1
|
Gao T, Wang W, Wang M, He X, Ma F, Zhang W, Zhang S, Wilson G, Yang Z, Sa Y, Zhang Y, Chen G, Ma X. Innovative dopamine-modified carbon quantum dot fluorescence sensor meets affinity chromatography: A breakthrough in Tyrosinase inhibitor screening in food. Food Chem 2025; 481:144038. [PMID: 40157100 DOI: 10.1016/j.foodchem.2025.144038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Tyrosinase (TYR), a polyphenol oxidase crucial for melanin synthesis, plays various biological functions, and its inhibitors are widely used in the cosmetics and food industries for skin-lightening and anti-browning applications. Here, an innovative method that integrates biosensing with affinity chromatography was developed, enabling the rapid and precise identification of TYR inhibitors in food. The biosensing segment used a dopamine-modified carbon quantum dot fluorescence sensor for quick detection of TYR inhibitors in complex food samples. In affinity chromatography, bioactive compounds were accurately captured, separated, and identified. The method was validated using both positive and negative controls and applied to screen for TYR inhibitors in 21 foods. The results revealed Wolfberry significantly inhibits TYR, with 2-O-β-D-Glucopyranosyl-L-ascorbic acid (AA-2βG) identified as the active compound. Molecular docking demonstrated strong binding between AA-2βG and TYR, and anti-browning tests confirmed its effectiveness. The findings highlight the potential for quickly identifying enzyme inhibitors in food.
Collapse
Affiliation(s)
- Tao Gao
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Mei Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Xinmin He
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Fen Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Weiman Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Shuxian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Zhigang Yang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Yue Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China
| | - Guoning Chen
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China.
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750001, China.
| |
Collapse
|
2
|
Nemzer BV, Al-Taher F, Kalita D, Yashin AY, Yashin YI. Health-Improving Effects of Polyphenols on the Human Intestinal Microbiota: A Review. Int J Mol Sci 2025; 26:1335. [PMID: 39941107 PMCID: PMC11818678 DOI: 10.3390/ijms26031335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Dietary polyphenols are garnering attention in the scientific community due to their potential health-beneficial properties and preventative effects against chronic diseases, viz. cardiovascular diseases, diabetes, obesity, and neurodegenerative diseases. Polyphenols are antioxidants that change microbial composition by suppressing pathogenic bacteria and stimulating beneficial bacteria. The interaction of polyphenols with dietary fibers affects their bioaccessibility in the upper and lower parts of the digestive tract. Dietary fibers, polyphenols, their conjugates, and their metabolites modulate microbiome population and diversity. Consuming polyphenol-rich dietary fibers such as pomegranate, cranberry, berries, and tea improves gut health. A complex relationship exists between polyphenol-rich diets and gut microbiota for functioning in human health. In this review, we provide an overview of the interactions of dietary polyphenols, fibers, and gut microbiota, improving the understanding of the functional properties of dietary polyphenols.
Collapse
Affiliation(s)
- Boris V. Nemzer
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fadwa Al-Taher
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
| | - Diganta Kalita
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
| | - Alexander Y. Yashin
- International Analytical Center of Zelinsky Institute of Organic Chemistry of Russian Academy of Science, Moscow 119991, Russia; (A.Y.Y.); (Y.I.Y.)
| | - Yakov I. Yashin
- International Analytical Center of Zelinsky Institute of Organic Chemistry of Russian Academy of Science, Moscow 119991, Russia; (A.Y.Y.); (Y.I.Y.)
| |
Collapse
|
3
|
Barrera-Chamorro L, Fernandez-Prior Á, Rivero-Pino F, Montserrat-de la Paz S. A comprehensive review on the functionality and biological relevance of pectin and the use in the food industry. Carbohydr Polym 2025; 348:122794. [PMID: 39562070 DOI: 10.1016/j.carbpol.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
Pectin is a natural biopolymer, which can be extracted from food by-products, adding value to raw material, with a structure more complex than that of other polysaccharides. The gelling properties of these molecules, together with the bioactivity that these can exert, make them suitable to be used as ingredients and bioactive agents. In this review, the characterization of pectin (structure, sources, techno-functional, and biological properties), the extraction methods, and their use in the food industry (food packaging, as carriers, and as ingredients) are described. Different by-products can be used as substrates to extract pectin, enhancing a sustainable food system as described by the circular economy principles. Pectin is characterized for their techno-functional and biological properties, such as gelling and thickening properties or modulation of microbiota both in animals and humans. Such properties make these molecules suitable for a wide range of applications within the food chain, serving as packaging or carriers in foodstuff, or for direct use as functional ingredients as fiber. Overall, pectin has been shown to exert as promising components to be introduced in the food system, although further research on scaling-up the production process and feasibility has to be done.
