1
|
Yu Q, Yang J, Liu L, Huang Y, Wang E, Li D, Yuan H. One-step immobilization of chitosanase on microcrystalline cellulose using a carbohydrate binding module family 2. Carbohydr Polym 2025; 353:123291. [PMID: 39914986 DOI: 10.1016/j.carbpol.2025.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 05/07/2025]
Abstract
Enzyme immobilization technology holds significant value in biocatalysis. Carbohydrate-binding modules (CBMs), with their specific binding to natural polysaccharides, offer a highly promising immobilization method. In the present study, the binding ability with their natural substrates and heterologous expression levels of four CBMs using fluorescent protein tagging were studied, revealing that CBM2r presented the highest immobilization efficiency and expression level. Using the Design of Experiments (DOE), the immobilization conditions for mCherry-CBM2r were optimized, achieving a protein loading of 2.45 wt% on Avicel under optimal conditions: a solid-liquid ratio of 1:30, NaCl concentration of 108 mM, protein concentration of 6 mg/mL, and incubation time of 120 min. Subsequently, CBM2r gene was fused with chitosanase gene from Bacillus subtilis (BsCsn) and expressed in Escherichia coli for establishing a novel one-step immobilization of fusion enzymes mediated by CBM2r on microcrystalline cellulose. The immobilized CBM2r-BsCsn-Avicel was used for batch hydrolysis of high-concentration chitosan to produce chito-oligosaccharides, with the enzyme retaining 96 % substrate degradation efficiency over seven cycles and achieving a space-time yield of 232.8 kg/m3/h. This study provides a simple, cost-effective, environment friendly, and competitive biocatalytic immobilization strategy.
Collapse
Affiliation(s)
- Qijun Yu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaru Huang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dongmei Li
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
A HL, Arul SJ, Basavaraj NM, S P J. Influence of bio fillers on the characteristics of Luffa acutangula fiber reinforced polymer composites and parametric optimization using Taguchi technique. Sci Rep 2024; 14:30730. [PMID: 39730527 DOI: 10.1038/s41598-024-80316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024] Open
Abstract
Developing novel materials is an essential requirement in the engineering field. This study investigates the effects of incorporating wood dust particles on the mechanical and erosive wear properties of Luffa acutangula fiber (LAF)-reinforced phenol-formaldehyde composites, fabricated using the hand layup method with a constant 20% fiber content and varying wood dust particle contents of 0%, 10%, 20%, and 30%. Using the Taguchi method, the study identifies the optimal combination for minimizing erosive wear - 20% wood dust content, 45 m/s impact velocity, 60° impingement angle, 600 μm erodent size, and 60 mm standoff distance-achieving a minimum erosion rate of 189.8 mg/kg. The addition of 20% wood dust results in significant enhancements in mechanical properties, with tensile strength increasing by 17.56%, flexural strength by 48.78%, and impact strength by 54.64%, compared to composites without wood dust. These findings underscore the potential of LAF composites with bio-fillers for lightweight structural applications in sectors prioritizing sustainability and mechanical durability, such as automotive and aerospace.
Collapse
Affiliation(s)
- Haiter Lenin A
- WOLLO University, Kombolcha Institute of Technology, Kombolcha, 208, Ethiopia.
| | | | | | - Jani S P
- Marri Laxman Reddy Institute of Technology and Management, Hyderabad, India
| |
Collapse
|
3
|
Liu Y, Sun G, Liu J, Lou Y, Zhu J, Wang C. Enzymatic production of diverse N-acetyl chitooligosaccharides employing a novel bifunctional chitinase and its engineered variants. Food Chem 2024; 453:139675. [PMID: 38781901 DOI: 10.1016/j.foodchem.2024.139675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Bioproduction of diverse N-acetyl chitooligosaccharides from chitin is of great value. In the study, a novel GH family 18 bifunctional chitinase gene (PsChi82) from Paenibacillus shirakamiensis was identified, expressed and biochemically characterized. PsChi82 was most active at pH 5.0, and 55 °C, and displayed remarkable pH stability with the broad pH range of 3.0-12.0. It showed high chitosanase activity of 10.6 U mg-1 and diverse hydrolysis products of GlcNAc, (GlcNAc)2, GlcN-GlcNAc and (GlcN)2-GlcNAc, which may facilitate comprehensively understanding of structure-function relationships of N-acetyl COSs. Three engineered variants were then expressed and characterized. Among them, PsChi82-CBM26 possessed specific activity of 25.1 U mg-1 against colloidal chitin, which was 2.1 folds higher than that of PsChi82. The diverse N-acetyl COSs were subsequently produced by PsChi82-CBM26 with a sugar content of 23.2 g L-1. These excellent properties may make PsChi82-CBM26 potentially useful for N-acetyl COSs production in the food and chemical industries.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| | - Guangru Sun
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Jing Liu
- School of Life Sciences, Tianjin University, No.92, Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Yimeng Lou
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Jingwen Zhu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin 300222, People's Republic of China.
