1
|
Bulkina A, Prilepskii A. Bacterial cellulose: Is it really a promising biomedical material? Carbohydr Polym 2025; 357:123427. [PMID: 40158967 DOI: 10.1016/j.carbpol.2025.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/25/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Bacterial cellulose (BC) is currently considered a promising biomaterial due to its specific structure and properties. However, despite extensive research, questions about its fundamental properties, especially biocompatibility, remain. Thus, the purpose of this review is to analyze the results of in vivo trials from different areas of biomedicine, including wound healing, tissue engineering, drug delivery, and biomedical implants. The primary question guiding our review was "Why is bacterial cellulose still not used in clinical practice?" Analysis of the literature has shown that the results of in vivo studies often contradict each other. For example, BC caused and did not cause an immune response in an equal number of reviewed articles. Its efficacy in pure form generally does not differ significantly from that of materials already on the market. Conversely, BC may prove to be a valuable material in the long term, not because of its efficacy, but rather because of its affordability and ease of use. Additionally, challenges associated with immune reactions, long-term biocompatibility, and the necessity for standardized experimental protocols must be addressed. We expect that this review will encourage a more thoughtful investigation of BC to bring it into practical medicine.
Collapse
Affiliation(s)
- Anastasia Bulkina
- ITMO University, Laboratory for Bioactive Materials in Tissue Engineering 9, Lomonosova str., Saint Petersburg 191002, Russian Federation
| | - Artur Prilepskii
- ITMO University, Laboratory for Bioactive Materials in Tissue Engineering 9, Lomonosova str., Saint Petersburg 191002, Russian Federation.
| |
Collapse
|
2
|
Tayebi-Khorrami V, Shahgordi S, Dabbaghi MM, Fadaei MS, Masoumi Shahrbabak S, Fallahianshafiei S, Fadaei MR, Hasnain MS, Nayak AK, Askari VR. From nature to nanotech: Harnessing the power of electrospun polysaccharide-based nanofibers as sustainable packaging. Int J Biol Macromol 2025; 299:140127. [PMID: 39842579 DOI: 10.1016/j.ijbiomac.2025.140127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Today, the applications of natural polysaccharide-based nanofibers are growing in drug delivery and food industries. They also showed their capability as packaging due to biodegradability, mechanical strength, barrier properties, thermal stability, antioxidant, and antimicrobial features. Natural polysaccharides come from different sources, such as plants, microbes, and animals. Natural polysaccharide-based nanofibers can be considered sustainable packaging in contrast to plastic packaging due to their safety and biodegradability. Smart packaging is a new trend in packaging materials, and natural polysaccharides can be applied as smart packaging. They can work as an indicator that confirms food health in food packaging. Electrospinning is one of the most used methods for the fabrication of nanofibers, and it can also be used for the fabrication of natural polysaccharide nanofibers. This method can be scaled up and used to fabricate nanofibers on a large scale. This paper will review recent studies on natural polysaccharide-based nanofiber as packaging materials and their benefits. We also discuss the challenges and limitations of their scale-up and electrospinning process. Furthermore, we will discuss the future perspective of natural polysaccharide-based nanofiber as a new sustainable packaging.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Shahgordi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Masoumi Shahrbabak
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Md Saquib Hasnain
- Department of Pharmacy, Palamau Institute of Pharmacy, Chianki, Daltonganj, Jharkhand, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Ramesh M, Tamil Selvan M, Sreenivas P, Sahayaraj AF. Advanced machine learning-driven characterization of new natural cellulosic Lablab purpureus fibers through PCA and K-means clustering techniques. Int J Biol Macromol 2025; 306:141589. [PMID: 40037447 DOI: 10.1016/j.ijbiomac.2025.141589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
The increasing demand for sustainable and eco-friendly materials has spurred significant interest in natural fibers as alternatives to synthetic reinforcements in composite applications. This study aims to explore the potential of Lablab purpureus fibers (LPFs) as sustainable materials by employing advanced characterization techniques and machine learning-driven analysis. Chemical analysis identified LPFs' primary composition as cellulose (72.34 %), hemicellulose (11.46 %), and lignin (8.99 %), with minor components including wax (3.45 %) and ash (2.59 %). The average fiber diameter was measured at 237.95 μm, with a density of 1.24 g/cm3, making LPFs lightweight yet robust. Mechanical testing across varying relative humidity (RH) levels revealed a decrease in tensile properties, with fracture stress declining from 420 MPa at 24 % RH to 350 MPa at 81 % RH. X-ray diffraction (XRD) analysis demonstrated a crystallinity index (CI) of 74.62 % and a crystalline size of 8.73 nm, indicating