1
|
Wei K, Yin X, Chen F, Wang X, Ding W, Ding B. Synthesis, characterization, and bioactivity of selenium nanoparticles stabilized by regenerated chitin nanofibers. Int J Biol Macromol 2025; 309:142791. [PMID: 40187449 DOI: 10.1016/j.ijbiomac.2025.142791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Selenium nanoparticles (SeNPs) have garnered significant attention for their advantageous biological properties and low toxicity. However, their practical application has been constrained by limited stability. In this study, regenerated chitin nanofibers (Re-ChNFs) were utilized to improve the stability and dispersion of SeNPs through a redox reaction involving ascorbic acid and sodium selenite. The findings revealed that the SeNPs were effectively adsorbed onto the surface of the Re-ChNFs, resulting in a uniform size and distribution that facilitated the formation of amorphous, zero-valent Re-ChNFs-stabilized SeNPs (Re-ChNFs/SeNPs). The selenium concentration within the Re-ChNFs/SeNPs was determined to be 121.60 mg/L. And the synthesized Re-ChNFs/SeNPs displayed a notably heightened capacity for scavenging DPPH, ABTS, hydroxyl radicals, and superoxide anion radicals in comparison to Re-ChNFs and SeNPs alone. Moreover, in vitro assays demonstrated that Re-ChNFs/SeNPs effectively suppressed the proliferation of HepG2 and HCT116 cancer cells in a concentration-dependent manner. This suggests that Re-ChNFs/SeNPs hold potential as an antioxidant or anticancer therapeutic agents, with promising applications in the fields of nutrition and healthcare.
Collapse
Affiliation(s)
- Kongju Wei
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoxue Yin
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fangjiao Chen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Beibei Ding
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
2
|
Tang Z, Li J, Fu L, Xia T, Dong X, Deng H, Zhang C, Xia H. Janus silk fibroin/polycaprolactone-based scaffold with directionally aligned fibers and porous structure for bone regeneration. Int J Biol Macromol 2024; 262:129927. [PMID: 38311130 DOI: 10.1016/j.ijbiomac.2024.129927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
To promote bone repair, it is desirable to develop three-dimensional multifunctional fiber scaffolds. The densely stacked and tightly arranged conventional two-dimensional electrospun fibers hinder cell penetration into the scaffold. Most of the existing three-dimensional structural materials are isotropic and monofunctional. In this research, a Janus nanofibrous scaffold based on silk fibroin/polycaprolactone (SF/PCL) was fabricated. SF-encapsulated SeNPs demonstrated stability and resistance to aggregation. The outside layer (SF/PCL/Se) of the Janus nanofiber scaffold displayed a structured arrangement of fibers, facilitating cell growth guidance and impeding cell invasion. The inside layer (SF/PCL/HA) featured a porous structure fostering cell adhesion. The Janus fiber scaffold containing SeNPs notably suppressed S. aureus and E. coli activities, correlating with SeNPs concentration. In vitro, findings indicated considerable enhancement in alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts and upregulation of genes linked to osteogenic differentiation with exposure to the SF/PCL/HA/Se Janus nanofibrous scaffold. Moreover, in vivo, experiments demonstrated successful critical bone defect repair in mouse skulls using the SF/PCL/HA/Se Janus nanofiber scaffold. These findings highlight the potential of the SF/PCL-based Janus nanofibrous scaffold, integrating SeNPs and nHA, as a promising biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Ziqiao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaojiao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Chao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Nazemi Z, Sahraro M, Janmohammadi M, Nourbakhsh MS, Savoji H. A review on tragacanth gum: A promising natural polysaccharide in drug delivery and cell therapy. Int J Biol Macromol 2023; 241:124343. [PMID: 37054856 DOI: 10.1016/j.ijbiomac.2023.124343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Tragacanth is an abundant natural gum extracted from wounds created in some plants and is dried for use in various applications from industry to biomedicines. It is a cost-effective and easily accessible polysaccharide with desirable biocompatibility and biodegradability, drawing much attention for use in new biomedical applications such as wound healing and tissue engineering. Moreover, this anionic polysaccharide with a highly branched structure has been used as an emulsifier and thickening agent in pharmaceutical applications. In the following, this gum has been interested as an appealing biomaterial for producing engineering tools in drug delivery. Furthermore, the biological properties of tragacanth gum have made it a favorable biomaterial in cell therapies, especially for bone tissue engineering. This review aims to discuss the recent studies on this natural gum as a potential carrier for different drugs and cells.
