1
|
Liu S, An B, Wang Y, Luo X. Amino-functionalized cellulose beads supporting laccase: A dual-function catalyst for simultaneous adsorption and enzymatic conversion of tetracycline. Int J Biol Macromol 2025; 288:138641. [PMID: 39667464 DOI: 10.1016/j.ijbiomac.2024.138641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
In this study, a novel cellulose-derived support of amino-functionalized cellulose beads (ACBs) for laccase immobilization was successfully developed using cellulose beads (CBs) and polyethyleneimine by glutaraldehyde crosslinking reaction. The covalent immobilization of laccase on ACBs was achieved via a Schiff base reaction. The obtained enzyme catalysts (Lac-ACBs) were applied for simultaneous adsorption and enzymatic conversion of tetracycline (TC) from water. The structure and properties of all samples were characterized by SEM-EDS, FT-IR, XRD, BET, and EA. Furthermore, the Lac-ACBs exhibited excellent stability and reusability: after 15 cycles of catalysis, they maintained 72 % of their original activity. The Lac-ACBs were applied for the removal of TC from water with simultaneous adsorption and enzymatic conversion, achieving an 82 % removal efficiency. The enzymatic conversion products were examined to investigate the mechanism of the conversion. The data illustrated that oxidation, dehydrogenation, and demethylation are major reactions in that process.
Collapse
Affiliation(s)
- Sucheng Liu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Bang An
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Yaoyao Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China.
| |
Collapse
|
2
|
Huang Z, Dong H, Qiu Y, Chang A, Zhu H. pH-Responsive Deacetylated Sphingan WL Gum-Based Microgels for the Oral Delivery of Ciprofloxacin Hydrochloride. ACS OMEGA 2024; 9:46397-46407. [PMID: 39583669 PMCID: PMC11579934 DOI: 10.1021/acsomega.4c07589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Sphingan WL gum (WL) is an extracellular polysaccharide with a carboxyl group produced by Sphingomonas sp. WG. Recently, we have successfully obtained deacetylated WL (DWL) with good water solubility by alkaline treatment. In this study, a DWL-based microgel (named DWLM) with semi-interpenetrating network structure was constructed for the first time and used to deliver the oral drug ciprofloxacin hydrochloride (CIP). DLS results suggested that DWLM had a dual response to pH and temperature. The in vitro cumulative drug release curves showed that the amount of CIP released from the microgel was higher at pH 6.8 than that at pH 3.0. Biocompatibility assessments using HEK293T showed that cell viability was 75.9 ± 1.7% at the DWLM-CIP concentration of 4 mg/mL. While, the cell viability of CIP at the same concentration was only 54.9 ± 1.0%, indicating that DWLM-CIP has good biocompatibility. Antimicrobial performance tests revealed that DWLM-CIP at a concentration of 1 mg/mL could effectively inhibit the growth of Escherichia coli for up to 4 days. When the concentration of DWLM-CIP reached 4 mg/mL, the growth of Staphylococcus aureus was effectively suppressed for up to 3 days, demonstrating the long-lasting antimicrobial efficacy of DWLM-CIP. All of these results indicate that DWL-based microgels have great potential as oral drug delivery carriers.