| |
Collapse
|
4
|
Aer L, Jiang Q, Zhong L, Si Q, Liu X, Pan Y, Feng J, Zeng H, Tang L. Optimization of polyethylene terephthalate biodegradation using a self-assembled multi-enzyme cascade strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134887. [PMID: 38901251 DOI: 10.1016/j.jhazmat.2024.134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Although many efforts have been devoted to the modification of polyethylene terephthalate (PET) hydrolases for improving the efficiency of PET degradation, the catalytic performance of these enzymes at near-ambient temperatures remains a challenge. Herein, a multi-enzyme cascade system (PT-EC) was developed and validated by assembling three well-developed PETases, PETaseEHA, Fast-PETase, and Z1-PETase, respectively, together with carboxylesterase TfCa, and hydrophobic binding module CBM3a using scaffold proteins. The resulting PT-ECEHA, PT-ECFPE, PT-ECZPE all demonstrated outstanding PET degradation efficacy. Notably, PT-ECEHA exhibited a 16.5-fold increase in product release compared to PETaseEHA, and PT-ECZPE yielded the highest amount of product. Subsequently, PT-ECs were displayed on the surface of Escherichia coli, respectively, and their degradation efficiency toward three PET types was investigated. The displayed PT-ECEHA exhibited a 20-fold increase in degradation efficiency with PET film compared to the surface-displayed PETaseEHA. Remarkably, an almost linear increase in product release was observed for the displayed PT-ECZPE over a one-week degradation period, reaching 11.56 ± 0.64 mM after 7 days. TfCaI69W/L281Y evolved using a docking-based virtual screening strategy showed a further 2.5-fold increase in the product release of PET degradation. Collectively, these advantages of PT-EC demonstrated the potential of a multi-enzyme cascade system for PET bio-cycling.
Collapse
Affiliation(s)
- Lizhu Aer
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qifa Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Linling Zhong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiuyue Si
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianghong Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Pan
- Medical School of University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongjuan Zeng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
5
|
Kuroiwa T, Nakagawa Y, Takayanagi R, Kanazawa A. Chitosanase-immobilized magnetite-agar gel particles as a highly stable and reusable biocatalyst for enhanced production of physiologically active chitosan oligosaccharides. Enzyme Microb Technol 2024; 178:110443. [PMID: 38593516 DOI: 10.1016/j.enzmictec.2024.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
A novel immobilized chitosanase was developed and utilized to produce chitosan oligosaccharides (COSs) via chitosan hydrolysis. Magnetite-agar gel particles (average particle diameter: 338 μm) were prepared by emulsifying an aqueous agar solution dispersing 200-nm magnetite particles with isooctane containing an emulsifier at 80 °C, followed by cooling the emulsified mixture. The chitosanase from Bacillus pumilus was immobilized on the magnetite-agar gel particles chemically activated by introducing glyoxyl groups with high immobilization yields (>80%), and the observed specific activity of the immobilized chitosanase was 16% of that of the free enzyme. This immobilized chitosanase could be rapidly recovered from aqueous solutions by applying magnetic force. The thermal stability of the immobilized chitosanase improved remarkably compared with that of free chitosanase: the deactivation rate constants at 35 °C of the free and immobilized enzymes were 8.1 × 10-5 and 3.9 × 10-8 s-1, respectively. This immobilized chitosanase could be reused for chitosan hydrolysis at 75 °C and pH 5.6, and 80% of its initial activity was maintained even after 10 cycles of use. COSs with a degree of polymerization (DP) of 2-7 were obtained using this immobilized chitosanase, and the product content of physiologically active COSs (DP ≥ 5) reached approximately 50%.
