1
|
Kumar A, Yadav B, Roy A, Mishra P, Poluri KM, Gupta P. Biochemical insights into synergistic Candida biofilm disintegrating ability of p-cymene inclusion complex and miconazole. Eur J Pharmacol 2025; 993:177365. [PMID: 39938856 DOI: 10.1016/j.ejphar.2025.177365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Phytoactive molecules emerge as a plentiful reservoir of adjuvant and antifungal agents. The resolution of solubility and stability issues has been facilitated by developing molecular complexes or inclusion complexes of phytoactive molecules. Miconazole (MCZ) is a favoured azole with low off-target impact, however, its pharmacological efficacy requires a revamp to enhance its suitability as an antifungal drug. Hence, the present investigation delves into the mechanism of action of the p-cymene/β-cyclodextrin inclusion complex (IC) along with MCZ against Candida albicans and Candidaglabrata biofilms. The synergy between IC and MCZ has been estimated at a concentration of 6.25 μg/mL IC + 0.5 μg/mL MCZ with a FICI of 0.19. The prepared IC + MCZ displayed remarkable antifungal properties against planktonic and sessile growth of Candida species. IC + MCZ exhibited a notable 80% biofilm eradication potential against both species, corroborated by morphological analysis using FE-SEM. The results indicated that IC/IC + MCZ acts by disrupting the biochemical composition of the ECM, altering the surface properties of the cells, reducing ergosterol, enhancing membrane permeability, and inducing oxidative stress. In conclusion, the study highlighted the synergistic antibiofilm activity of p-cymene IC with miconazole against Candida species. In summary, IC + MCZ has been established as a potent antifouling agent against Candida species, warranting further exploration for potential formulation with additional investigations.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248001, Uttarakhand, India
| | - Bhawana Yadav
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248001, Uttarakhand, India
| | - Ankita Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Purusottam Mishra
- Biotechnology Centre, Silesian University of Technology, 8 Krzywousty Street, Gliwice, 44-100, Poland
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Payal Gupta
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
2
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Strategies for controlling polymicrobial biofilms: A focus on antibiofilm agents. Int J Antimicrob Agents 2024; 64:107243. [PMID: 38908533 DOI: 10.1016/j.ijantimicag.2024.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Polymicrobial biofilms are among the leading causes of antimicrobial treatment failure. In these biofilms, bacterial and fungal pathogens interact synergistically at the interspecies, intraspecies, and interkingdom levels. Consequently, combating polymicrobial biofilms is substantially more difficult compared to single-species biofilms due to their distinct properties and the resulting potential variation in antimicrobial drug efficiency. In recent years, there has been an increased focus on developing alternative strategies for controlling polymicrobial biofilms formed by bacterial and fungal pathogens. Current approaches for controlling polymicrobial biofilms include monotherapy (using either natural or synthetic compounds), combination treatments, and nanomaterials. Here, a comprehensive review of different types of polymicrobial interactions between pathogenic bacterial species or bacteria and fungi is provided along with a discussion of their relevance. The mechanisms of action of individual compounds, combination treatments, and nanomaterials against polymicrobial biofilms are thoroughly explored. This review provides various future perspectives that can advance the strategies used to control polymicrobial biofilms and their likely modes of action. Since the majority of research on combating polymicrobial biofilms has been conducted in vitro, it would be an essential step in performing in vivo tests to determine the clinical effectiveness of different treatments against polymicrobial biofilms.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
3
|
Chen R, Wen H, Gao X, Zhao W, Aleem AR. Natural and polyanionic heparin polysaccharide functionalized upconversion nanoparticles for highly sensitive and selective ratiometric detection of pesticide. Int J Biol Macromol 2024; 275:133097. [PMID: 38942670 DOI: 10.1016/j.ijbiomac.2024.133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Pesticide contamination is a global concern, threatening human health and food safety. Herein, we developed heparin (HEP) functionalized upconversion nanoparticles (UCNPs)-based ratiometric nanosensor for the sensitive detection of 2,6-dichloro-4-nitroaniline (DCN) pesticide via inner filter effect. The strategy for HEP functionalization of UCNPs is based on adjusting the surface potentials of UCNPs with polyanionic HEP through the electrostatic interaction. UCNPs (NaYbF4:Gd/Y/Tm@NaYbF4@NaYF4) was designed with core-shell-shell structure and extra sensitizer layer for efficient and strong upconversion luminescence (UCL) in the range of UV to NIR. After incorporation of DCN, the upconverted UV emission of UCNPs-HEP ratiometric nanosensor was considerably quenched with the NIR UCL at 800 nm remaining unchanged as internal standard. The UCNPs-HEP ratiometric nanosensor can achieve outstandingly selective and sensitive detection of DCN at the wide linear range of 5-300 μM with a detection limit of 0.41 μM. The remarkable applicability of the UCNPs-HEP ratiometric nanosensor was verified in apple, cucumber and grapes samples. The developed UCNPs-HEP ratiometric nanosensor with excellent biocompatibility and water dispersion capability, is promising for convenient, selective and sensitive sensing of DCN towards food and aqueous samples.