Collapse
Affiliation(s)
- Luna Barrera-Chamorro
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - África Fernandez-Prior
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain; European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
4
|
Su Y, Li S, Hu T, Zhang J, Roknul Azam SM, Ren A. Reducing the oil absorption and oil deterioration in fried apple slices by ultrasound integrated in infrared frying. ULTRASONICS SONOCHEMISTRY 2024; 111:107125. [PMID: 39490145 PMCID: PMC11550715 DOI: 10.1016/j.ultsonch.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The effects of integrated ultrasonic infrared frying (USIF) on the oil absorption of apple slices and the oil deterioration were studied with frequency of 28 and 40 kHz, respectively. Results showed that the heat transfer and moisture migration was accelerated by the integrated ultrasound in IF. The soluble Gal-A content and esterification degree of pectin was increased, the damages of pectin crystal structure and chemical structure in side chain was aggravated. These damages to pectin were intensified with higher frequency (40 kHz) of ultrasound. Lower retention of phenols was found in USIF apple slices, but the flavonoids content had no significant change compared to CF samples. USIF samples showed a smoother morphology, and the pore volume and porosity were reduced by ultrasonication applied with 28 kHz but increased with 40 kHz. The largest volume fraction of pores was changed from 100-250 μm in IF to 0.02-10 μm and 10-100 μm by the integrated ultrasound at 28 kHz and 40 kHz samples, respectively. The total oil uptake in USIF samples was reduced by 24.9 %-33.2 % compared to the conventional fried (CF) samples, and achieved the lowest with the frequency of 40 kHz. The surficial and structural oil were also decreased by 39.2 %-51.3 % and 20.9 %-32.3 %, respectively. The peroxide value, acid value, carbonyl value, polar component, and the saturated fatty acids ratio of oil in repeated frying for 16 h was reduced in USIF, especially with ultrasonication 40 kHz. These results indicate that USIF is a promising method for producing novel low-oil apple fries.
Collapse
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, PR China; Haitong Food Group Co., Cixi 315300, Zhejiang, PR China.
| | - Shuyi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Tiantian Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Jieru Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | | | - Aiqing Ren
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou 542899, Guanxi, PR China.
| |
Collapse
|
5
|
Anoraga SB, Shamsudin R, Hamzah MH, Sharif S, Saputro AD, Basri MSM. Optimization of subcritical water extraction for pectin extraction from cocoa pod husks using the response surface methodology. Food Chem 2024; 459:140355. [PMID: 38986202 DOI: 10.1016/j.foodchem.2024.140355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
This study optimized subcritical water extraction (SWE) conditions to maximize pectin yield from cocoa pod husk (CPH) and compared the characteristics of CPH pectin extracted through SWE with those of CPH pectin obtained through conventional extraction (CE) with citric acid. The Box-Behnken experimental design was employed to optimize SWE and examine the influence of process parameters, including temperature (100 °C-120 °C), extraction time (10-30 min), and solid:liquid ratio (SLR) (1:30-2:30 g/mL), on pectin yield. The maximum pectin yield of 6.58% was obtained under the optimal extraction conditions of 120 °C for 10 min with 1:15 g/mL SLR and closely corresponded with the predicted value of 7.29%. Compared with CE, SWE generated a higher yield and resulted in a higher degree of esterification, methoxyl content, and anhydrouronic acid value but a lower equivalent weight. The extracted pectin was pure, had low-methoxyl content, and similar melting and degradation temperatures.