high structural integrity. Fourier Transform Infrared (FTIR) spectroscopy, combined with Principal Component Analysis (PCA), provided insights into the chemical bonds within the fibers, confirming the presence of cellulose I and cellulose II polymorphs. Thermogravimetric Analysis (TGA) highlighted thermal degradation stages, with hemicellulose decomposition at 220-315 °C, cellulose decomposition at 315-400 °C, and lignin degradation above 400 °C, showcasing thermal stability up to 320 °C. Hydrothermal absorption behavior, analyzed through K-means clustering, revealed distinct absorption patterns, with a maximum moisture uptake of 12.3 % at 81 % RH. Biodegradability tests indicated increased decomposition with higher RH, peaking at 81 % RH with a weight loss of 68.57 % over 16 days. Scanning Electron Microscopy (SEM) revealed intricate fiber morphology, including layered transitions, internal voids, and a honeycomb-like surface structure. Compared to other natural fibers such as Cissus quadrangularis (CI: 82.73 %) and lavender (CI: 65 %), LPFs exhibit a balanced combination of mechanical strength, thermal stability, and biodegradability, making them promising candidates for biocomposites and eco-friendly materials. These findings, supported by machine learning-driven insights, position LPFs as a sustainable alternative to synthetic fibers in industrial applications.
Collapse
Affiliation(s)
- M Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu 641402, India
| | - M Tamil Selvan
- Department of Mechanical Engineering, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, Tamil Nadu 641105, India.
| | - P Sreenivas
- Department of Mechanical Engineering, K.S.R.M. College of Engineering, Kadapa, Andhra Pradesh 516003, India
| | - A Felix Sahayaraj
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu 641402, India
| |
Collapse
|
4
|
Zhang N, Julian JD, Zabotina OA. Multiprotein Complexes of Plant Glycosyltransferases Involved in Their Function and Trafficking. PLANTS (BASEL, SWITZERLAND) 2025; 14:350. [PMID: 39942912 PMCID: PMC11820401 DOI: 10.3390/plants14030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Plant cells utilize protein oligomerization for their functions in numerous important cellular processes. Protein-protein interactions are necessary to stabilize, optimize, and activate enzymes, as well as localize proteins to specific organelles and membranes. Glycosyltransferases-enzymes that attach sugars to polysaccharides, proteins, lipids, and RNA-across multiple plant biosynthetic processes have been demonstrated to interact with one another. The mechanisms behind these interactions are still unknown, but recent research has highlighted extensive examples of protein-protein interactions, specifically in the plant cell wall hemicellulose and pectin biosynthesis that takes place in the Golgi apparatus. In this review, we will discuss what is known so far about the interactions among Golgi-localized glycosyltransferases that are important for their functioning, trafficking, as well as structural aspects.
Collapse
Affiliation(s)
| | | | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.Z.); (J.D.J.)
| |
Collapse
|
5
|
Yoshida K, Sakamoto S, Mitsuda N. Synthetic-biology approach for plant lignocellulose engineering. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:213-230. [PMID: 40115770 PMCID: PMC11921142 DOI: 10.5511/plantbiotechnology.24.0630a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/30/2024] [Indexed: 03/23/2025]
Abstract
Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei Corporation, Yokohama, Kanagawa 245-0051, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutaka Mitsuda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
6
|
Allen H, Davis B, Patel J, Gu Y. Dot Scanner: open-source software for quantitative live-cell imaging in planta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1689-1698. [PMID: 38310596 DOI: 10.1111/tpj.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Confocal microscopy has greatly aided our understanding of the major cellular processes and trafficking pathways responsible for plant growth and development. However, a drawback of these studies is that they often rely on the manual analysis of a vast number of images, which is time-consuming, error-prone, and subject to bias. To overcome these limitations, we developed Dot Scanner, a Python program for analyzing the densities, lifetimes, and displacements of fluorescently tagged particles in an unbiased, automated, and efficient manner. Dot Scanner was validated by performing side-by-side analysis in Fiji-ImageJ of particles involved in cellulose biosynthesis. We found that the particle densities and lifetimes were comparable in both Dot Scanner and Fiji-ImageJ, verifying the accuracy of Dot Scanner. Dot Scanner largely outperforms Fiji-ImageJ, since it suffers far less selection bias when calculating particle lifetimes and is much more efficient at distinguishing between weak signals and background signal caused by bleaching. Not only does Dot Scanner obtain much more robust results, but it is a highly efficient program, since it automates much of the analyses, shortening workflow durations from weeks to minutes. This free and accessible program will be a highly advantageous tool for analyzing live-cell imaging in plants.