Collapse
Affiliation(s)
- Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Maryam Sahraro
- Department of Polyurethane and Advanced Materials, Iran Polymer & Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran; Faculty of Materials and Metallurgical Engineering, Semnan University, P.O. Box 19111-35131, Semnan, Iran.
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
4
|
Chen YL, Mu YS, He ZJ, Pu XM, Wang DQ, Zhou M, Yang LP. New bio-based polyester with excellent spinning performance: poly(tetrahydrofuran dimethanol- co-ethylene terephthalate). RSC Adv 2022; 12:29516-29524. [PMID: 36320739 PMCID: PMC9562050 DOI: 10.1039/d2ra04484f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023] Open
Abstract
With the excessive consumption of fossil energy, technologies that transform bio-based resources into materials have received more and more attention from researchers in recent decades. In this paper, a series of poly(ethylene 2,5-tetrahydrofuran dimethyl terephthalate; PEFTs) with different components were synthesized from 2,5-tetrahydrofuran dimethanol (THFDM), terephthalic acid (TPA), and ethylene glycol (EG). Their chemical structures and compositions were determined by FTIR, 1H NMR, and 13C NMR. With the increase in THFDM content, the crystallization, T m, and tensile strength of PEFTs gradually decrease because the introduced THFDM breaks the order of molecular chains, while the thermal stability and T g remain stable. PEFTs seem to present a significant shear thinning phenomenon, which was indicated by the rheological test. Electrospinning technology was used to explore the spinnability of PEFT; it was found that PEFTs have better spinning performance than PET. In addition, due to the good hydrophobicity and porosity of PEFT nanofiber films, they have potential application value in the manufacture of hydrophobic nanofiber and filter films.
Collapse
Affiliation(s)
- Yu-Long Chen
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yue-Song Mu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ze-Jian He
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xin-Ming Pu
- Wankai New Material Co., Ltd. Haining 314415 China
| | - Dong-Qi Wang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Li-Ping Yang
- Wankai New Material Co., Ltd. Haining 314415 China
| |
Collapse
|
5
|
Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res 2021; 510:108443. [PMID: 34597980 DOI: 10.1016/j.carres.2021.108443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has become an inevitable approach to produce nanofibrous structures for diverse environmental applications. Polysaccharides, due to their variety of types, biobased origins, and eco-friendly, and renewable nature are wonderful materials for the said purpose. The present review discusses the electrospinning process, the parameters involved in the formation of electrospun nanofibers in general, and the polysaccharides in specific. The selection of materials to be electrospun depends on the processing conditions and properties deemed desirable for specific applications. Thereby, the conditions to electrospun polysaccharides-based nanofibers have been focused on for possible environmental applications including air filtration, water treatment, antimicrobial treatment, environmental sensing, and so forth. The polysaccharide-based electrospun membranes, for instance, due to their active adsorption sites could find significant potential for contaminants removal from the aqueous systems. The study also gives some recommendations to overcome any shortcomings faced during the electrospinning and environmental applications of polysaccharide-based matrices.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - S A Munim
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Asif Ayub
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|
6
|
Rehan M, El-Naggar ME, Al-Enizi AM, Alothman AA, Nafady A, Abdelhameed RM. Development of silk fibers decorated with the in situ synthesized silver and gold nanoparticles: antimicrobial activity and creatinine adsorption capacity. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|