1
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
2
|
de Araújo EA, Cortez AA, Pellegrini VDOA, Vacilotto MM, Cruz AF, Batista PR, Polikarpov I. Molecular mechanism of cellulose depolymerization by the two-domain BlCel9A enzyme from the glycoside hydrolase family 9. Carbohydr Polym 2024; 329:121739. [PMID: 38286536 DOI: 10.1016/j.carbpol.2023.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/31/2024]
Abstract
Carbohydrate-active enzymes from the glycoside hydrolase family 9 (GH9) play a key role in processing lignocellulosic biomass. Although the structural features of some GH9 enzymes are known, the molecular mechanisms that drive their interactions with cellulosic substrates remain unclear. To investigate the molecular mechanisms that the two-domain Bacillus licheniformis BlCel9A enzyme utilizes to depolymerize cellulosic substrates, we used a combination of biochemical assays, X-ray crystallography, small-angle X-ray scattering, and molecular dynamics simulations. The results reveal that BlCel9A breaks down cellulosic substrates, releasing cellobiose and glucose as the major products, but is highly inefficient in cleaving oligosaccharides shorter than cellotetraose. In addition, fungal lytic polysaccharide oxygenase (LPMO) TtLPMO9H enhances depolymerization of crystalline cellulose by BlCel9A, while exhibiting minimal impact on amorphous cellulose. The crystal structures of BlCel9A in both apo form and bound to cellotriose and cellohexaose were elucidated, unveiling the interactions of BlCel9A with the ligands and their contribution to substrate binding and products release. MD simulation analysis reveals that BlCel9A exhibits higher interdomain flexibility under acidic conditions, and SAXS experiments indicate that the enzyme flexibility is induced by pH and/or temperature. Our findings provide new insights into BlCel9A substrate specificity and binding, and synergy with the LPMOs.
Collapse
Affiliation(s)
- Evandro Ares de Araújo
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Giuseppe Maximo Scolfaro, 10000, Campinas, SP 13083-970, Brazil; Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil
| | - Anelyse Abreu Cortez
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil
| | | | - Milena Moreira Vacilotto
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil
| | - Amanda Freitas Cruz
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil
| | - Paulo Ricardo Batista
- Oswaldo Cruz Foundation, Scientific Computing Programme, Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil.
| |
Collapse
|
3
|
Wen J, Miao T, Basit A, Li Q, Tan S, Chen S, Ablimit N, Wang H, Wang Y, Zheng F, Jiang W. Highly efficient synergistic activity of an α-L-arabinofuranosidase for degradation of arabinoxylan in barley/wheat. Front Microbiol 2023; 14:1230738. [PMID: 38029111 PMCID: PMC10655120 DOI: 10.3389/fmicb.2023.1230738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Here, an α-L-arabinofuranosidase (termed TtAbf62) from Thermothelomyces thermophilus is described, which efficiently removes arabinofuranosyl side chains and facilitates arabinoxylan digestion. The specific activity of TtAbf62 (179.07 U/mg) toward wheat arabinoxylan was the highest among all characterized glycoside hydrolase family 62 enzymes. TtAbf62 in combination with endoxylanase and β-xylosidase strongly promoted hydrolysis of barley and wheat. The release of reducing sugars was significantly higher for the three-enzyme combination relative to the sum of single-enzyme treatments: 85.71% for barley hydrolysis and 33.33% for wheat hydrolysis. HPLC analysis showed that TtAbf62 acted selectively on monosubstituted (C-2 or C-3) xylopyranosyl residues rather than double-substituted residues. Site-directed mutagenesis and interactional analyses of enzyme-substrate binding structures revealed the catalytic sites of TtAbf62 formed different polysaccharide-catalytic binding modes with arabinoxylo-oligosaccharides. Our findings demonstrate a "multienzyme cocktail" formed by TtAbf62 with other hydrolases strongly improves the efficiency of hemicellulose conversion and increases biomass hydrolysis through synergistic interaction.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology, University of Jhang, Jhang, Punjab, Pakistan
| | - Qunhong Li
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Shenglin Tan
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Shuqing Chen
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Nuraliya Ablimit
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Grace Barrios-Gutiérrez S, Inés Vélez-Mercado M, Rodrigues Ortega J, da Silva Lima A, Luiza da Rocha Fortes Saraiva A, Leila Berto G, Segato F. Oxidative Machinery of basidiomycetes as potential enhancers in lignocellulosic biorefineries: A lytic polysaccharide monooxygenases approach. BIORESOURCE TECHNOLOGY 2023; 386:129481. [PMID: 37437815 DOI: 10.1016/j.biortech.2023.129481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Basidiomycetes are renowned as highly effective decomposers of plant materials, due to their extensive array of oxidative enzymes, which enable them to efficiently break down complex lignocellulosic biomass structures. Among the oxidative machinery of industrially relevant basidiomycetes, the role of lytic polysaccharide monooxygenases (LPMO) in lignocellulosic biomass deconstruction is highlighted. So far, only a limited number of basidiomycetes LPMOs have been identified and heterologously expressed. These LPMOs have presented activity on cellulose and hemicellulose, as well as participation in the deconstruction of lignin. Expanding on this, the current review proposes both enzymatic and non-enzymatic mechanisms of LPMOs for biomass conversion, considering the significance of the Carbohydrate-Binding Modules and other C-terminal regions domains associated with their structure, which is involved in the deconstruction of lignocellulosic biomass.