Collapse
Affiliation(s)
- Holly Allen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Brian Davis
- Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jenna Patel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
7
|
Allen H, Zhu X, Li S, Gu Y. The TRAPPIII subunit, Trs85, has a dual role in the trafficking of cellulose synthase complexes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1475-1485. [PMID: 38402593 DOI: 10.1111/tpj.16688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Plant cell walls are essential for defining plant growth and development, providing structural support to the main body and responding to abiotic and biotic cues. Cellulose, the main structural polymer of plant cell walls, is synthesized at the plasma membrane by cellulose synthase complexes (CSCs). The construction and transport of CSCs to and from the plasma membrane is poorly understood but is known to rely on the coordinated activity of cellulose synthase-interactive protein 1 (CSI1), a key regulator of CSC trafficking. In this study, we found that Trs85, a TRAPPIII complex subunit, interacted with CSI1 in vitro. Using functional genetics and live-cell imaging, we have shown that trs85-1 mutants have reduced cellulose content, stimulated CSC delivery, an increased population of static CSCs and deficient clathrin-mediated endocytosis in the primary cell wall. Overall, our findings suggest that Trs85 has a dual role in the trafficking of CSCs, by negatively regulating the exocytosis and clathrin-mediated endocytosis of CSCs.
Collapse
Affiliation(s)
- Holly Allen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
8
|
Zhang X, Xue W, Qi L, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Malic acid inhibits accumulation of cadmium, lead, nickel and chromium by down-regulation of OsCESA and up-regulation of OsGLR3 in rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122934. [PMID: 37967709 DOI: 10.1016/j.envpol.2023.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China; Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Lin Qi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China.
| |
Collapse
|
9
|
Saurav S, Sharma P, Kumar A, Tabassum Z, Girdhar M, Mamidi N, Mohan A. Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment. Curr Issues Mol Biol 2024; 46:585-611. [PMID: 38248340 PMCID: PMC10814241 DOI: 10.3390/cimb46010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.
Collapse
Affiliation(s)
- Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, Delhi, India;
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara 144401, Punjab, India;
| | - Narsimha Mamidi
- Wisconsin Centre for Nano Biosystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| |
Collapse
|
10
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Zhang S, Sun J, Feng D, Sun H, Cui J, Zeng X, Wu Y, Luan G, Lu X. Unlocking the potentials of cyanobacterial photosynthesis for directly converting carbon dioxide into glucose. Nat Commun 2023; 14:3425. [PMID: 37296173 PMCID: PMC10256809 DOI: 10.1038/s41467-023-39222-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Glucose is the most abundant monosaccharide, serving as an essential energy source for cells in all domains of life and as an important feedstock for the biorefinery industry. The plant-biomass-sugar route dominates the current glucose supply, while the direct conversion of carbon dioxide into glucose through photosynthesis is not well studied. Here, we show that the potential of Synechococcus elongatus PCC 7942 for photosynthetic glucose production can be unlocked by preventing native glucokinase activity. Knocking out two glucokinase genes causes intracellular accumulation of glucose and promotes the formation of a spontaneous mutation in the genome, which eventually leads to glucose secretion. Without heterologous catalysis or transportation genes, glucokinase deficiency and spontaneous genomic mutation lead to a glucose secretion of 1.5 g/L, which is further increased to 5 g/L through metabolic and cultivation engineering. These findings underline the cyanobacterial metabolism plasticities and demonstrate their applications for supporting the direct photosynthetic production of glucose.