Collapse
Affiliation(s)
- Satria Bhirawa Anoraga
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.; Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rosnah Shamsudin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.; Institute of Plantations Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Muhammad Hazwan Hamzah
- SMART Farming Technology Research Centre, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Suzannah Sharif
- Cocoa Innovation and Technology Centre, Malaysian Cocoa Board, Lot 12621, Nilai Industrial Area, Nilai 71800, Negeri Sembilan, Malaysia
| | - Arifin Dwi Saputro
- Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Mohd Salahuddin Mohd Basri
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
6
|
Xue H, Du X, Fang S, Gao H, Xie K, Wang Y, Tan J. The interaction of polyphenols-polysaccharides and their applications: A review. Int J Biol Macromol 2024; 278:134594. [PMID: 39127285 DOI: 10.1016/j.ijbiomac.2024.134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Polyphenols, as important secondary metabolites in nature, are widely distributed in vegetables, fruits, grains, and other foods. Polyphenols have attracted widespread attention in the food industry and nutrition due to their unique structure and various biological activities. However, the health benefits of polyphenols are compromised owing to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides largely determined the stability and functional characteristics of polyphenols in food processing and storage. Thus, this topic has attracted widespread attention in recent years. The main purposes of this article are as follows: 1) to review the interaction mechanisms of polyphenols and polysaccharides including non-covalent and covalent bonds; 2) to comprehensively analyze the influencing factors of the interaction between polyphenols and polysaccharides, and introduce the effects of their interaction on the properties of polyphenols; 3) to systematically summarize the applications of interaction between polyphenols and polysaccharides. The findings can provide the important reference and theoretical support for the application of polyphenols and polysaccharides in food industry.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xiaopeng Du
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
7
|
Chen Y, Wei Q, Chen Y, Feng A, Zhang W. Enhancement of hydrogen bonds between proteins and polyphenols through magnetic field treatment: Structure, interfacial properties, and emulsifying properties. Food Res Int 2024; 192:114822. [PMID: 39147514 DOI: 10.1016/j.foodres.2024.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
In food systems, proteins and polyphenols typically coexist in a non-covalent manner. However, the inherent rigid structure of proteins may hinder the binding sites of polyphenols, thereby limiting the strength of their interaction. In the study, magnetic field (MF) treatment was used to enhance non-covalent interactions between coconut globulin (CG) and tannic acid (TA) to improve protein flexibility, enhancing their functional properties without causing oxidation of polyphenols. Based on protein structure results, the interaction between CG and TA caused protein structure to unfold, exposing hydrophobic groups. Treatment with a MF, particularly at 3 mT, further promoted protein unfolding, as evidenced by a decrease in α-helix structure and an increase in coil random. These structural transformations led to the exposure of the internal binding site bound to TA and strengthening the CG-TA interaction (polyphenol binding degree increased from 62.3 to 68.2%). The characterization of molecular forces indicated that MF treatment strengthened hydrogen bonding-dominated non-covalent interactions between CG and TA, leading to improved molecular flexibility of the protein. Specifically, at a MF treatment at 3 mT, CG-TA colloidal particles with small size and high surface hydrophobicity exhibited optimal interfacial activity and wettability (as evidenced by a three-phase contact angle of 89.0°). Consequently, CG-TA-stabilized high internal phase Pickering emulsions (HIPPEs) with uniform droplets and dense gel networks at 3 mT. Furthermore, the utilization of HIPPEs in 3D printing resulted in consistent geometric shapes, uniform surface textures, and distinct printed layers, demonstrating superior printing stability. As a result, MF treatment at 3 mT was identified as the most favorable. This research provides novel insights into how proteins and polyphenols interact, thereby enabling natural proteins to be utilized in a variety of food applications.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Aiguo Feng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| |
Collapse
|
8
|
Liang J, Li H, Han M, Gao Z. Polysaccharide-polyphenol interactions: a comprehensive review from food processing to digestion and metabolism. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38965668 DOI: 10.1080/10408398.2024.2368055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Zhang AA, Xie L, Wang QH, Xu MQ, Pan Y, Zheng ZA, Lv WQ, Xiao HW. Effect of the ripening stage on the pulsed vacuum drying behavior of goji berry (Lycium barbarum L.): Ultrastructure, drying characteristics, and browning mechanism. Food Chem 2024; 442:138489. [PMID: 38278104 DOI: 10.1016/j.foodchem.2024.138489] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
In current work, the effect of ripening stages (I, II, and III) on pulsed vacuum drying (PVD) behavior of goji berry was explored. The shortest drying time of goji berry was observed at stage I (6.99 h) which was 13.95 %, and 28.85 % shorter than those at stages II, and III, respectively. This phenomenon was closely associated with the ripening stage, as contributed by the initial physiochemical differences, ultrastructure alterations, and moisture distribution. In addition, lower maturity suffered more severe browning, primarily due to the enzymatic and non-enzymatic reactions of phenolics, followed by pigment degradation and the Maillard reaction. Additionally, the PVD process promoted the rupture and transformation of the pectin fractions, also causing browning either directly or indirectly through participation in other chemical reactions. These findings suggest that the appropriate ripening stage of goji berry should be considered as having a significant impact on drying behaviors and quality attributes.
Collapse
Affiliation(s)
- An-An Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Long Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qing-Hui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ming-Qiang Xu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Yan Pan
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Zhi-An Zheng
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Wei-Qiao Lv
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
10
|
Li R, Rosado-Souza L, Sampathkumar A, Fernie AR. The relationship between cell wall and postharvest physiological deterioration of fresh produce. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108568. [PMID: 38581806 DOI: 10.1016/j.plaphy.2024.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Postharvest physiological deterioration (PPD) reduces the availability and economic value of fresh produces, resulting in the waste of agricultural products and becoming a worldwide problem. Therefore, many studies have been carried out at the anatomical structural, physiological and biochemical levels and molecular levels of PPD of fresh produces to seek ways to manage the postharvest quality of fresh produce. The cell wall is the outermost structure of a plant cell and as such represents the first barrier to prevent external microorganisms and other injuries. Many studies on postharvest quality of crop storage organs relate to changes in plant cell wall-related components. Indeed, these studies evidence the non-negligible role of the plant cell wall in postharvest storage ability. However, the relationship between cell wall metabolism and postharvest deterioration of fresh produces has not been well summarized. In this review, we summarize the structural changes of cell walls in different types of PPD, metabolic changes, and the possible molecular mechanism regulating cell wall metabolism in PPD of fresh produce. This review provides a basis for further research on delaying the occurrence of PPD of fresh produce.