Collapse
Affiliation(s)
- Takashi Kuroiwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan.
| | - Yuta Nakagawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Ryuichi Takayanagi
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Akihiko Kanazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| |
Collapse
|
6
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
7
|
Gao W, Li Y, Zhang X, Qiao M, Ji Y, Zheng J, Gao L, Yuan S, Huang H. DNA-Directed Assembly of Hierarchical MOF-Cellulose Nanofiber Microbioreactors with "Branch-Fruit" Structures. NANO LETTERS 2024; 24:3404-3412. [PMID: 38451852 DOI: 10.1021/acs.nanolett.3c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Assembling metal-organic frameworks (MOFs) into ordered multidimensional porous superstructures promises the encapsulation of enzymes for heterogeneous biocatalysts. However, the full potential of this approach has been limited by the poor stability of enzymes and the uncontrolled assembly of MOF nanoparticles onto suitable supports. In this study, a novel and exceptionally robust Ni-imidazole-based MOF was synthesized in water at room temperature, enabling in situ enzyme encapsulation. Based on this MOF platform, we developed a DNA-directed assembly strategy to achieve the uniform placement of MOF nanoparticles onto bacterial cellulose nanofibers, resulting in a distinctive "branch-fruit" structure. The resulting hybrid materials demonstrated remarkable versatility across various catalytic systems, accommodating natural enzymes, nanoenzymes, and multienzyme cascades, thus showcasing enormous potential as universal microbioreactors. Furthermore, the hierarchical composites facilitated rapid diffusion of the bulky substrate while maintaining the enzyme stability, with ∼3.5-fold higher relative activity compared to the traditional enzyme@MOF immobilized in bacterial cellulose nanofibers.
Collapse
Affiliation(s)
- Wanning Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Youcong Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
8
|
Guo J, Gao W, Zhang X, Pan W, Zhang X, Man Z, Cai Z. Enhancing the thermostability and catalytic activity of Bacillus subtilis chitosanase by saturation mutagenesis of Lys242. Biotechnol J 2024; 19:e2300010. [PMID: 37705423 DOI: 10.1002/biot.202300010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Catalysis activity and thermostability are some of the fundamental characteristic of enzymes, which are of great significance to their industrial applications. Bacillus subtilis chitosanase BsCsn46A is a kind of enzyme with good catalytic activity and stability, which can hydrolyze chitosan to produce chitobiose and chitotriose. In order to further improve the catalytic activity and stability of BsCsn46A, saturation mutagenesis of the C-terminal K242 of BsCsn46A was performed. The results showed that the six mutants (K242A, K242D, K242E, K242F, K242P, and K242T) showed increased catalytic activity on chitosan. The catalytic activity of K242P increased from 12971 ± 597 U mg-1 of wild type to 17820 ± 344 U mg-1 , and the thermostability of K242P increased by 2.27%. In order to elucidate the reason for the change of enzymatic properties, hydrogen network, molecular docking, and molecular dynamics simulation were carried out. The hydrogen network results showed that all the mutants lose their interaction with Asp6 at 242 site, thereby increasing the flexibility of Glu19 at the junction sites of α1 and loop1. Molecular dynamics results showed that the RMSD of K242P was lower at both 313 and 323 K than that of other mutants, which supported that K242P had better thermostability. The catalytic activity of mutant K242P reached 17820.27 U mg-1 , the highest level reported so far, which could be a robust candidate for the industrial application of chitooligosaccharide (COS) production.
Collapse
Affiliation(s)
- Jing Guo
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xuan Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Wenxin Pan
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xin Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| |
Collapse
|
9
|
Liu G, Chang Y, Mei X, Chen G, Zhang Y, Jiang X, Tao W, Xue C. Identification and structural characterization of a novel chondroitin sulfate-specific carbohydrate-binding module: The first member of a new family, CBM100. Int J Biol Macromol 2024; 255:127959. [PMID: 37951443 DOI: 10.1016/j.ijbiomac.2023.127959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Chondroitin sulfate is a biologically and commercially important polysaccharide with a variety of applications. Carbohydrate-binding module (CBM) is an important class of carbohydrate-binding protein, which could be utilized as a promising tool for the applications of polysaccharides. In the present study, an unknown function domain was explored from a putative chondroitin sulfate lyase in PL29 family. Recombinant PhCBM100 demonstrated binding capacity to chondroitin sulfates with Ka values of 2.1 ± 0.2 × 106 M-1 and 6.0 ± 0.1 × 106 M-1 to chondroitin sulfate A and chondroitin sulfate C, respectively. The 1.55 Å resolution X-ray crystal structure of PhCBM100 exhibited a β-sandwich fold formed by two antiparallel β-sheets. A binding groove in PhCBM100 interacting with chondroitin sulfate was subsequently identified, and the potential of PhCBM100 for visualization of chondroitin sulfate was evaluated. PhCBM100 is the first characterized chondroitin sulfate-specific CBM. The novelty of PhCBM100 proposed a new CBM family of CBM100.