Collapse
Affiliation(s)
- Shanshan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiahui Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dandan Feng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinyu Cui
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Xuexia Zeng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Yannan Wu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
12
|
Jayachandran D, Banerjee S, Chundawat SPS. Plant cellulose synthase membrane protein isolation directly from Pichia pastoris protoplasts, liposome reconstitution, and its enzymatic characterization. Protein Expr Purif 2023:106309. [PMID: 37211149 DOI: 10.1016/j.pep.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Cellulose is synthesized by a plant cell membrane-integrated processive glycosyltransferase (GT) called cellulose synthase (CesA). Since only a few of these plant CesAs have been purified and characterized to date, there are huge gaps in our mechanistic understanding of these enzymes. The biochemistry and structural biology studies of CesAs are currently hampered by challenges associated with their expression and extraction at high yields. To aid in understanding CesA reaction mechanisms and to provide a more efficient CesA extraction method, two putative plant CesAs - PpCesA5 from Physcomitrella patens and PttCesA8 from Populus tremula x tremuloides that are involved in primary and secondary cell wall formation in plants were expressed using Pichia pastoris as an expression host. We developed a protoplast-based membrane protein extraction approach to directly isolate these membrane-bound enzymes, as confirmed by immunoblotting and mass spectrometry-based analyses. Our method gives 3-4-fold higher purified protein yield than the standard cell homogenization protocol. Our method resulted in liposome reconstituted CesA5 and CesA8 enzymes with similar Michaelis-Menten kinetic constants, Km = 167 μM, 108 μM and Vmax = 7.88 × 10-5 μmol/min, 4.31 × 10-5 μmol/min, respectively, in concurrence with the previous studies for enzymes isolated using the standard protocol. Taken together, these results suggest that CesAs involved in primary and secondary cell wall formation can be expressed and purified using a simple and more efficient extraction method. This protocol could help isolate enzymes that unravel the mechanism of native and engineered cellulose synthase complexes involved in plant cell wall biosynthesis.
Collapse
Affiliation(s)
- Dharanidaran Jayachandran
- Department of Chemical and Biochemical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shoili Banerjee
- Department of Chemical and Biochemical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Vijayasree VP, Manan NSA. Magnetite carboxymethylcellulose as biological macromolecule-based absorbent for cationic dyes removal from environmental samples. Int J Biol Macromol 2023; 242:124723. [PMID: 37148927 DOI: 10.1016/j.ijbiomac.2023.124723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
In this study, magnetite carboxymethylcellulose (CMC@Fe3O4) composite as magnetic biological molecules were synthetized for the use as adsorbent to remove four types of cationic dyes, namely Methylene Blue, Rhodamine B, Malachite Green, and Methyl Violet from aqueous solution. The characteristic of the adsorbent was achieved by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction, Vibrating Sample Magnetometer and Thermal Gravimetric Analysis techniques. Besides, essential influencing parameters of dye adsorption; the solution pH, solution temperature, contact time, adsorbent concentration and initial dye dosage were studied. FESEM analysis showed the magnetic Fe3O4-TB, Fe3O4@SiO2, Fe3O4@SiO2-NH2 and CMC@Fe3O4 composites were in spherical shape, with average size of 43.0 nm, 92.5 nm, 134.0 nm and 207.5 nm, respectively. On the saturation magnetization (Ms), the results obtained were 55.931 emu/g, 34.557 emu/g, 33.236 emu/g and 11.884 emu/g. From the sorption modelling of Isotherms, Kinetics, and Thermodynamics, the adsorption capacity of dyes is (MB = 103.33 mg/g), (RB = 109.60 mg/g), (MG = 100.08 mg/g) and (MV = 107.78 mg/g). With all the adsorption processes exhibited as exothermic reactions. The regeneration and reusability of the synthetized biological molecules-based adsorbent was also assessed.