Collapse
Affiliation(s)
- Zhenyin Huang
- Fujian-Taiwan Science and
Technology Cooperation Base of Biomedical Materials and Tissue Engineering,
Engineering Research Center of Industrial Biocatalysis, Fujian Provincial
Key Laboratory of Advanced Materials Oriented Chemical Engineering,
Fujian Provincial Key Laboratory of Polymer Materials, College of
Chemistry and Materials Science, Fujian
Normal University, Fuzhou 350117, People’s
Republic of China
| | - Hanyu Dong
- Fujian-Taiwan Science and
Technology Cooperation Base of Biomedical Materials and Tissue Engineering,
Engineering Research Center of Industrial Biocatalysis, Fujian Provincial
Key Laboratory of Advanced Materials Oriented Chemical Engineering,
Fujian Provincial Key Laboratory of Polymer Materials, College of
Chemistry and Materials Science, Fujian
Normal University, Fuzhou 350117, People’s
Republic of China
| | - Yingjie Qiu
- Fujian-Taiwan Science and
Technology Cooperation Base of Biomedical Materials and Tissue Engineering,
Engineering Research Center of Industrial Biocatalysis, Fujian Provincial
Key Laboratory of Advanced Materials Oriented Chemical Engineering,
Fujian Provincial Key Laboratory of Polymer Materials, College of
Chemistry and Materials Science, Fujian
Normal University, Fuzhou 350117, People’s
Republic of China
| | - Aiping Chang
- Fujian-Taiwan Science and
Technology Cooperation Base of Biomedical Materials and Tissue Engineering,
Engineering Research Center of Industrial Biocatalysis, Fujian Provincial
Key Laboratory of Advanced Materials Oriented Chemical Engineering,
Fujian Provincial Key Laboratory of Polymer Materials, College of
Chemistry and Materials Science, Fujian
Normal University, Fuzhou 350117, People’s
Republic of China
| | - Hu Zhu
- Fujian-Taiwan Science and
Technology Cooperation Base of Biomedical Materials and Tissue Engineering,
Engineering Research Center of Industrial Biocatalysis, Fujian Provincial
Key Laboratory of Advanced Materials Oriented Chemical Engineering,
Fujian Provincial Key Laboratory of Polymer Materials, College of
Chemistry and Materials Science, Fujian
Normal University, Fuzhou 350117, People’s
Republic of China
| |
Collapse
|
3
|
Sayadi S, Brouillette F. Silylation of phosphorylated cellulosic fibers with an aminosilane. Carbohydr Polym 2024; 343:122500. [PMID: 39174145 DOI: 10.1016/j.carbpol.2024.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
In this work, phosphorylated cellulosic fibers were functionalized with an aminosilane ((3-aminopropyl)triethoxysilane, APTES) using a simple and economical method. Several characterization were performed to determine the types of bonds between phosphorylated fibers and grafted APTES. The thermal behavior, hydrophobicity and surface charge variation as a function of pH of the multifunctional cellulose fibers were determined. Results demonstrate that APTES should proceed through Si-O-C, and possibly Si-O-P, covalent bonds with cellulose although the dimerization of silane through Si-O-Si bonds has also been observed. The terminal amino groups are expected to be partially involved in hydrogen bonds with phosphate hydroxyl groups found at phosphorylated cellulose fiber surface, causing a pulling in the configuration of the grafted APTES. The two chemical modifications proposed in this work do not significantly modify the morphology of cellulose fibers. XRD analysis also shows that the crystal structure of the phosphorylated fibers did not change after functionalization with APTES. The silylated phosphorylated fibers show potential flame-retardant properties with improved hydrophobicity. Furthermore, the functionalization of phosphorylated fibers with APTES changes the pH of zero charge point from 3.2 to 9.4 and providing a zwitterionic structure suitable for the simultaneous adsorption of both cationic and anionic species.
Collapse
Affiliation(s)
- Sabrine Sayadi
- Université du Québec à Montréal, Department of Chemistry, 2101 Jeanne-Mance St., Montréal, Québec H2X 2J6, Canada; Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies (I2E3), Université du Québec à Trois-Rivières (UQTR), 3351 des Forges Blvd., Trois-Rivières, Québec G8Z 4M3, Canada
| | - François Brouillette
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies (I2E3), Université du Québec à Trois-Rivières (UQTR), 3351 des Forges Blvd., Trois-Rivières, Québec G8Z 4M3, Canada.