Collapse
Affiliation(s)
- Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xiaoxiao Jiang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Wenwen Tao
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
10
|
Tu KJ, Diplas BH, Regal JA, Waitkus MS, Pirozzi CJ, Reitman ZJ. Mining cancer genomes for change-of-metabolic-function mutations. Commun Biol 2023; 6:1143. [PMID: 37950065 PMCID: PMC10638295 DOI: 10.1038/s42003-023-05475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Enzymes with novel functions are needed to enable new organic synthesis techniques. Drawing inspiration from gain-of-function cancer mutations that functionally alter proteins and affect cellular metabolism, we developed METIS (Mutated Enzymes from Tumors In silico Screen). METIS identifies metabolism-altering cancer mutations using mutation recurrence rates and protein structure. We used METIS to screen 298,517 cancer mutations and identify 48 candidate mutations, including those previously identified to alter enzymatic function. Unbiased metabolomic profiling of cells exogenously expressing a candidate mutant (OGDHLp.A400T) supports an altered phenotype that boosts in vitro production of xanthosine, a pharmacologically useful chemical that is currently produced using unsustainable, water-intensive methods. We then applied METIS to 49 million cancer mutations, yielding a refined set of candidates that may impart novel enzymatic functions or contribute to tumor progression. Thus, METIS can be used to identify and catalog potentially-useful cancer mutations for green chemistry and therapeutic applications.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 21044, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Bill H Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joshua A Regal
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
| | | | | | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Pathology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Wu C, Yu X, Zheng P, Chen P, Wu D. Rational Redesign of Chitosanase to Enhance Thermostability and Catalytic Activity to Produce Chitooligosaccharides with a Relatively High Degree of Polymerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15213-15223. [PMID: 37793074 DOI: 10.1021/acs.jafc.3c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Chitooligosaccharides (hdpCOS) with a high degree of polymerization (hdp, DP 4-10) generally have greater biological activities than those of low-DP (ldp, DP 2-3) COS. Chitosanase from Bacillus amyloliquefaciens KCP2 (Csn46) can degrade chitosan to more hdpCOS at high temperature (70 °C), but low thermal stability at this temperature makes it unsuitable for industrial application; the wild-type enzyme can only produce COS (DP 2-4) at lower temperatures. Several thermostable mutants were obtained by modifying chitosanase using a comprehensive strategy based on a computer-aided mutant design. A combination of four beneficial single-point mutations (A129L/T175 V/K70T/D34G) to Csn46 was selected to obtain a markedly improved mutant, Mut4, with a half-life at 60 °C extended from 34.31 to 690.80 min, and the specific activity increased from 1671.73 to 3528.77 U/mg. Mut4 produced COS with DPs of 2-4 and 2-7 at 60 and 70 °C, respectively. Therefore, Mut4 has the potential to be applied to the industrial-scale preparation of hdpCOS with high biological activity.
Collapse
Affiliation(s)
- Changyun Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
12
|
Padhan B, Ray M, Patel M, Patel R. Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products. MEMBRANES 2023; 13:673. [PMID: 37505039 PMCID: PMC10384387 DOI: 10.3390/membranes13070673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The demand for bioactive molecules with nutritional benefits and pharmaceutically important properties is increasing, leading researchers to develop modified production strategies with low-cost purification processes. Recent developments in bioreactor technology can aid in the production of valuable products. Enzyme membrane bioreactors (EMRs) are emerging as sustainable synthesis processes in various agro-food industries, biofuel applications, and waste management processes. EMRs are modified reactors used for chemical reactions and product separation, particularly large-molecule hydrolysis and the conversion of macromolecules. EMRs generally produce low-molecular-weight carbohydrates, such as oligosaccharides, fructooligosaccharides, and gentiooligosaccharides. In this review, we provide a comprehensive overview of the use of EMRs for the production of valuable products, such as oligosaccharides and oligodextrans, and we discuss their application in the bioconversion of inulin, lignin, and sugars. Furthermore, we critically summarize the application and limitations of EMRs. This review provides important insights that can aid in the production of valuable products by food and pharmaceutical industries, and it is intended to assist scientists in developing improved quality and environmentally friendly prebiotics using EMRs.
