1
|
Li D, Li W, Li S, Zhang Y, Hu X, Liu S, Li Y. Fabrication of chitosan-based emulsion as an adjuvant to enhance nasal mucosal immune responses. Int J Biol Macromol 2024; 272:132913. [PMID: 38851606 DOI: 10.1016/j.ijbiomac.2024.132913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Nasal vaccine is a non-invasive vaccine that activates systemic and mucosal immunity in the presence of an adjuvant, thereby enhancing immune function. In this work, chitosan/oligochitosan/tween 80 (CS-COS-T80) co-stabilized emulsion was designed and further used as the nasal adjuvant. CS-COS-T80 emulsion exhibited outstanding stability under pH 6-8 with uniformly dispersed droplets and nano-scale particle size (<0.25 μm), and maintained stable at 4 °C for 150-day storage. Addition of model antigen ovalbumin (OVA) had no effect on the stability of CS-COS-T80 emulsion. In vivo nasal immunity indicated that CS-COS-T80 emulsion prolonged the retention time of OVA in the nasal cavity (from 4 to 8 h to >12 h), as compared to T80-emulsion. CS-COS-T80 emulsion produced a stronger mucosal immune response to OVA, with secretory IgA levels 5-fold and 2-fold higher than those of bare OVA and commercial adjuvant MF59, respectively. Compared to MF59, CS-COS-T80 induced a stronger humoral immune response and a mixed Th1/Th2 immune response of OVA after immunization. Furthermore, in the presence of CS-COS-T80 emulsion, the secretion of IL-4 and IFN-γ and the activation of splenocyte memory T-cell differentiation increased from 173.98 to 210.21 pg/mL and from 75.46 to 104.01 pg/mL, respectively. Therefore, CS-COS-T80 emulsion may serve as a promising adjuvant platform.
Collapse
Affiliation(s)
- Donghui Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbo Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Li
- Hubei Gedian Humanwell Pharmaceutical Excipients Co., Ltd., Wuhan 430070, China
| | - Yangyang Zhang
- Hubei Gedian Humanwell Pharmaceutical Excipients Co., Ltd., Wuhan 430070, China
| | - Xianwen Hu
- College of Life Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.
| |
Collapse
|
2
|
Chen C, Zhang S, Cheng X, Ren Y, Qian Y, Zhang C, Chen M, Sun N, Liu H. Reducing cherry rain-cracking: Enhanced wetting and barrier properties of chitosan hydrochloride-based coating with dual nanoparticles. Int J Biol Macromol 2024; 268:131660. [PMID: 38636766 DOI: 10.1016/j.ijbiomac.2024.131660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The synergistic effects of phosphorylated zein nanoparticles (PZNP) and cellulose nanocrystals (CNC) in enhancing the wetting and barrier properties of chitosan hydrochloride (CHC)-based coating are investigated characterized by Fourier Transform Infrared Spectra (FTIR), X-ray Diffraction (XRD), atomic force microscopy and by investigating the mechanical properties, etc., with the aim of reducing cherry rain cracking. FTIR and XRD showed dual nanoparticles successfully implanted into CHC, CHC-PZNP-CNC combined moderate ductility (elongation at break: 7.8 %), maximum tensile strength (37.5 MPa). The addition of PZNP alone significantly improved wetting performance (Surface Tension, CHC: 55.3 vs. CHC-PZNP: 48.9 mN/m), while the addition of CNC alone led to a notable improvement in the water barrier properties of CHC (water vapor permeability, CHC: 6.75 × 10-10 vs. CHC-CNC: 5.76 × 10-10 gm-1 Pa-1 s-1). The final CHC-PZNP-CNC coating exhibited enhanced wettability (51.2 mN/m) and the strongest water-barrier property (5.32 × 10-10 gm-1 Pa-1 s-1), coupled with heightened surface hydrophobicity (water contact angle: 106.4°). Field testing demonstrated the efficacy of the CHC-PZNP-CNC coating in reducing cherry rain-cracking (Cracking Index, Control, 42.3 % vs. CHC-PZNP-CNC, 19.7 %; Cracking Ratio, Control, 34.6 % vs. CHC-PZNP-CNC, 15.8 %). The CHC-PZNP-CNC coating is a reliable option for preventing rain-induced cherry cracking.
Collapse
Affiliation(s)
- Chengwang Chen
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Shuangling Zhang
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China.