Collapse
Affiliation(s)
- V P Vijayasree
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - N S A Manan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Universiti Malaya Center for Ionic Liquids, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Dabravolski SA, Isayenkov SV. The regulation of plant cell wall organisation under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1118313. [PMID: 36968390 PMCID: PMC10036381 DOI: 10.3389/fpls.2023.1118313] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Plant cell wall biosynthesis is a complex and tightly regulated process. The composition and the structure of the cell wall should have a certain level of plasticity to ensure dynamic changes upon encountering environmental stresses or to fulfil the demand of the rapidly growing cells. The status of the cell wall is constantly monitored to facilitate optimal growth through the activation of appropriate stress response mechanisms. Salt stress can severely damage plant cell walls and disrupt the normal growth and development of plants, greatly reducing productivity and yield. Plants respond to salt stress and cope with the resulting damage by altering the synthesis and deposition of the main cell wall components to prevent water loss and decrease the transport of surplus ions into the plant. Such cell wall modifications affect biosynthesis and deposition of the main cell wall components: cellulose, pectins, hemicelluloses, lignin, and suberin. In this review, we highlight the roles of cell wall components in salt stress tolerance and the regulatory mechanisms underlying their maintenance under salt stress conditions.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, National Academy of Science (NAS) of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Li F, Ma Y, Yi Y, Ren M, Li L, Chen Y, Li A, Han S, Tang H, Jia H, Wang X, Li J. Nitric oxide induces S-nitrosylation of CESA1 and CESA9 and increases cellulose content in Arabidopsis hypocotyls. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1-9. [PMID: 36680948 DOI: 10.1016/j.plaphy.2023.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Nitric oxide (NO), a small signaling gas molecule, participates in several growth and developmental processes in plants. However, how NO regulates cell wall biosynthesis remains unclear. Here, we demonstrate a positive effect of NO on cellulose content that may be related to S-nitrosylation of cellulose synthase 1 (CESA1) and CESA9. Two S-nitrosylated cysteine (Cys) residues, Cys562 and Cys641, which are exposed on the surface of CESA1 and CESA9 and located in the cellulose synthase catalytic domain, were identified to be S-nitrosylated. Meanwhile, Cys641 was located on the binding surface of CESA1 and CESA9, and Cys562 was very close to the binding surface. Cellulose synthase complexes (CSCs) dynamics are closely associated with cellulose content. S-nitrosylation of CESA1 and CESA9 improved particles mobility and thus increased the accumulation of cellulose in Arabidopsis hypocotyl cells. An increase in hemicellulose content as well as an alteration in pectin content facilitated cell wall extension and contributed to cell growth, finally promoting elongation of Arabidopsis hypocotyls. Overall, our work provides a path to investigate the way NO affects the cellulose content of plants.
Collapse
Affiliation(s)
- Fali Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuying Yi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meijuan Ren
- Life Science Research Core Services, Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luqi Li
- Life Science Research Core Services, Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Chen
- WuXi AppTec, Shanghai, 200131, China
| | - Ao Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sirui Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| | | | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
17
|
Sudhaik A, Raizada P, Ahamad T, Alshehri SM, Nguyen VH, Van Le Q, Thakur S, Thakur VK, Selvasembian R, Singh P. Recent advances in cellulose supported photocatalysis for pollutant mitigation: A review. Int J Biol Macromol 2023; 226:1284-1308. [PMID: 36574582 DOI: 10.1016/j.ijbiomac.2022.11.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.
Collapse
Affiliation(s)
- Anita Sudhaik
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sourbh Thakur
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh EH9 3JG, Scotland, UK
| | | | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
18
|
De Giorgio E, Giannios P, Espinàs ML, Llimargas M. A dynamic interplay between chitin synthase and the proteins Expansion/Rebuf reveals that chitin polymerisation and translocation are uncoupled in Drosophila. PLoS Biol 2023; 21:e3001978. [PMID: 36689563 PMCID: PMC9894549 DOI: 10.1371/journal.pbio.3001978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/02/2023] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
Chitin is a highly abundant polymer in nature and a principal component of apical extracellular matrices in insects. In addition, chitin has proved to be an excellent biomaterial with multiple applications. In spite of its importance, the molecular mechanisms of chitin biosynthesis and chitin structural diversity are not fully elucidated yet. To investigate these issues, we use Drosophila as a model. We previously showed that chitin deposition in ectodermal tissues requires the concomitant activities of the chitin synthase enzyme Kkv and the functionally interchangeable proteins Exp and Reb. Exp/Reb are conserved proteins, but their mechanism of activity during chitin deposition has not been elucidated yet. Here, we carry out a cellular and molecular analysis of chitin deposition, and we show that chitin polymerisation and chitin translocation to the extracellular space are uncoupled. We find that Kkv activity in chitin translocation, but not in polymerisation, requires the activity of Exp/Reb, and in particular of its conserved Nα-MH2 domain. The activity of Kkv in chitin polymerisation and translocation correlate with Kkv subcellular localisation, and in absence of Kkv-mediated extracellular chitin deposition, chitin accumulates intracellularly as membrane-less punctae. Unexpectedly, we find that although Kkv and Exp/Reb display largely complementary patterns at the apical domain, Exp/Reb activity nonetheless regulates the topological distribution of Kkv at the apical membrane. We propose a model in which Exp/Reb regulate the organisation of Kkv complexes at the apical membrane, which, in turn, regulates the function of Kkv in extracellular chitin translocation.