| |
Collapse
|
4
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
5
|
Zhan J, Mao L, Qin R, Qian J, Mu X. Thermal and Combustion Properties of Biomass-Based Flame-Retardant Polyurethane Foams Containing P and N. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3473. [PMID: 39063764 PMCID: PMC11277700 DOI: 10.3390/ma17143473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Biomass has been widely used due to its environmental friendliness, sustainability, and low toxicity. In this study, aminophosphorylated cellulose (PNC), a biomass flame retardant containing phosphorus and nitrogen, was synthesized by esterification from cellulose and introduced into polyurethane to prepare flame-retardant rigid polyurethane foam. The combustion properties of the PU and PU/PNC composites were studied using the limiting oxygen index (LOI), UL-94, and cone calorimeter (CCT) methods. The thermal degradation behavior of the PU and PU/PNC composites was analyzed by thermogravimetric analysis (TGA) and thermogravimetric infrared spectroscopy (TG-IR). The char layer after combustion was characterized using SEM, Raman, and XPS. The experimental results showed that the introduction of PNC significantly improved the flame-retardant effect and safety of PU/PNC composites. Adding 15 wt% PNC to PU resulted in a vertical burning grade of V-0 and a limiting oxygen index of 23.5%. Compared to the pure sample, the residual char content of PU/PNC15 in a nitrogen atmosphere increased by 181%, and the total heat release (THR) decreased by 56.3%. A Raman analysis of the char layer after CCT combustion revealed that the ID/IG ratio of PU/PNC15 decreased from 4.11 to 3.61, indicating that the flame retardant could increase the stability of the char layer. The TG-IR results showed that PNC diluted the concentration of O2 and combustible gases by releasing inert gases such as CO2. These findings suggest that the developed PU/PNC composites have significant potential for real-world applications, particularly in industries requiring enhanced fire safety, such as construction, transportation, and electronics. The use of PNC provides an eco-friendly alternative to traditional flame retardants. This research paves the way for the development of safer, more sustainable, and environmentally friendly fire-resistant materials for a wide range of applications.
Collapse
Affiliation(s)
- Jing Zhan
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (J.Z.); (L.M.)
| | - Liangchen Mao
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (J.Z.); (L.M.)
| | - Rongshui Qin
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (J.Z.); (L.M.)
| | - Jing Qian
- School of Environment and Energy Engineering, Anhui JianZhu University, Hefei 230601, China;
| | - Xiaowei Mu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Wang D, Huang J, Zhang H, Gu TJ, Li L. Cotton Ti-IMAC: Developing Phosphorylated Cotton as a Novel Platform for Phosphopeptide Enrichment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47893-47901. [PMID: 37812448 PMCID: PMC10730235 DOI: 10.1021/acsami.3c08697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein phosphorylation is an important post-translational modification (PTM), which is involved in many important cellular functions. Understanding protein phosphorylation at the molecular level is critical to deciphering its relevant biological processes and signaling networks. Mass spectrometry (MS) has become a powerful tool for the comprehensive profiling of protein phosphorylation. Yet the low ionization efficiency and low abundance of phosphopeptides among complex biological samples make its MS analysis challenging; an enrichment strategy with high efficiency and selectivity is always necessary prior to MS analysis. In this study, we developed a phosphorylated cotton-fiber-based Ti(IV)-IMAC material (termed as Cotton Ti-IMAC) that can serve as a novel platform for phosphopeptide enrichment. The cotton fiber can be effectively grafted with phosphate groups covalently in a single step, where the titanium ions can then be immobilized to enable capturing phosphopeptides. The material can be prepared using cost-effective reagents within only 4 h. Benefiting from the flexibility and filterability of cotton fibers, the material can be easily packed as a spin-tip and make the enrichment process convenient. Cotton Ti-IMAC successfully enriched phosphopeptides from protein standard digests and exhibited a high selectivity (BSA/β-casein = 1000:1) and excellent sensitivity (0.1 fmol/μL). Moreover, 2354 phosphopeptides were profiled in one LC-MS/MS injection after enriching from only 100 μg of HeLa cell digests with an enrichment specificity of up to 97.51%. Taken together, we believe that Cotton Ti-IMAC can serve as a widely applicable and robust platform for achieving large-scale phosphopeptide enrichment and expanding our knowledge of phosphoproteomics in complex biological systems.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Guangzhou Laboratory, Guangzhou, Guangdong, 510005, China