| | - Xiaofang Cheng
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Yuhang Ren
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Yaru Qian
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Cheng Zhang
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Min Chen
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Nan Sun
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Heping Liu
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| |
Collapse
|
3
|
Liu R, Wang X, Yang L, Wang Y, Gao X. Coordinated encapsulation by β-cyclodextrin and chitosan derivatives improves the stability of anthocyanins. Int J Biol Macromol 2023:125060. [PMID: 37245775 DOI: 10.1016/j.ijbiomac.2023.125060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
To improve the stability of anthocyanins (ACNs), ACNs were loaded into dual-encapsulated nanocomposite particles by self-assembly using β-cyclodextrin (β-CD) and two different water-soluble chitosan derivatives, namely, chitosan hydrochloride (CHC) and carboxymethyl chitosan (CMC). The ACN-loaded β-CD-CHC/CMC nanocomplexes with small diameters (333.86 nm) and had a desirable zeta potential (+45.97 mV). Transmission electron microscopy (TEM) showed that the ACN-loaded β-CD-CHC/CMC nanocomplexes had a spherical structure. Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD) confirmed that the ACNs in the dual nanocomplexes were encapsulated in the cavity of the β-CD and that the CHC/CMC covered the outer layer of β-CD through noncovalent hydrogen bonding. The ACNs from the dual-encapsulated nanocomplexes improved stability of ACNs under adverse environmental conditions or in a simulated gastrointestinal environment. Further, the nanocomplexes exhibited good storage stability and thermal stability over a wide pH range when added into simulated electrolyte drinks (pH = 3.5) and milk tea (pH = 6.8). This study provides a new option for the preparation of stable ACNs nanocomplexes and expands the applications for ACNs in functional foods.
Collapse
Affiliation(s)
- Ranran Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaohan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lixia Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Li J, Guo C, Cai S, Yi J, Zhou L. Fabrication of anthocyanin–rich W1/O/W2 emulsion gels based on pectin–GDL complexes: 3D printing performance. Food Res Int 2023; 168:112782. [PMID: 37120230 DOI: 10.1016/j.foodres.2023.112782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
The stability of anthocyanin-rich W1/O/W2 double emulsions prepared with Nicandra physalodes (Linn.) Gaertn. Seeds pectin was investigated, including droplet sizes, ζ-potential, viscosity, color, microstructures and encapsulation efficiency. Furthermore, the gelation behavior, rheological behavior, texture behavior and three-dimensional (3D) printing effects of the W1/O/W2 emulsion gels induced with Glucono-delta-lactone (GDL) were studied. The L*, b*, ΔE, droplet sizes and ζ-potential of the emulsions were gradually increased, while other indicators were gradually decreased during 28 days of storage under 4 ℃. The storage stability of sample under storage at 4 ℃ was higher than 25 ℃. The G' of W1/O/W2 emulsion gels gradually boosted with increased GDL addition, and reached the highest after the addition of 1.6 % GDL. In creep-recovery sweep, the minimum strain of 1.68 % and the highest recovery rate of 86 % were also found for the emulsion gels with 1.6 % GDL. Accordingly, the models "KUST", hearts, flowers printed by emulsion gels after 60 min addition of 1.6 % GDL had the best printing effects. The W1/O/W2 emulsion gels based on pectin-GDL complexes exhibited good performance in protecting anthocyanins and suggested as a potential ink for food 3D printing.
Collapse
Affiliation(s)
- Jian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, 650500 Kunming, China.
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, 650500 Kunming, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, 650500 Kunming, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, 650500 Kunming, China.
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, 650500 Kunming, China.
| |
Collapse
|
5
|
Fabrication and Characterization of the Egg-White Protein Chitosan Double-Layer Emulsion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186036. [PMID: 36144772 PMCID: PMC9503630 DOI: 10.3390/molecules27186036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Egg-white protein has an abundance of hydrophobic amino acids and could be a potential emulsifier after modification. Here, egg-white protein was modified via ultrasonic and transglutaminase treatments to destroy the globular structure. The egg-white protein gel particles (EWP-GPs) were prepared and then a novel highly stable EWP-chitosan double-layer emulsion was constructed. When ultrasonic treatment was applied at 240 W and TGase (20 U/g EWP) treatment, the EWP-GPs had a low particle size and good emulsification performance. The particle size of EWP-GPs was a minimum of 287 nm, and the polymer dispersity index (PDI) was 0.41. The three-phase contact angle (θo/w) of EWP-GPs was 79.6° (lower than 90°), performing with good wettability. Based on these results, the EWP-chitosan double-layer emulsion was prepared through the EWP-GPs being treated with 240 W ultrasound, TGase, and chitosan in this study. When the double-layer emulsion had 0.6% (v/v) chitosan, the zeta potential of the double-layer emulsion was -1.1 mV and the double-layer emulsion had a small particle size (56.87 µm). The creaming index of double-layer emulsion at 0.6% (v/v) chitosan was 16.3% and the droplets were dispersed uniformly. According to the rheological results, the storage modulus (G') was larger than the loss modulus (G″) in the whole frequency, indicating the formation of an elastic gel network structure in the emulsion. It is hoped to develop a novel food-grade stabilizer and a stable double-layer emulsion, providing new environment-friendly processing in hen egg products and delivery systems.