Collapse
Affiliation(s)
- Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Madhubanti Ray
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| |
Collapse
|
13
|
An Insight into the Essential Role of Carbohydrate-Binding Modules in Enzymolysis of Xanthan. Int J Mol Sci 2023; 24:ijms24065480. [PMID: 36982553 PMCID: PMC10049358 DOI: 10.3390/ijms24065480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx and PspCBM84, respectively, derived from Microbacterium sp. XT11 and Paenibacillus sp. 62047—in catalytic properties of endotype xanthanase MiXen were investigated for the first time. Basic characterizations and kinetic parameters of different recombinants revealed that, compared with MiCBMx, PspCBM84 dramatically increased the thermostability of endotype xanthanase, and endowed the enzyme with higher substrate affinity and catalytic efficiency. Notably, the activity of endotype xanthanase was increased by 16 times after being fused with PspCBM84. In addition, the presence of both CBMs obviously enabled endotype xanthanase to produce more oligoxanthan, and xanthan digests prepared by MiXen-CBM84 showed better antioxidant activity due to the higher content of active oligosaccharides. The results of this work lay a foundation for the rational design of endotype xanthanase and the industrial production of oligoxanthan in the future.
Collapse
|
14
|
Gu Q, Lu Y, Zhou J, Yang W, Wang K, Liu X, Yu X. Enhancement of catalytic performance of alginate lyase through combinational site-directed mutagenesis. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Yang W, Zhou J, Gu Q, Harindintwali JD, Yu X, Liu X. Combinatorial Enzymatic Catalysis for Bioproduction of Ginsenoside Compound K. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3385-3397. [PMID: 36780449 DOI: 10.1021/acs.jafc.2c08773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ginsenoside compound K (CK) is an emerging functional food or pharmaceutical product. To date, there are still challenges to exploring effective catalytic enzymes for enzyme-catalyzed manufacturing processes and establishing enzyme-catalyzed processes. Herein, we identified three ginsenoside hydrolases BG07 (glucoamylase), BG19 (β-glucosidase), and BG23 (β-glucosidase) from Aspergillus tubingensis JE0609 by transcriptome analysis and peptide mass fingerprinting. Among them, BG23 was expressed in Komagataella phaffii with a high volumetric activity of 235.73 U mL-1 (pNPG). Enzymatic property studies have shown that BG23 is an acidic (pH adaptation range of 4.5-7.0) and mesophilic (thermostable < 50 °C) enzyme. Moreover, a one-pot combinatorial enzyme-catalyzed strategy based on BG23 and BGA35 (β-galactosidase from Aspergillus oryzae) was established, with a high CK yield of 396.7 mg L-1 h-1. This study explored the ginsenoside hydrolases derived from A. tubingensis at the molecular level and provided a reference for the efficient production of CK.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550003, Guizhou, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
16
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
17
|
Xu Y, Li L, Cao S, Zhu B, Yao Z. An updated comprehensive review of advances on structural features, catalytic mechanisms, modification methods and applications of chitosanases. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Li Z, Li W, Wang Y, Chen Z, Nakanishi H, Xu X, Gao XD. Establishment of a Novel Cell Surface Display Platform Based on Natural "Chitosan Beads" of Yeast Spores. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7479-7489. [PMID: 35678723 DOI: 10.1021/acs.jafc.2c01983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell surface display technology, which expresses and anchors proteins on the surface of microbial cells, has broad application prospects in many fields, such as protein library screening, biocatalysis, and biosensor development. However, traditional cell surface display systems have disadvantages: the molecular weight of phage display proteins cannot be too large; bacterial display lacks the post-translational modification process for eukaryotic proteins; yeast display is prone to excessive protein glycosylation and misfolding of multisubunit proteins; and the compatibility of Bacillus subtilis spore display needs to be further improved. Therefore, it is extremely valuable to develop an efficient surface display platform with strong universality and stress resistance properties. Although yeast surface display systems have been extensively investigated, the establishment of a surface display platform using yeast spores has rarely been reported. In this study, a novel cell surface display platform based on natural "chitosan beads" of yeast spores was developed. The target protein in fusion with the chitosan affinity protein (CAP) exhibited strong binding capability with "chitosan beads" of yeast spores in vitro and in vivo. Moreover, this protein display system showed highly preferable enzymatic properties and stability. As an example, the displayed LXYL-P1-2-CAP demonstrated high thermostability and reusability (60% of the initial activity after seven cycles of reuse), high storage stability (75% of original activity after 8 weeks), and excellent tolerance to a concentration up to 75% (v/v) organic reagents. To prove the practicability of this surface display system, the semisynthesis of paclitaxel intermediate was demonstrated and its highest conversion rate was 92% using 0.25 mM substrate. This study provides a novel and useful platform for the surface display of proteins, especially for multimeric macromolecular proteins of eukaryotic origin.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wanjie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yasen Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiangyang Xu