| | - Haoran Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Liu Y, Jiang F, Zhang Y, Xu C, Fu L, Lin B. Phosphate-modified cellulose/chitosan with high drug loading for effective prevention of rice leaffolder (Cnaphalocrocis medinalis) outbreaks in fields. Int J Biol Macromol 2023:125145. [PMID: 37268070 DOI: 10.1016/j.ijbiomac.2023.125145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
The continuous infestation of pests has seriously affected rice growth, yield and quality. How to reduce the use of pesticides and effectively control insect pests is a bottleneck problem. Herein, based on hydrogen bonding and electrostatic interactions, we posed a novel strategy to construct emamectin benzoate (EB) pesticide loading system using self-assembled phosphate-modified cellulose microspheres (CMP) and chitosan (CS). CMP provides more binding sites for EB loading and CS coating further enhances the carrier loading capacity up to 50.75 %, which jointly imparted pesticide photostability and pH-responsiveness. The retention capacity of EB-CMP@CS in rice growth soil reached 101.56-fold that of commercial EB, which effectively improved the absorption of pesticides during rice development. During the pest outbreak, EB-CMP@CS achieved effective pest control by increasing the pesticide content in rice stems and leaves, the control efficiency of the rice leaffolder (Cnaphalocrocis medinalis) reached 14-fold that of commercial EB, and could maintain the effective pest control effect during the booting stage of rice. Finally, EB-CMP@CS-treated paddy fields had improved yields and were free of pesticide residues in the rice grain. Therefore, EB-CMP@CS achieves effective control of rice leaffolder in paddy fields and has potential application value in green agricultural production.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Fengqiong Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuwei Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
8
|
Chen X, Lin J, Wang H, Yang Y, Wang C, Sun Q, Shen X, Li Y. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel as adsorbents for carbon dioxide capture. Carbohydr Polym 2023; 302:120389. [PMID: 36604067 DOI: 10.1016/j.carbpol.2022.120389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Developing affordable and effective carbon dioxide (CO2) capture technology has attracted substantial intense attention due to the continued growth of global CO2 emissions. The low-cost and biodegradable cellulosic materials are developed into CO2 adsorbent recently. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel (EBPCa) was synthesized from alkaline cellulose solution, epoxy-functionalized polyethyleneimine (EB-PEI), and epichlorohydrin (ECH) through the freezing-thawing processes and freeze-drying. The Fourier transform infrared spectroscopy confirmed that the cellulose aerogel was successfully modified by EB-PEI. The X-ray photoelectron spectroscopy analyses confirmed the presence of N 1s and Cl 2p in EBPCa, meaning that the chlorine of ECH and the amino groups of EB-PEI exist in the cellulose surface. The obtained sample has a rich porous structure with a specific surface area in the range of 97.5-149.5 m2/g. Owing to its uniformly three-dimensional porous structure, the sample present preferable rigidity and carrying capacity, which 1 g of sample could easily carry the weight of a 3000 ml Erlenmeyer flask filled with water (total 4 kg). The sample showed good adsorption performance, with a maximum adsorption capacity of 6.45 mmol/g. This adsorbent has broad prospects in the CO2 capture process.
Collapse
Affiliation(s)
- Xinjie Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Jian Lin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Hanwei Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Chao Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| |
Collapse
|
9
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
10
|
Kanth S, Malgar Puttaiahgowda Y, Gupta S, T S. Recent advancements and perspective of ciprofloxacin-based antimicrobial polymers. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:918-949. [PMID: 36346071 DOI: 10.1080/09205063.2022.2145872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years, microbial pathogens, which are major sources of infections, have become a widespread concern across the world. The number of deaths caused by infectious diseases is continually rising, according to World Health Organization records. Antimicrobial resistance, particularly resistance to several drugs, is steadily growing in percentages of organisms. Ciprofloxacin is a second-generation fluoroquinolone with significant antimicrobial activity and pharmacokinetic characteristics. According to studies, many bacteria are resistant to the antibiotic ciprofloxacin. In this article, we look into polymers as ciprofloxacin macromolecular carriers with a wide range of antibacterial activity. We also discuss the latter form of coupling, in which ciprofloxacin and polymers are covalently bonded. This article also discusses the use of antimicrobial polymers in combination with ciprofloxacin in a various sectors. The current review article provides an overview of publications in the last five years on polymer loaded or modified with ciprofloxacin having applications in numerous sectors.