Collapse
Affiliation(s)
- Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute/Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Laise Rosado-Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Fan H, Yao X, Chen Z, Ma R, Wen Y, Li H, Wang J, Sun B. Interaction of high amylose corn starch with polyphenols: Modulating the stability of polyphenols with different structure against thermal processing. Food Chem 2024; 437:137708. [PMID: 37875061 DOI: 10.1016/j.foodchem.2023.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Polyphenols are known to undergo thermal degradation and their bioactivity is reduced. In this study, the thermal degradation of polyphenols was modulated by the complexation between polyphenols and high amylose corn starch (HACS). The inclusion complex between ferulic acid with hydrophobic group methoxy and HACS had the highest encapsulation efficiency (EE = 26.15 %), loading efficiency (LE = 2.38 %) and thermal stability (DPPH radical scavenging activity was reduced by only 5.99 % after baking). After complexing with HACS, protocatechuic acid with ortho-position hydroxyl group had a higher encapsulation rate and thermal stability than 3, 5-dihydroxybenzoic acid with meta-position hydroxyl. In addition, soy isoflavone with the higher logarithmic value of octanol-water partition coefficient (Log P = 3.66) resulted in higher encapsulation rate and thermal stability than naringenin (Log P = 2.11). The results suggest that the complexation between polyphenols and starch protects the bioactivity of polyphenols and improves the processing suitability of polyphenols.
Collapse
Affiliation(s)
- Haoran Fan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xu Yao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhijun Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Ruolan Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
12
|
Das T, Chatterjee N, Capanoglu E, Lorenzo JM, Das AK, Dhar P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem X 2023; 18:100697. [PMID: 37206320 PMCID: PMC10189415 DOI: 10.1016/j.fochx.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Most of the pertinent research which aims at exploring the therapeutic effects of polyphenols usually misapprehends a large fraction of non-extractable polyphenols due to their poor aqueous-organic solvent extractability. These polymeric polyphenols (i.e., proanthocyanins, hydrolysable tannins and phenolic acids) possess a unique property to adhere to the food matrix polysaccharides and protein sowing to their structural complexity with high glycosylation, degree of polymerization, and plenty of hydroxyl groups. Surprisingly resistance to intestinal absorption does not hinder its bioactivity but accelerates its functionality manifolds due to the colonic microbial catabolism in the gastrointestinal tract, thereby protecting the body from local and systemic inflammatory diseases. This review highlights not only the chemistry, digestion, colonic metabolism of non-extractable polyphenols (NEPP) but also summarises the synergistic effect of matrix-bound NEPP exerting local as well as systemic health benefits.
Collapse
Affiliation(s)
- Trina Das
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| |
Collapse
|
13
|
Kanthiya T, Thajai N, Chaiyaso T, Rachtanapun P, Thanakkasaranee S, Kumar A, Boonrasri S, Kittikorn T, Phimolsiripol Y, Leksawasdi N, Tanadchangsaeng N, Jantanasakulwong K. Enhancement in mechanical and antimicrobial properties of epoxidized natural rubber via reactive blending with chlorhexidine gluconate. Sci Rep 2023; 13:9974. [PMID: 37340015 DOI: 10.1038/s41598-023-36962-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
An epoxidized natural rubber (ENR) blend with chlorhexidine gluconate (CHG) was prepared using a two-roll mill at 130 °C. CHG was added at concentrations of 0.2, 0.5, 1, 2, 5, and 10% (w/w) as an antimicrobial additive. The ENR blend with 10% (w/w) CHG showed the best tensile strength, elastic recovery, and Shore A hardness. The ENR/CHG blend exhibited a smooth fracture surface. The appearance of a new peak in the Fourier transform infrared spectrum confirmed that the amino groups of CHG reacted with the epoxy groups of ENR. The ENR with 10% CHG exhibited an inhibition zone against Staphylococcus aureus. The proposed blending improved the mechanical properties, elasticity, morphology, and antimicrobial properties of the ENR.
Collapse
Affiliation(s)
- Thidarat Kanthiya
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Nanthicha Thajai
- Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Sarinthip Thanakkasaranee
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Anbarasu Kumar
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) and Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Thanjavur, 613403, India
| | - Siwarote Boonrasri
- Department of Rubber and Polymer Technology, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai, Thailand
| | - Thorsak Kittikorn
- Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | | | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
| |
Collapse
|