Collapse
Affiliation(s)
- Ettore De Giorgio
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Panagiotis Giannios
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - M. Lluisa Espinàs
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Marta Llimargas
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
19
|
Falourd X, Lahaye M, Rondeau-Mouro C. Assessment of cellulose interactions with water by ssNMR: 1H->13C transfer kinetics revisited. Carbohydr Polym 2022; 298:120104. [DOI: 10.1016/j.carbpol.2022.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
|
20
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
21
|
Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydr Polym 2022; 283:119171. [DOI: 10.1016/j.carbpol.2022.119171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022]
|
22
|
Bai S, Yang L, Wang H, Yang C, Hou X, Gao J, Zhang Z. Cellobiose phosphorylase from Caldicellulosiruptor bescii catalyzes reversible phosphorolysis via different kinetic mechanisms. Sci Rep 2022; 12:3978. [PMID: 35273293 PMCID: PMC8913831 DOI: 10.1038/s41598-022-08036-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
In the process of yielding biofuels from cellulose degradation, traditional enzymatic hydrolysis, such as β-glucosidase catalyzing cellobiose, can barely resolve the contradiction between cellulose degradation and bioenergy conservation. However, it has been shown that cellobiose phosphorylase provides energetic advantages for cellobiose degradation through a phosphorolytic pathway, which has attracted wide attention. Here, the cellobiose phosphorylase gene from Caldicellulosiruptor bescii (CbCBP) was cloned, expressed, and purified. Analysis of the enzymatic properties and kinetic mechanisms indicated that CbCBP catalyzed reversible phosphorolysis and had good thermal stability and broad substrate selectivity. In addition, the phosphorolytic reaction of cellobiose by CbCBP proceeded via an ordered Bi Bi mechanism, while the synthetic reaction proceeded via a ping pong Bi Bi mechanism. The present study lays the foundation for optimizing the degradation of cellulose and the synthesis of functional oligosaccharides.
Collapse
Affiliation(s)
- Shaowei Bai
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Liangzhen Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Honglei Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Chao Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xuechen Hou
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Jingjie Gao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
23
|
Guo Y, Chen F, Luo J, Qiao M, Zeng W, Li J, Xu W. The DUF288 domain containing proteins GhSTLs participate in cotton fiber cellulose synthesis and impact on fiber elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111168. [PMID: 35151452 DOI: 10.1016/j.plantsci.2021.111168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Cotton is one of the most important economic crops in the world, with over 90 % cellulose in the mature fiber. However, the cellulose synthesis mechanism in cotton fibers is poorly understood. Here, we identified four DUF288 domain containing proteins, which we designated GhSTL1-4. These four GhSTL genes are highly expressed in 6 days post anthesis (dpa) and 20 dpa cotton fibers. They are localized to the Golgi apparatus, and can rescue the growth defects in primary cell wall (PCW) and secondary cell wall (SCW) of cellulose synthesis of the Arabidopsis stl1stl2 double mutant at varying degrees. Silencing of GhSTLs resulted in reduced cellulose content and shorter fibers. In addition, split-ubiquitin membrane yeast two-hybrid analysis showed that GhSTL1 and GhSTL4 can interact with PCW-related GhCesA6-1/6-3 and SCW-associated GhCesA7-1/7-2. GhSTL3 can interact with SCW-related GhCesA4-3. These interactions are further confirmed by firefly luciferase complementation imaging assay. Together, we demonstrate that GhSTLs can selectively interact with both the PCW and SCW-associated GhCesAs and impact on cellulose synthesis and fiber development. Our findings provide insights into the mechanism underlying cellulose biosynthesis in cotton fibers, and offer potential candidate genes to coordinate PCW and SCW cellulose synthesis of cotton fibers for developing elite cotton varieties with enhanced fiber quality.
