), and locust bean gum (LBG) at different M/G ratios. The I1/I3 ratio of pyrene changed from 1.73 to 1.29, 1.22, and 1.29 for FG, GG and LBG, respectively, as the concentration of GM increased from 0.01 to 8.0 g/L at 30 °C. The critical aggregation concentration of FG, GG, and LBG increased from 1.04 to 3.84 g/L, 1.15 to 3.73 g/L, and 0.94 to 3.63 g/L, respectively, as temperature increased from 10 to 70 °C. Addition of Na2SO4 and NaSCN increased the I1/I3 ratio in dilute solution, but reduced it in semi-dilute solution, whereas adding urea reduced I1/I3 in dilute solution but increased it in semi-dilute solution. These results indicated that the CAC of GM, polarity and number of hydrophobic microdomains were highly dependent on the M/G ratio and galactose distribution.
Collapse
|
15
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. Effects of the Hofmeister anion series salts on the rheological properties of Sesbania cannabina galactomannan. Int J Biol Macromol 2021; 188:350-358. [PMID: 34389383 DOI: 10.1016/j.ijbiomac.2021.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Sesbania cannabina galactomannan (2%) solutions added with strongly hydrated ions (Na2CO3, NaH2PO4, NaCl) and weakly hydrated ions (NaNO3) at different ionic strengths were rheologically characterized. The four selected salts dramatically decreased the intrinsic viscosity of galactomannan solution in the following order of effectiveness: Na2CO3 < NaH2PO4 < NaCl < NaNO3. This conforms effectively to the Hofmeister anion series. Moreover, salt addition increased the viscosity of galactomannan solution when the ionic strength was 1 mmol/kg, which related to an increased occurrence of intermolecular interactions. As increasing ionic strength, galactomannan chains may tend to contract or expand due to the presence of strongly or weakly hydrated ions, thereby decreasing the viscosity. These phenomena were demonstrated by zeta potential measurement and again observed in dynamic viscoelasticity measurement. Overall, this property can be used to manipulate the rheological properties of galactomannan in food gums to obtain gums of high quality for enhancing consumer goods.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
16
|
Wang T, Tao Y, Lai C, Huang C, Ling Z, Yong Q. A method for quantitative characterization of incomplete degradation products of polygalacturonic acid. Int J Biol Macromol 2021; 188:343-349. [PMID: 34389382 DOI: 10.1016/j.ijbiomac.2021.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 01/13/2023]
Abstract
Biological activity of incomplete degradation products of polygalacturonic acid (IDPP) is closely related to its molecular weight and molecular weight distribution. Therefore, it is necessary to provide a reliable quantitative characterization method for evaluating these types of bioproducts. A novel method was established in this work for the quantitative characterization of IDPP based upon ethanol fractional precipitation. IDPP was fractionated into several fractions with high recovery (>95%), and the average molecular weights of each fraction was in descending order with the increase of ethanol concentration. Oligosaccharides (polymerization degree: 2-20) could be effectively harvested from the polygalacturonic acid enzymatic hydrolysate by ethanol precipitation. Moreover, the developed method had good repeatability and could also be applied to quantify enzymatic hydrolysis products of citrus-derived pectin polysaccharides. In conclusion, this paper provides a simple, accurate method for the quantitative characterization of IDPP and a strategy for the extraction of oligosaccharides.
Collapse
Affiliation(s)
- Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
17
|
Tao Y, Wang T, Huang C, Lai C, Ling Z, Zhou Y, Yong Q. Production performance, egg quality, plasma biochemical constituents and lipid metabolites of aged laying hens supplemented with incomplete degradation products of galactomannan. Poult Sci 2021; 100:101296. [PMID: 34237545 PMCID: PMC8267592 DOI: 10.1016/j.psj.2021.101296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to investigate the efficacy of incomplete degradation products of galactomannan (IDPG) on the production performance, egg quality, plasma parameters, and lipid metabolites of laying hens. A total of 288 laying hens were allocated into 4 treatments and fed diets supplemented with 0%, 0.01%, 0.025%, and 0.05% IDPG. Results showed that IDPG supplementation significantly increases egg production and decreases feed conversion ratio (P < 0.05). Eggs laid by hens receiving IDPG exhibited higher eggshell strength (P < 0.05). Moreover, IDPG supplementation significantly increased the serum albumin content, and decreased the blood ammonia content as well as triglyceride levels in serum and liver (P < 0.05). Overall, IDPG can be considered as an effective feed additive due to its capacity of improving egg production, increasing plasma protein, and changing lipid metabolism of laying hens.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
18
|
Tao Y, Wang T, Lai C, Ling Z, Zhou Y, Yong Q. The in vitro and in vivo Antioxidant and Immunomodulatory Activity of Incomplete Degradation Products of Hemicellulosic Polysaccharide (Galactomannan) From Sesbania cannabina. Front Bioeng Biotechnol 2021; 9:679558. [PMID: 33898412 PMCID: PMC8063053 DOI: 10.3389/fbioe.2021.679558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023] Open
Abstract
As known, the nutritional status affects antioxidant capacity and immunity, ultimately affecting the body’s health. Recently, hemicellulosic polysaccharides of galactomannan in different biomass and their degradation products are gaining more attention due to excellent antioxidant enhancement and immunomodulatory activity. Herein, incomplete degradation products of galactomannan (IDPG) were prepared from the enzymatic hydrolysis of Sesbania cannabina seeds, followed by the in vitro and in vivo experiments. Using an H2O2-injured RAW264.7 cells model, IDPG was demonstrated to have antioxidant capacity, as indicated by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. While in the evaluation in laying hens (68-weeks-old), diets were supplemented with 0, 0.01, 0.025, and 0.05% IDPG for 8 weeks, respectively. Our results showed that IDPG can improve antioxidant capacity by increasing antioxidants contents and reducing MDA content. Furthermore, IDPG can increase immunoglobulins and cytokines secretion, thereby enhancing the immunity of laying hens. This result was further demonstrated by in vitro experiment, in which IDPG significantly increased the secretion of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and toll-like receptor 4 (TLR4) in RAW264.7 cells (P < 0.05). Overall, IDPG can improve antioxidant function and modulate immunological response, thereby the concept of using IDPG for health may gain a little more credibility.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| |
Collapse
|