1
|
Li M, Wang F, Ouyang S, Liu Y, Hu Z, Wu Y, Qian J, Li Z, Wang L, Ma S. A comprehensive review on preparation and functional application of the wood aerogel with natural cellulose framework. Int J Biol Macromol 2024; 275:133340. [PMID: 38925195 DOI: 10.1016/j.ijbiomac.2024.133340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
As the traditional aerogel has defects such as poor mechanical properties, complicated preparation process, high energy consumption and non-renewable, wood aerogel as a new generation of aerogel shows unique advantages. With a natural cellulose framework, wood aerogel is a novel nano-porous material exhibiting exceptional properties such as light weight, high porosity, large specific surface area, and low thermal conductivity. Furthermore, its adaptability to further functionalization enables versatile applications across diverse fields. Driven by the imperative for sustainable development, wood aerogel as a renewable and eco-friendly material, has garnered significant attention from researchers. This review introduces preparation methods of wood aerogel based on the top-down strategy and analyzes the factors influencing their key properties intending to obtain wood aerogels with desirable properties. Avenues for realizing its functionality are also explored, and research progress across various domains are surveyed, including oil-water separation, conductivity and energy storage, as well as photothermal conversion. Finally, potential challenges associated with wood aerogel exploitation and utilization are addressed, alongside discussions on future prospects and research directions. The results emphasize the broad research value and future prospects of wood aerogels, which are poised to drive high-value utilization of wood and foster the development of green multifunctional aerogels.
Collapse
Affiliation(s)
- Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yan W, Qing Y, Li Z, Li L, Luo S, Wu Y, Chen D, Wu Y, Tian C. Construction of Nanofibrillar Networked Wood Aerogels Derived from Typical Softwood and Hardwood: A Comparative Study on the In Situ Formation Mechanism of Nanofibrillar Networks. Molecules 2024; 29:938. [PMID: 38474450 DOI: 10.3390/molecules29050938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
The construction of networks within natural wood (NW) lumens to produce porous wood aerogels (WAs) with fascinating characteristics of being lightweight, flexible, and porous is significant for the high value-added utilization of wood. Nonetheless, how wood species affect the structure and properties of WAs has not been comprehensively investigated. Herein, typical softwood of fir and hardwoods of poplar and balsa are employed to fabricate WAs with abundant nanofibrillar networks using the method of lignin removal and nanofibril's in situ regeneration. Benefiting from the avoidance of xylem ray restriction and the exposure of the cellulose framework, hardwood has a stronger tendency to form nanofibrillar networks compared to softwood. Specifically, a larger and more evenly distributed network structure is displayed in the lumens of balsa WAs (WA-3) with a low density (59 kg m-3), a high porosity (96%), and high compressive properties (strain = 40%; maximum stress = 0.42 MPa; height retention = 100%) because of the unique structure and properties of WA-3. Comparatively, the specific surface area (SSA) exhibits 25-, 27-, and 34-fold increments in the cases of fir WAs (WA-1), poplar WAs (WA-2), and WA-3. The formation of nanofibrillar networks depends on the low-density and thin cell walls of hardwood. This work offers a foundation for investigating the formation mechanisms of nanonetworks and for expanding the potential applications of WAs.
Collapse
Affiliation(s)
- Wenjing Yan
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhihan Li
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lei Li
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Sha Luo
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Wu
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Deng Chen
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Cuihua Tian
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Li M, Liu G, Liu S, Xiao X, Bai Y, Li Y, Li X, Li Y. Transparent regenerated cellulose film containing azobenzene group with reversible stimulus discoloration property. Carbohydr Polym 2024; 324:121569. [PMID: 37985122 DOI: 10.1016/j.carbpol.2023.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The cellulose film, exhibiting color alterations in response to external stimuli, presents itself as a promising functional material. In this study, a universal dissolution-regeneration technique was employed to manufacture a transparent, regenerated cellulose film, characterized by its reversible multi-stimulus discoloration property. This functional cellulose film, endowed with both photochromic and acid-chromic attributes, was synthesized through the introduction of a cellulose-grafted azobenzene derivative into the cellulose solution. The hue of a cellulose film irradiated with ultraviolet light could be inverted upon exposure to visible light or heat. Furthermore, when subject to heating, irradiation, or immersion in an acidic medium, this functional film demonstrated pronounced transparency. The acid-chromic behavior of the film was readily discernible when exposed to highly concentrated acidic aqueous solutions. Both the photochromic and acid-chromic phenomena were discernable to the unaided eye. After ten cycles, no fading of the reversible discoloration properties of the material occurred. This transparent regenerated cellulose film stands as a viable candidate for applications in optical data storage, intelligent switches, and sensors, owing to its capacity for reversible stimulus-triggered discoloration.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China.