Collapse
Affiliation(s)
- Rihui Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Xin Gao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiren Zhao
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Abdur Raheem Aleem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
4
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Meher MK, Naidu G, Mishra A, Poluri KM. A review on multifaceted biomedical applications of heparin nanocomposites: Progress and prospects. Int J Biol Macromol 2024; 260:129379. [PMID: 38242410 DOI: 10.1016/j.ijbiomac.2024.129379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Advances in polymer-based nanocomposites have revolutionized biomedical applications over the last two decades. Heparin (HP), being a highly bioactive polymer of biological origin, provides strong biotic competence to the nanocomposites, broadening the horizon of their applicability. The efficiency, biocompatibility, and biodegradability properties of nanomaterials significantly improve upon the incorporation of heparin. Further, inclusion of structural/chemical derivatives, fractionates, and mimetics of heparin enable fabrication of versatile nanocomposites. Modern nanotechnological interventions have exploited the inherent biofunctionalities of heparin by formulating various nanomaterials, including inorganic/polymeric nanoparticles, nanofibers, quantum dots, micelles, liposomes, and nanogels ensuing novel functionalities targeting diverse clinical applications involving drug delivery, wound healing, tissue engineering, biocompatible coatings, nanosensors and so on. On this note, the present review explicitly summarises the recent HP-oriented nanotechnological developments, with a special emphasis on the reported successful engagement of HP and its derivatives/mimetics in nanocomposites for extensive applications in the laboratory and health-care facility. Further, the advantages and limitations/challenges specifically associated with HP in nanocomposites, undertaken in this current review are quintessential for future innovations/discoveries pertaining to HP-based nanocomposites.
Collapse
Affiliation(s)
- Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
6
|
Meher MK, Unnikrishnan BS, Tripathi DK, Packirisamy G, Poluri KM. Baicalin functionalized PEI-heparin carbon dots as cancer theranostic agent. Int J Biol Macromol 2023; 253:126846. [PMID: 37717866 DOI: 10.1016/j.ijbiomac.2023.126846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
The worldwide prevalence of cancer and its significantly rising risks with age have garnered the attention of nanotechnology for prompt detection and effective therapy with minimal or no adverse effects. In the current study, heparin (HP) polymer derived heteroatom (N, S-) co-doped CDs were synthesized using hydrothermal synthesis method to efficiently deliver natural anticancer compound baicalin (BA). Heparin carbon dots (HCDs) were passivated with polyethylenimine (PEI) to improve its fluorescence quantum yield. The surface passivation of CDs by polycationic PEI polymer not only facilitated loading of BA, but also played a crucial role in the pH-responsive drug delivery. The sustained release of BA (up to 80 %) in mildly acidic pH (5.5 and 6.5) conditions endorsed its drug delivery potential for cancer-specific microenvironments. BA-loaded PHCDs exhibited enhanced anticancer activity as compared to BA/PHCDs indicating the effectiveness of the nanoformulation, Furthermore, the flow cytometry analysis confirmed that BA-PHCDs treated cells were arrested in the G2/M phase of cell cycle and had a higher potential for apoptosis. Bioimaging study demonstrated the excellent cell penetration efficiency of PHCDs with complete cytoplasmic localization. All this evidence comprehensively demonstrates the potency of BA-loaded PHCDs as a nanotheranostic agent for cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - B S Unnikrishnan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
7
|
Lee JH, Yang SB, Lee JH, Lim H, Lee S, Kang TB, Lim JH, Kim YJ, Park J. Doxorubicin covalently conjugated heparin displays anti-cancer activity as a self-assembled nanoparticle with a low-anticoagulant effect. Carbohydr Polym 2023; 314:120930. [PMID: 37173028 DOI: 10.1016/j.carbpol.2023.120930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023]
Abstract
Heparin is a glycosaminoglycans (GAGs) member and well-known FDA-approved anticoagulant that has been widely used in the clinic for 100 years. It has also been evaluated in various fields for further clinical applications, such as in anti-cancer or anti-inflammatory therapy beyond its anticoagulant effect. Here, we sought to utilize heparin molecules as drug carriers by directly conjugating the anticancer drug doxorubicin to the carboxyl group of unfractionated heparin. Given the molecular action of doxorubicin in intercalating DNA, it is expected to be less effective when structurally combined with other molecules. However, by utilizing doxorubicin molecules to produce reactive oxygen species (ROS), we found that the heparin-doxorubicin conjugates have significant cytotoxic ability to kill CT26 tumor cells with low anticoagulant activity. Several doxorubicin molecules were bound to heparin to provide sufficient cytotoxic capability and self-assembly ability due to their amphiphilic properties. The self-assembled formation of these nanoparticles was demonstrated through DLS, SEM and TEM. The cytotoxic ROS-generating doxorubicin-conjugated heparins could inhibit tumor growth and metastasis in CT26-bearing Balb/c animal models. Our results demonstrate that this cytotoxic doxorubicin-based heparin conjugate can significantly inhibit tumor growth and metastasis, thus showing promise as a potential new anti-cancer therapeutic.