Collapse
Affiliation(s)
- Yanjun Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Feng Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jingwen Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mengfei Qiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
24
|
Xue J, Purushotham P, Acheson JF, Ho R, Zimmer J, McFarlane C, Van Petegem F, Martone PT, Samuels AL. Functional characterization of a cellulose synthase, CtCESA1, from the marine red alga Calliarthron tuberculosum (Corallinales). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:680-695. [PMID: 34505622 PMCID: PMC8793875 DOI: 10.1093/jxb/erab414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In land plants and algae, cellulose is important for strengthening cell walls and preventing breakage due to physical forces. Though our understanding of cellulose production by cellulose synthases (CESAs) has seen significant advances for several land plant and bacterial species, functional characterization of this fundamental protein is absent in red algae. Here we identify CESA gene candidates in the calcifying red alga Calliarthron tuberculosum using sequence similarity-based approaches, and elucidate their phylogenetic relationship with other CESAs from diverse taxa. One gene candidate, CtCESA1, was closely related to other putative red algal CESA genes. To test if CtCESA1 encoded a true cellulose synthase, CtCESA1 protein was expressed and purified from insect and yeast expression systems. CtCESA1 showed glucan synthase activity in glucose tracer assays. CtCESA1 activity was relatively low when compared with plant and bacterial CESA activity. In an in vitro assay, a predicted N-terminal starch-binding domain from CtCESA1 bound red algal floridean starch extracts, representing a unique domain in red algal CESAs not present in CESAs from other lineages. When the CtCESA1 gene was introduced into Arabidopsis thaliana cesa mutants, the red algal CtCESA1 partially rescued the growth defects of the primary cell wall cesa6 mutant, but not cesa3 or secondary cell wall cesa7 mutants. A fluorescently tagged CtCESA1 localized to the plasma membrane in the Arabidopsis cesa6 mutant background. This study presents functional evidence validating the sequence annotation of red algal CESAs. The relatively low activity of CtCESA1, partial complementation in Arabidopsis, and presence of unique protein domains suggest that there are probably functional differences between the algal and land plant CESAs.
Collapse
Affiliation(s)
- Jan Xue
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Pallinti Purushotham
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Justin F Acheson
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruoya Ho
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ciaran McFarlane
- Department of Biochemistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Patrick T Martone
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
25
|
Duncombe SG, Chethan SG, Anderson CT. Super-resolution imaging illuminates new dynamic behaviors of cellulose synthase. THE PLANT CELL 2022; 34:273-286. [PMID: 34524465 PMCID: PMC8846172 DOI: 10.1093/plcell/koab227] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/03/2021] [Indexed: 05/27/2023]
Abstract
Confocal imaging has shown that CELLULOSE SYNTHASE (CESA) particles move through the plasma membrane as they synthesize cellulose. However, the resolution limit of confocal microscopy circumscribes what can be discovered about these tiny biosynthetic machines. Here, we applied Structured Illumination Microscopy (SIM), which improves resolution two-fold over confocal or widefield imaging, to explore the dynamic behaviors of CESA particles in living plant cells. SIM imaging reveals that Arabidopsis thaliana CESA particles are more than twice as dense in the plasma membrane as previously estimated, helping explain the dense arrangement of cellulose observed in new wall layers. CESA particles tracked by SIM display minimal variation in velocity, suggesting coordinated control of CESA catalytic activity within single complexes and that CESA complexes might move steadily in tandem to generate larger cellulose fibrils or bundles. SIM data also reveal that CESA particles vary in their overlaps with microtubule tracks and can complete U-turns without changing speed. CESA track patterns can vary widely between neighboring cells of similar shape, implying that cellulose patterning is not the sole determinant of cellular growth anisotropy. Together, these findings highlight SIM as a powerful tool to advance CESA imaging beyond the resolution limit of conventional light microscopy.