Collapse
|
6
|
Fabrication and Characterization of W/O/W Emulgels by Sipunculus nudus Salt-Soluble Proteins: Co-Encapsulation of Vitamin C and β-Carotene. Foods 2022; 11:foods11182720. [PMID: 36140849 PMCID: PMC9497784 DOI: 10.3390/foods11182720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
W/O/W emulsions can be used to encapsulate both hydrophobic and hydrophilic bioactive as nutritional products. However, studies on protein stabilized gel-like W/O/W emulsions have rarely been reported, compared to the liquid state multiple emulsions. The purpose of this study was to investigate the effect of different oil–water ratios on the stability of W/O/W emulgels fabricated with salt-soluble proteins (SSPs) of Sipunculus nudus. The physical stability, structural characteristics, rheological properties, and encapsulation stability of vitamin C and β-carotene of double emulgels were investigated. The addition of W/O primary emulsion was determined to be 10% after the characterization of the morphology of double emulsion. The results of microstructure and rheological properties showed that the stability of W/O/W emulgels increased with the increasing concentration of SSPs. Additionally, the encapsulation efficiency of vitamin C and β-carotene were more than 87%, and 99%, respectively, and still could maintain around 50% retention of the antioxidant capacity after storage for 28 days at 4 °C. The aforementioned findings demonstrate that stable W/O/W emulgels are a viable option for active ingredients with an improvement in shelf stability and protection of functional activity.
Collapse
|
7
|
Effect of type of fatty acid attached to chitosan on walnut oil-in-water Pickering emulsion properties. Carbohydr Polym 2022; 291:119566. [DOI: 10.1016/j.carbpol.2022.119566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/02/2023]
|
8
|
Ding X, Xu Y, Wang Y, Xie L, Liang S, Li D, Wang Y, Wang J, Zhan X. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics. Carbohydr Polym 2022; 289:119438. [DOI: 10.1016/j.carbpol.2022.119438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
|
9
|
Yang S, Zhang S, Qu Z, Xiu T, Hu Y, Chen C, Lv N. Reducing cherry rain-cracking: Development and characterization of cold-water fish gelatin films reinforced by dual rod-spherical nanoscale structures formed under magnetic fields. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Wu X, Zhang Q, Wang Z, Xu Y, Tao Q, Wang J, Kong X, Sheng K, Wang Y. Investigation of construction and characterization of carboxymethyl chitosan - sodium alginate nanoparticles to stabilize Pickering emulsion hydrogels for curcumin encapsulation and accelerating wound healing. Int J Biol Macromol 2022; 209:1837-1847. [PMID: 35489626 DOI: 10.1016/j.ijbiomac.2022.04.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023]
Abstract
Limitations in compatibility and effectiveness in delivering bioactive compounds often make it prohibitively difficult to apply Pickering emulsions in wound dressing. In this research, we prepared Pickering emulsion composite hydrogels based on carboxymethyl chitosan - sodium alginate (CMCS-SA) nanoparticles (NPs) stabilized Pickering emulsions, poloxamer 407 (PLX), and curcumin (CUR). CMCS-SA NPs were prepared and used to stabilize Pickering emulsion. The stability of Pickering emulsion improved with the increase of the concentration of NPs, and was highly sensitive to ionic strength change. This Pickering emulsion remained stable at various temperatures. After curcumin were introduced into the emulsion, 0.6% CMCS-SA NPs Pickering emulsion showed controlled release of curcumin in vitro. The CMCS-SA-PLX-CUR hydrogels also exhibited smooth surface and dense structure. This composite hydrogels has antibacterial properties against Escherichia coli and Staphylococcus aureus. Moreover, the CMCS-SA-PLX-CUR hydrogels improved wound healing and increased expression of Ki67 and CD31. RT-qPCR results indicated that the mRNA levels of α-SMA and TGF-β1 in the CMCS-SA-PLX-CUR group were downregulated, while the mRNA levels of TGF-β3 increased. The present study suggests that the potentials of CMCS-SA-PLX-CUR hydrogels are promising in protecting bioactive components and wound care management.
Collapse
Affiliation(s)
- Xinru Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Qingao Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Zeming Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Yifan Xu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Qiuru Tao
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
11
|
Liu S, Fang Z, Ng K. Recent development in fabrication and evaluation of phenolic-dietary fiber composites for potential treatment of colonic diseases. Crit Rev Food Sci Nutr 2022; 63:6860-6884. [PMID: 35225102 DOI: 10.1080/10408398.2022.2043236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phenolics have been shown by in vitro and animal studies to have multiple pharmacological effects against various colonic diseases. However, their efficacy against colonic diseases, such as inflammatory bowel diseases, Crohn's disease, and colorectal cancer, is significantly compromised due to their chemical instability and susceptibility to modification along the gastrointestinal tract (GIT) before reaching the colonic site. Dietary fibers are promising candidates that can form phenolic-dietary fiber composites (PDC) to carry phenolics to the colon, as they are natural polysaccharides that are non-digestible in the upper intestinal tract but can be partially or fully degradable by gut microbiota in the colon, triggering the release at this targeted site. In addition, soluble and fermentable dietary fibers confer additional health benefits as prebiotics when used in the PDC fabrication, and the possibility of synergistic relationship between phenolics and fibers in alleviating the disease conditions. The functionalities of PDC need to be characterized in terms of their particle characteristics, molecular interactions, release profiles in simulated digestion and colonic fermentation to fully understand the metabolic fate and health benefits. This review examines recent advancements regarding the approaches for fabrication, characterization, and evaluation of PDC in in vitro conditions.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|