Collapse
Affiliation(s)
- Jae-Hyeon Lee
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Seong-Bin Yang
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Jun-Hyuck Lee
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Hansol Lim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Seokwoo Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Bong Kang
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Jun Kim
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Jooho Park
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
8
|
Mishra P, Gupta P, Srivastava R, Srivastava AK, Poluri KM, Prasad R. Exploration of Antibiofilm and In Vivo Wound Healing Activity of p-Cymene-Loaded Gellan/PVA Nanofibers. ACS APPLIED BIO MATERIALS 2023; 6:1816-1831. [PMID: 37075306 DOI: 10.1021/acsabm.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Wound dressings with outstanding biocompatibility, antimicrobial, and tissue regeneration activities are essential to manage emerging recalcitrant antifungal infections to speed up healing. In this study, we have engineered p-cymene-loaded gellan/PVA nanofibers using electrospinning. Morphological and physicochemical properties of the nanofibers were characterized using a multitude of techniques to validate the successful integration of p-cymene (p-cym). The fabricated nanomaterials exhibited strong antibiofilm activity against Candida albicans and Candida glabrata compared to pure p-cymene. In vitro biocompatibility assay demonstrated that nanofibers did not possess any cytotoxicity to the NIH3T3 cell lines. In vivo, full-thickness excision wound healing study showed that the nanofibers were able to heal skin lesions faster than the conventional clotrimazole gel in 24 days without forming any scar. These findings unraveled p-cymene-loaded gellan gum (GA)/poly(vinyl alcohol) (PVA) nanofibers as an effective biomaterial for cutaneous tissue regeneration.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Biotechnology, Graphic Era University, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad 244001, Uttar Pradesh, India
| | - Amit Kumar Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
9
|
Štefánek M, Wenner S, Borges V, Pinto M, Gomes JP, Rodrigues J, Faria I, Pessanha MA, Martins F, Sabino R, Veríssimo C, Nogueira ID, Carvalho PA, Bujdáková H, Jordao L. Antimicrobial Resistance and Biofilms Underlying Catheter-Related Bloodstream Coinfection by Enterobacter cloacae Complex and Candida parapsilosis. Antibiotics (Basel) 2022; 11:antibiotics11091245. [PMID: 36140024 PMCID: PMC9495738 DOI: 10.3390/antibiotics11091245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Biofilm-associated infections are a public health concern especially in the context of healthcare-associated infections such as catheter-related bloodstream infections (CRBSIs). We evaluated the biofilm formation and antimicrobials resistance (AMR) of Enterobacter cloacae complex and Candida parapsilosis co-isolated from a CRBSI patient. Antimicrobial susceptibility of central venous catheters (CVCs) and hemoculture (HC) isolates was evaluated, including whole genome sequencing (WGS) resistome analysis and evaluation of gene expression to obtain insight into their AMR determinants. Crystal violet assay was used to assess dual biofilm biomass and microscopy was used to elucidate a microorganism’s distribution within biofilms assembled on different materials. Bacteria were multidrug-resistant including resistance to colistin and beta-lactams, likely linked to the mcr-9-like phosphoethanolamine transferase and to an ACT family cephalosporin-hydrolyzing class C beta-lactamase, respectively. The R398I and Y132F mutations in the ERG11 gene and its differential expression might account for C. parapsilosis resistance to fluconazole. The phenotype of dual biofilms assembled on glass, polystyrene and polyurethane depends on the material and how biofilms were initiated by one or both pathogens. Biofilms assembled on polyurethane were denser and richer in the extracellular polymeric matrix, and microorganisms were differently distributed on the inner/outer surface of the CVC.
Collapse
Affiliation(s)
- Matúš Štefánek
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | | | - Vítor Borges
- Genomics and Bioinformatic Unit, Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatic Unit, Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatic Unit, Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
| | - João Rodrigues
- Unidade Laboratorial Integrada de Microbiologia, Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
| | - Isabel Faria
- Laboratório de Microbiologia e Biologia Molecular do Serviço de Patologia Clínica, Centro Hospitalar de lisboa Ocidental (CHLO), 1349-019 Lisboa, Portugal
| | - Maria Ana Pessanha
- Laboratório de Microbiologia e Biologia Molecular do Serviço de Patologia Clínica, Centro Hospitalar de lisboa Ocidental (CHLO), 1349-019 Lisboa, Portugal
| | - Filomena Martins
- Direção do Programa de Prevenção e Controlo de Infeção e Resistência aos Antimicrobianos, Centro Hospitalar de lisboa Ocidental (CHLO), 1349-019 Lisboa, Portugal
| | - Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
| | | | | | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- Unidade de Investigação & Desenvolvimento, Departamento de Saúde Ambiental, Instituto Nacional de Saude Dr. Ricardo Jorge (INSA),1649-016 Lisboa, Portugal
- Correspondence:
| |
Collapse
|