Collapse
Affiliation(s)
- Solange Grace Barrios-Gutiérrez
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Martha Inés Vélez-Mercado
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Júlia Rodrigues Ortega
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Awana da Silva Lima
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Ana Luiza da Rocha Fortes Saraiva
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Gabriela Leila Berto
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil.
| |
Collapse
|
5
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Sun XB, Gao DY, Cao JW, Liu Y, Rong ZT, Wang JK, Wang Q. BsLPMO10A from Bacillus subtilis boosts the depolymerization of diverse polysaccharides linked via β-1,4-glycosidic bonds. Int J Biol Macromol 2023; 230:123133. [PMID: 36621733 DOI: 10.1016/j.ijbiomac.2023.123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) is known as an oxidatively cleaving enzyme in recalcitrant polysaccharide deconstruction. Herein, we report a novel AA10 LPMO derived from Bacillus subtilis (BsLPMO10A). A substrate specificity study revealed that the enzyme exhibited an extensive active-substrate spectrum, particularly for polysaccharides linked via β-1,4 glycosidic bonds, such as β-(Man1 → 4Man), β-(Glc1 → 4Glc) and β-(Xyl1 → 4Xyl). HPAEC-PAD and MALDI-TOF-MS analyses indicated that BsLPMO10A dominantly liberated native oligosaccharides with a degree of polymerization (DP) of 3-6 and C1-oxidized oligosaccharides ranging from DP3ox to DP6ox from mixed linkage glucans and beechwood xylan. Due to its synergistic action with a variety of glycoside hydrolases, including glucanase IDSGLUC5-38, xylanase TfXYN11-1, cellulase IDSGLUC5-11 and chitinase BtCHI18-1, BsLPMO10A dramatically accelerated glucan, xylan, cellulose and chitin saccharification. After co-reaction for 72 h, the reducing sugars in Icelandic moss lichenan, beechwood xylan, phosphoric acid swollen cellulose and chitin yielded 3176 ± 97, 7436 ± 165, 649 ± 44, and 2604 ± 130 μmol/L, which were 1.47-, 1.56-, 1.44- and 1.25-fold higher than those in the GHs alone groups, respectively (P < 0.001). In addition, the synergy of BsLPMO10A and GHs was further validated by the degradation of natural feedstuffs, the co-operation of BsLPMO10A and GHs released 3266 ± 182 and 1725 ± 107 μmol/L of reducing sugars from Oryza sativa L. and Arachis hypogaea L. straws, respectively, which were significantly higher than those produced by GHs alone (P < 0.001). Furthermore, BsLPMO10A also accelerated the liberation of reducing sugars from Celluclast® 1.5 L, a commercial cellulase cocktail, on filter paper, A. hypogaea L. and O. sativa L. straws by 49.58 % (P < 0.05), 72.19 % (P < 0.001) and 54.36 % (P < 0.05), respectively. This work has characterized BsLPMO10A with a broad active-substrate scope, providing a promising candidate for lignocellulosic biomass biorefinery.
Collapse
Affiliation(s)
- Xiao-Bao Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - De-Ying Gao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Wen Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhou-Ting Rong
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs). Essays Biochem 2022; 67:561-574. [PMID: 36504118 PMCID: PMC10154629 DOI: 10.1042/ebc20220162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have revolutionized our understanding of how enzymes degrade insoluble polysaccharides. Compared with the substantial knowledge developed on the structure and mode of action of the catalytic LPMO domains, the (multi)modularity of LPMOs has received less attention. The presence of other domains, in particular carbohydrate-binding modules (CBMs), tethered to LPMOs has profound implications for the catalytic performance of the full-length enzymes. In the last few years, studies on LPMO modularity have led to advancements in elucidating how CBMs, other domains, and linker regions influence LPMO structure and function. This mini review summarizes recent literature, with particular focus on comparative truncation studies, to provide an overview of the diversity in LPMO modularity and the functional implications of this diversity.
Collapse
|
8
|
Multifunctionality and mechanism of processivity of family GH5 endoglucanase, RfGH5_4 from Ruminococcus flavefaciens on lignocellulosic polymers. Int J Biol Macromol 2022; 224:1395-1411. [DOI: 10.1016/j.ijbiomac.2022.10.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
9
|
de Oliveira Neto M, de Freitas Fernandes A, Piiadov V, Craievich AF, de Araújo EA, Polikarpov I. SAXSMoW 3.0: New advances in the determination of the molecular weight of proteins in dilute solutions from SAXS intensity data on a relative scale. Protein Sci 2022; 31:251-258. [PMID: 34761467 PMCID: PMC8740845 DOI: 10.1002/pro.4227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
SAXSMoW (SAXS Molecular Weight) is an online platform widely used over the past few years for determination of molecular weights of proteins in dilute solutions. The scattering intensity retrieved from small-angle X-ray scattering (SAXS) raw data is the sole input to SAXSMoW for determination of molecular weights of proteins in liquid. The current updated SAXSMoW version 3.0 determines the linear dependence of the true protein volume on their apparent protein volume, based on SAXS curves calculated for 67,000 protein structures selected from the Protein Data Bank. SAXSMoW 3.0 was tested against 43 experimental SAXS scattering curves from proteins with known molecular weights. Our results demonstrate that most of the molecular weights determined for the nonglycosylated and also for the glycosylated proteins are in good agreement with their expected molecular weights. Additionally, the average discrepancies between the calculated molecular weights and their nominal values for glycosylated proteins are similar to those for nonglycosylated ones.
Collapse
Affiliation(s)
- Mario de Oliveira Neto
- Biophysics and Pharmacology DepartmentBioscience Institute, Universidade Estadual PaulistaBotucatuSão PauloBrazil
| | | | - Vassili Piiadov
- Sao Carlos Institute of PhysicsUniversity of Sao PauloSão PauloBrazil
| | | | - Evandro Ares de Araújo
- Brazilian Synchrotron Light LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão PauloBrazil
| | - Igor Polikarpov
- Sao Carlos Institute of PhysicsUniversity of Sao PauloSão PauloBrazil
| |
Collapse
|