| | - Gongwen Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Shuang Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Xialian Xiao
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Yun Bai
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Yali Li
- College of Physical Education, Gannan Normal University, Ganzhou 341000, China
| | - Xingxing Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Yibao Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| |
Collapse
|
4
|
Tian S, Yi Z, Chen J, Fu S. In situ growth of UiO-66-NH 2 in wood-derived cellulose for iodine adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130236. [PMID: 36332282 DOI: 10.1016/j.jhazmat.2022.130236] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The capture of radioactive iodine is an inevitable requirement in nuclear industry for environmental protection. Metal-organic frameworks (MOFs) are a new generation of sorbents that have wide applications for iodine adsorption and recovery. Although the loading of MOFs on wood can avoid the drawbacks of the powder form of MOFs in implementation, the dense structure of wood results in the lower loading, even after delignification, which limits the adsorption capacity. Herein, a hierarchically porous UiO-66-NH2 @WCA composite was fabricated by in-situ synthesis of UiO-66-NH2 in wood-derived cellulose aerogel (WCA) that was further removed hemicellulose from delignified wood. UiO-66-NH2 @WCA exhibited a high loading (36 wt%) of UiO-66-NH2 crystals and a high adsorption capacity of 704 mg/g for iodine vapor and 248 mg/g for iodine aqueous solution. The adsorption behavior in iodine aqueous solution was well predicted by the Freundlich isotherm and pseudo-second-order kinetic model. The adsorption capacity of UiO-66-NH2 @WCA was highest in solution when the pH was 6, while the ionic strength had little effect. The hydroxyl groups on the WCA matrix had a charge transfer effect with iodine, providing additional sites for iodine capture. Furthermore, a packed column system was applied to demonstrate the excellent recyclability and potential for practical application.
Collapse
Affiliation(s)
- Shenglong Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Zede Yi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Junqing Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China; South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China.
| |
Collapse
|
5
|
Long H, Gu J, Jiang J, Guan L, Lin X, Zhang W, Hu C. Mechanically strong and biodegradable holocellulose films prepared from Camellia oleifera shells. Carbohydr Polym 2023; 299:120189. [PMID: 36876804 DOI: 10.1016/j.carbpol.2022.120189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
Abstract
Bioplastic derived from renewable lignocellulosic biomass is an attractive alternative to petroleum-based plastics. Herein, Callmellia oleifera shells (COS), a unique byproduct from tea oil industry, were delignified and converted into high-performance bio-based films via a green citric acid treatment (15 %, 100 °C and 24 h), taking advantage of their high hemicellulose content. The structure-property relations of COS holocellulose (COSH) films were systematically analyzed considering different treatment conditions. The surface reactivity of COSH was improved via a partial hydrolysis route and strong hydrogen bonding formed between the holocellulose micro/nanofibrils. COSH films exhibited high mechanical strength, high optical transmittance, improved thermal stability, and biodegradability. A mechanical blending pretreatment of COSH, which disintegrated the COSH fibers before the citric acid reaction, further enhanced the tensile strength and Young's modulus of the films up to 123.48 and 5265.41 MPa, respectively. The films decomposed completely in soil, demonstrating an excellent balance between degradability and durability.
Collapse
Affiliation(s)
- Haibo Long
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Jin Gu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Sciences, Nanjing 210042, PR China.
| | - Litao Guan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xiuyi Lin
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Weiwei Zhang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Chuanshuang Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
6
|
Lin YL, Zheng S, Chang CW, Lee MJ, Chen YF, Chen JT. Photoresponsive Single-Ion Nanocomposite Hydrogels: Competition of Host–Guest Interactions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Liang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sheng Zheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Wei Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Jie Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
7
|
Zhou S, Sheng K, Zhang N, Zhang H, Li H, Sun P, Xin X. Light-triggered reversible supramolecular self-assembly of azo groups-functionalized copper nanoclusters. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Tian S, Zhang J, Zhou Q, Shi L, Wang W, Wang D. Photochromic Polyamide 6 Based on Spiropyran Synthesized via Hydrolyzed Ring-Opening Polymerization. Polymers (Basel) 2021; 13:2496. [PMID: 34372100 PMCID: PMC8348056 DOI: 10.3390/polym13152496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
We report photochromic polyamide 6 (PA6) which was synthesized by hydrolyzed ring-opening polymerization of ε-caprolactam with spiropyran (SP) embedded in the polymer chains. It indicated that crystallinity degree of the resulting copolymers was decreased since only PA6 segments can crystallize with increasing content of SP modifier. Meanwhile, toughness of photochromic PA6 was decreased. The photochromic property analysis indicated that the sample with more flexibility and more content of SP was more sensitive to UV light at the beginning of irradiation than other samples and its color after being irradiated for 1 min tended to reddish. Investigation revealed that the UV-vis absorbance of SP-PA6-3 had negligible decay after 10 cycles, which indicated SP-modified PA6 possessed excellent photoresponse reversibility and fatigue resistance.
Collapse
Affiliation(s)
- Shiyou Tian
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; (S.T.); (J.Z.); (D.W.)
| | - Jicong Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; (S.T.); (J.Z.); (D.W.)
| | - Qiong Zhou
- SINOPEC Yizheng Chemical Fiber Co., Ltd., Jiangsu Key Laboratory of Highperformance Fiber, Yizheng 211900, China; (Q.Z.); (L.S.)
| | - Limei Shi
- SINOPEC Yizheng Chemical Fiber Co., Ltd., Jiangsu Key Laboratory of Highperformance Fiber, Yizheng 211900, China; (Q.Z.); (L.S.)
| | - Wenwen Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; (S.T.); (J.Z.); (D.W.)
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; (S.T.); (J.Z.); (D.W.)
| |
Collapse
|
9
|
Zaborniak I, Macior A, Chmielarz P, Smenda J, Wolski K. Hydrophobic modification of fir wood surface via low ppm ATRP strategy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|