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Swathi T
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
11
|
Cassano R, Curcio F, Procopio D, Fiorillo M, Trombino S. Multifunctional Microspheres Based on D-Mannose and Resveratrol for Ciprofloxacin Release. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207293. [PMID: 36295357 PMCID: PMC9607382 DOI: 10.3390/ma15207293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/01/2023]
Abstract
This article describes the preparation, characterization, and performance evaluation of functional microspheres useful for the release of ciprofloxacin. The particles were obtained using D-mannose, a natural aldohexose sugar, and resveratrol, a powerful antioxidant. In particular, the above compounds were initially converted into D-mannose carboxylate and resveratrol methacrylate and, therefore, subjected to an esterification reaction. The resulting product was used for the preparation of the microspheres which were characterized by light scattering, FT-IR spectrophotometry and scanning electron microscopy (SEM). Subsequently, their degree of bloating was evaluated at pH 1.2 to simulate the pH of the stomach, at pH 6.8 and pH 7.4 to mimic the intestinal environment. The antibiotic ciprofloxacin was then loaded into the microspheres, with an encapsulation efficiency of 100%. The cumulative amount of drug released was 55% at pH 6.8 and 99% at pH 7.4. The tests conducted to evaluate the antibacterial activity demonstrated the ability of the microspheres obtained to inhibit the growth of Escherichia coli. The antioxidant efficacy, due to the presence of resveratrol in their structure, was confirmed using rat liver microsomal membranes. The results obtained have highlighted how the microspheres based on D-mannose and resveratrol can be considered promising multifunctional vectors useful in the treatment of intestinal and urinary infections.
Collapse
|
12
|
Zhao M, Fujisawa S, Saito T. Distribution and Quantification of Diverse Functional Groups on Phosphorylated Nanocellulose Surfaces. Biomacromolecules 2021; 22:5214-5222. [PMID: 34855397 DOI: 10.1021/acs.biomac.1c01143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorylated cellulose nanofiber (CNF) is attracting attention as a newly emerged CNF with high functionality. However, many structural aspects of phosphorylated CNF remain unclear. In this study, we investigated the chemical structures and distribution of ionic functional groups on the phosphorylated CNF surfaces via liquid-state nuclear magnetic resonance measurements of colloidal dispersion. In addition to the monophosphate group, polyphosphate groups and cross-linked phosphate groups were introduced in the phosphorylated CNFs. The proportion of polyphosphate groups increased as the phosphorylation time increased, reaching ∼30% of all phosphate groups. Only a small amount of cross-linked phosphate groups existed in the phosphorylated CNF after a prolonged reaction time. Furthermore, phosphorylation of cellulose using urea and phosphoric acid was found to be regioselective at the C2 and C6 positions. There existed no significant difference between the surface degrees of substitution at the C2 and C6 positions of the phosphorylated CNFs.