Collapse
Affiliation(s)
- Sydney G Duncombe
- Department of Biology, The Pennsylvania State University, Pennsylvania 16802, USA
| | - Samir G Chethan
- Department of Biology, The Pennsylvania State University, Pennsylvania 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, Pennsylvania 16802, USA
| |
Collapse
|
26
|
Figueroa CM, Lunn JE, Iglesias AA. Nucleotide-sugar metabolism in plants: the legacy of Luis F. Leloir. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4053-4067. [PMID: 33948638 DOI: 10.1093/jxb/erab109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
This review commemorates the 50th anniversary of the Nobel Prize in Chemistry awarded to Luis F. Leloir 'for his discovery of sugar-nucleotides and their role in the biosynthesis of carbohydrates'. He and his co-workers discovered that activated forms of simple sugars, such as UDP-glucose and UDP-galactose, are essential intermediates in the interconversion of sugars. They elucidated the biosynthetic pathways for sucrose and starch, which are the major end-products of photosynthesis, and for trehalose. Trehalose 6-phosphate, the intermediate of trehalose biosynthesis that they discovered, is now a molecule of great interest due to its function as a sugar signalling metabolite that regulates many aspects of plant metabolism and development. The work of the Leloir group also opened the doors to an understanding of the biosynthesis of cellulose and other structural cell wall polysaccharides (hemicelluloses and pectins), and ascorbic acid (vitamin C). Nucleotide-sugars also serve as sugar donors for a myriad of glycosyltransferases that conjugate sugars to other molecules, including lipids, phytohormones, secondary metabolites, and proteins, thereby modifying their biological activity. In this review, we highlight the diversity of nucleotide-sugars and their functions in plants, in recognition of Leloir's rich and enduring legacy to plant science.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| |
Collapse
|
27
|
Barja F. Bacterial nanocellulose production and biomedical applications. J Biomed Res 2021; 35:310-317. [PMID: 34253695 PMCID: PMC8383174 DOI: 10.7555/jbr.35.20210036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023] Open
Abstract
Bacterial nanocellulose (BNC) is a homopolymer of β-1,4 linked glycose, which is synthesized by Acetobacter using simple culturing methods to allow inexpensive and environmentally friendly small- and large-scale production. Depending on the growth media and types of fermentation methods, ultra-pure cellulose can be obtained with different physio-chemical characteristics. Upon biosynthesis, bacterial cellulose is assembled in the medium into a nanostructured network of glucan polymers that are semitransparent, mechanically highly resistant, but soft and elastic, and with a high capacity to store water and exchange gasses. BNC, generally recognized as safe as well as one of the most biocompatible materials, has been found numerous medical applications in wound dressing, drug delivery systems, and implants of heart valves, blood vessels, tympanic membranes, bones, teeth, cartilages, cornea, and urinary tracts.
Collapse
Affiliation(s)
- François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 1211 Genève-4, Switzerland
| |
Collapse
|
28
|
The molecular basis of plant cellulose synthase complex organisation and assembly. Biochem Soc Trans 2021; 49:379-391. [PMID: 33616627 DOI: 10.1042/bst20200697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/02/2023]
Abstract
The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.
Collapse
|
29
|
Zhu X, Tellier F, Gu Y, Li S. Disruption of Very-Long-Chain-Fatty Acid Synthesis Has an Impact on the Dynamics of Cellulose Synthase in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1599. [PMID: 33218005 PMCID: PMC7698757 DOI: 10.3390/plants9111599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 01/16/2023]
Abstract
In higher plants, cellulose is synthesized by membrane-spanning large protein complexes named cellulose synthase complexes (CSCs). In this study, the Arabidopsis PASTICCINO2 (PAS2) was identified as an interacting partner of cellulose synthases. PAS2 was previously characterized as the plant 3-hydroxy-acyl-CoA dehydratase, an ER membrane-localized dehydratase that is essential for very-long-chain-fatty acid (VLCFA) elongation. The pas2-1 mutants show defective cell elongation and reduction in cellulose content in both etiolated hypocotyls and light-grown roots. Although disruption of VLCFA synthesis by a genetic alteration had a reduction in VLCFA in both etiolated hypocotyls and light-grown roots, it had a differential effect on cellulose content in the two systems, suggesting the threshold level of VLCFA for efficient cellulose synthesis may be different in the two biological systems. pas2-1 had a reduction in both CSC delivery rate and CSC velocity at the PM in etiolated hypocotyls. Interestingly, Golgi but not post-Golgi endomembrane structures exhibited a severe defect in motility. Experiments using pharmacological perturbation of VLCFA content in etiolated hypocotyls strongly indicate a novel function of PAS2 in the regulation of CSC and Golgi motility. Through a combination of genetic, biochemical and cell biology studies, our study demonstrated that PAS2 as a multifunction protein has an important role in the regulation of cellulose biosynthesis in Arabidopsis hypocotyl.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE-AgroParisTech, 78000 Versailles, France;
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|