- Zaozhuang Jienuo Enzyme Co., Ltd., Zaozhuang 277100, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
19
|
Guan Z, Feng Q. Chitosan and Chitooligosaccharide: The Promising Non-Plant-Derived Prebiotics with Multiple Biological Activities. Int J Mol Sci 2022; 23:ijms23126761. [PMID: 35743209 PMCID: PMC9223384 DOI: 10.3390/ijms23126761] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Biodegradable chitin is the second-most abundant natural polysaccharide, widely existing in the exoskeletons of crabs, shrimps, insects, and the cell walls of fungi. Chitosan and chitooligosaccharide (COS, also named chitosan oligosaccharide) are the two most important deacetylated derivatives of chitin. Compared with chitin, chitosan and COS not only have more satisfactory physicochemical properties but also exhibit additional biological activities, which cause them to be widely applied in the fields of food, medicine, and agriculture. Additionally, due to their significant ability to improve gut microbiota, chitosan and COS are deemed prospective prebiotics. Here, we introduced the production, physicochemical properties, applications, and pharmacokinetic characteristics of chitosan and COS. Furthermore, we summarized the latest research on their antioxidant, anti-inflammatory, and antimicrobial activities. Research progress on the prebiotic functions of chitosan and COS is particularly reviewed. We creatively analyzed and discussed the mechanisms and correlations underlying these activities of chitosan and COS and their physicochemical properties. Our work enriched people's understanding of these non-plant-derived prebiotics. Based on this review, the future directions of research on chitosan and COS are explored. Collectively, optimizing the production technology of chitin derivatives and enriching understanding of their biological functions will shed more light on their capability to improve human health.
Collapse
Affiliation(s)
- Zhiwei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China;
- School of Life Science, Qilu Normal University, Jinan 250200, China
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266347, China
- Correspondence:
| |
Collapse
|
20
|
Techno-functional, biological and structural properties of Spirulina platensis peptides from different proteases. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Enhancement of the performance of the GH75 family chitosanases by fusing a carbohydrate binding module and insights into their substrate binding mechanisms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
23
|
Biochemical characterization and cleavage pattern analysis of a novel chitosanase with cellulase activity. Appl Microbiol Biotechnol 2022; 106:1979-1990. [PMID: 35175399 DOI: 10.1007/s00253-022-11829-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
Abstract
Chitosanases are critical tools for the preparation of active oligosaccharides, whose composition is related to the cleavage pattern of the enzyme. Although numerous chitosanases have been characterized, the glycoside hydrolase (GH) family 5 chitosanases with other activities have rarely been investigated. Herein, a novel and second GH5 chitosanase OUC-Csngly from Streptomyces bacillaris was cloned and further characterized by expression in Escherichia coli BL21 (DE3). Interestingly, OUC-Csngly possessed dual chitosanase and cellulase activities. Molecular docking analysis showed that the C-2 group of sugar units affected the binding of the enzyme to oligosaccharides, which could result in different cleavage patterns toward chito-oligosaccharides (COSs) and cello-oligosaccharides. Further, we characterized OUC-Csngly's distinctive cleavage patterns toward two different types of oligosaccharides. Meanwhile, endo-type chitosanase OUC-Csngly generated (GlcN) - (GlcN)4 from chitosan, was significantly different from other chitosanases. To our knowledge, this is the first report to investigate the different cleavage patterns of chitosanase for COSs and cello-oligosaccharides.Key points• The molecular docking showed C-2 group of sugar units in substrate affecting the cleavage pattern.• The first chitosanase exhibited different cleavage patterns towards chito- and cello-oligosaccharides.• The groups at C-2 influence the subsite composition of the enzyme's active cleft.
Collapse
|