Collapse
Affiliation(s)
- Mengchen Zhao
- CNF R&D Center, Innovation Promotion Division, Oji Holdings Corporation, 1-10-6 Shinonome, Koto-ku, Tokyo 135-8558, Japan.,Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuji Fujisawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Zhou S, Huang G. Preparation, structure and activity of polysaccharide phosphate esters. Biomed Pharmacother 2021; 144:112332. [PMID: 34673422 DOI: 10.1016/j.biopha.2021.112332] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022] Open
Abstract
Polysaccharides have anti-virus, anti-cancer, anti-oxidation, immune regulation, hypoglycemia and other biological activities. Because of their safety, fewer side effects and other advantages, polysaccharides are considered as ideal raw materials in food and drugs. The biological activity of polysaccharides can be improved by structural modification (such as sulfation, carboxymethylation, phosphorylation, etc.), and even new biological activity can be generated. In this review, the recent advances in the phosphorylation of polysaccharides were reviewed from the perspectives of modification methods, structures, biological activities and structure-activity relationships.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
14
|
Tiburcio E, García-Junceda E, Garrido L, Fernández-Mayoralas A, Revuelta J, Bastida A. Preparation and Characterization of Aminoglycoside-Loaded Chitosan/Tripolyphosphate/Alginate Microspheres against E. coli. Polymers (Basel) 2021; 13:3326. [PMID: 34641142 PMCID: PMC8512199 DOI: 10.3390/polym13193326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 01/21/2023] Open
Abstract
Although aminoglycosides are one of the common classes of antibiotics that have been widely used for treating infections caused by pathogenic bacteria, the evolution of bacterial resistance mechanisms and their inherent toxicity have diminished their applicability. Biocompatible carrier systems can help sustain and control the delivery of antibacterial compounds while reducing the chances of antibacterial resistance or accumulation in unwanted tissues. In this study, novel chitosan gel beads were synthesized by a double ionic co-crosslinking mechanism. Tripolyphosphate and alginate, a polysaccharide obtained from marine brown algae, were employed as ionic cross-linkers to prepare the chitosan-based networks of gel beads. The in vitro release of streptomycin and kanamycin A was bimodal; an initial burst release was observed followed by a diffusion mediated sustained release, based on a Fickian diffusion mechanism. Finally, in terms of antibacterial properties, the particles resulted in growth inhibition of Gram-negative (E. coli) bacteria.
Collapse
Affiliation(s)
- Estefanía Tiburcio
- BioGlycoChem Group, Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (E.T.); (E.G.-J.); (A.F.-M.)
| | - Eduardo García-Junceda
- BioGlycoChem Group, Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (E.T.); (E.G.-J.); (A.F.-M.)
| | - Leoncio Garrido
- Nanohybrids and Interactive Polymers Group, Institute of Polymer Science and Technology (ICTP-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Alfonso Fernández-Mayoralas
- BioGlycoChem Group, Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (E.T.); (E.G.-J.); (A.F.-M.)
| | - Julia Revuelta
- BioGlycoChem Group, Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (E.T.); (E.G.-J.); (A.F.-M.)
| | - Agatha Bastida
- BioGlycoChem Group, Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (E.T.); (E.G.-J.); (A.F.-M.)
| |
Collapse
|
15
|
Enhanced controllable degradation ability of magnetic imprinted photocatalyst via photoinduced surface imprinted technique for ciprofloxacin selectively degradation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Gao H, Fu LL, Cai ML, Chen W, Bai ZW. Preparation of 6-amino-6-deoxy cellulose and its derivatives used as chiral separation materials. Carbohydr Polym 2021; 259:117756. [PMID: 33674010 DOI: 10.1016/j.carbpol.2021.117756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 01/11/2023]
Abstract
In order to find a facile and practical method to synthesize amino cellulose in bulk with high regional selectivity and high degree of substitution, the reaction conditions to brominate cellulose and to reduce azido group were carefully studied and some interesting phenomena were observed. With the optimized method, 6-amino-6-deoxy cellulose could be easily prepared with very simple separation techniques. The degree of substitution of the amino group amounted to 0.97 which was determined by 1H NMR spectrum of 6-benzamido-6-deoxy cellulose. Moreover, the amino group was evidenced to be at the C6 of glucose unit by 1H-1H COSY NMR and 1H-13C HSQC NMR spectra. In addition, three cellulose 6-acetamido-6-deoxy-2,3-bis(phenylcarbamate)s were prepared from the 6-amino-6-deoxy cellulose prepared with the techniques optimized in the present study. The developed cellulose derivatives were used as chiral selectors with which chiral stationary phases (CSPs) were prepared. The CSPs exhibited enantioseparation power to some chiral compounds.
Collapse
Affiliation(s)
- Hong Gao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lu-Lu Fu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Ming-Lan Cai
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Zheng-Wu Bai
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|