1
|
Jiang F, Nyström G, Budtova T. Editorial to Special Issue: "Interactions between polysaccharides and water for advanced chemistry, structure and materials design". Carbohydr Polym 2025; 357:123492. [PMID: 40159010 DOI: 10.1016/j.carbpol.2025.123492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Affiliation(s)
- Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Tatiana Budtova
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
2
|
Wang Q, Zhong L, Zhou Y, Feng S, Liu J, Liu H, Zhu Q. Regioselective functionalization of cellulose nanomaterial for advanced application. Carbohydr Polym 2025; 348:122889. [PMID: 39567165 DOI: 10.1016/j.carbpol.2024.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Cellulose nanomaterials (CNMs) with their remarkable properties and abundant natural sources have emerged as a versatile platform for material science. However, their widespread adoption to develop novel applications often hinges on precise control over their surface chemistry. Regioselective functionalization, i.e., the ability to modify specific hydroxy groups on the cellulose backbone or aldehyde reducing end group (REG), offers unparalleled control on their surface chemistry. This review highlights the exciting developments in regioselective functionalization of CNMs and their impacts on structure-property relationships. Key factors that influence regioselectivity are examined and exciting applications of regioselectively functionalized CNMs are reviewed. This review also highlights the need for efficient, large-scale regioselective functionalization techniques and identifies key areas for future research.
Collapse
Affiliation(s)
- Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Multidimensional Spectral Traceability Monitoring Technology and Equipment Anhui Engineering Research Center, Hefei, Anhui 230051, China.
| | - Lin Zhong
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhou
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Shixuan Feng
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Analysis and Testing Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Yousefi N, Hannonen J, Fliri L, Peljo P, Kontturi E. Highly Charged Cellulose Nanocrystals via Electrochemical Oxidation. NANO LETTERS 2024; 24:14610-14614. [PMID: 39505324 PMCID: PMC11583315 DOI: 10.1021/acs.nanolett.4c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Due to their exceptional properties, cellulose nanocrystals (CNCs) have been proposed for various applications in sustainable materials science. However, state-of-the-art production methods suffer from low yields and rely on hazardous and environmentally harmful chemicals, representing a bottleneck for more widespread utilization of CNCs. In this study, we present a novel two-step approach that combines previously established HCl gas hydrolysis with electrochemical TEMPO oxidation. This unique method allows the collection of easily dispersible CNCs with high carboxylate contents in excellent overall yields of 71%. The electromediated oxidation was conducted in aqueous conditions without the usually required cocatalysts, simplifying the purification of the materials. Moreover, the proposed process is designed for facile recycling of the used reagents in both steps. To evaluate the sustainability and scalability, the environmental impact factor was calculated, and a cost analysis was conducted.
Collapse
Affiliation(s)
- Neptun Yousefi
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Jenna Hannonen
- Battery Materials and Technologies, Department of Mechanical and Materials Engineering, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Lukas Fliri
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Pekka Peljo
- Battery Materials and Technologies, Department of Mechanical and Materials Engineering, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| |
Collapse
|
4
|
Abafe Diejomaoh OT, Lavoratti A, Laverock J, Koev TT, Khimyak YZ, Kondo T, Eichhorn SJ. Surface modification of cellulose nanomaterials with amine functionalized fluorinated ionic liquids for hydrophobicity and high thermal stability. Carbohydr Polym 2024; 344:122519. [PMID: 39218544 DOI: 10.1016/j.carbpol.2024.122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
A highly hydrophobic fluorinated ionic liquid (IL), 3-aminopropyl-tributylphosphonium bis(trifluoromethylsolfonyl)imide ([aP4443][NTf2]), was synthesized, and applied for the surface modification of cellulose nanomaterials (CNMs) by reductive amination. The modified CNMs were fully characterized for their chemical structure, morphology, thermal stability, and surface hydrophobicity. Results obtained from Nuclear Magnetic Resonance spectroscopy (1H, 13C, 19F and 31P), Fourier Transform Infrared spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray diffraction confirmed the successful grafting of [aP4443][NTf2] onto the surface of CNMs up to a degree of surface functionalization of 2.5 %. Transmission Electron Microscopy analysis confirmed the dimensions of the CNMs were retained after modification but with significant aggregation for modified cellulose nanocrystals (CNCs). Thermal Gravimetric Analysis demonstrated significant increases in the degradation temperatures of modified CNCs from ∼252 °C to ∼310 °C. Modified cellulose nanofibers (CNFs) did not show any increase in thermal stability. The modified CNM suspensions showed reduced affinity for water and the formation of aggregates in aqueous media. Furthermore, a water contact angle test demonstrated enhanced hydrophobicity for modified CNMs. This modification approach holds potential for the use of the [aP4443][NTf2] IL for functional materials to achieve novel hydrophobic CNMs suitable for aqueous processing with thermoplastics, for fabrication of thermally stable composite materials, and for polymer gel electrolytes for batteries.
Collapse
Affiliation(s)
- Onajite T Abafe Diejomaoh
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK
| | - Alessandra Lavoratti
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK
| | - Jude Laverock
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Todor T Koev
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Tetsuo Kondo
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK.
| |
Collapse
|
5
|
Sun X, Jiang F. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications. Carbohydr Polym 2024; 341:122305. [PMID: 38876711 DOI: 10.1016/j.carbpol.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
In recent years, the remarkable progress in nanotechnology has ignited considerable interest in investigating nanocelluloses, an environmentally friendly and sustainable nanomaterial derived from cellulosic feedstocks. Current research primarily focuses on the preparation and applications of nanocelluloses. However, to enhance the efficiency of nanofibrillation, reduce energy consumption, and expand nanocellulose applications, chemical pre-treatments of cellulose fibers have attracted substantial interest and extensive exploration. Various chemical pre-treatment methods yield nanocelluloses with diverse functional groups. Among these methods, periodate oxidation has garnered significant attention recently, due to the formation of dialdehyde cellulose derived nanocellulose, which exhibits great promise for further modification with various functional groups. This review seeks to provide a comprehensive and in-depth examination of periodate oxidation-mediated nanocelluloses (PONCs), including their preparation, functionalization, hierarchical structural design, and applications. We believe that PONCs stand as highly promising candidates for the development of novel nano-cellulosic materials.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
6
|
Simon J, Schlapp-Hackl I, Sapkota J, Ristolainen M, Rosenau T, Potthast A. Towards Tailored Dialdehyde Cellulose Derivatives: A Strategy for Tuning the Glass Transition Temperature. CHEMSUSCHEM 2024; 17:e202300791. [PMID: 37923704 DOI: 10.1002/cssc.202300791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The derivatization of dialdehyde cellulose (DAC) has received increasing attention in the development of sustainable thermoplastics. In this study, a series of dialcohol celluloses were generated by borohydride reduction, which exhibited glass transition temperature (Tg ) values ranging from 23 to 109 °C, depending on the initial degree of oxidation (DO) of the DAC intermediate. However, the DAC derivatives did not exhibit thermoplastic behavior when the DO of the modified DAC was below 26 %. The influence of introduced side chains was highlighted by comparing DAC-based thermoplastic materials obtained by either oximation or borohydride reduction. Our results provide insights into the generation of DAC-based thermoplastics and highlight a strategy for tailoring the Tg by adjusting the DO during the periodate oxidation step and selecting appropriate substituents in subsequent modifications.
Collapse
Affiliation(s)
- Jonas Simon
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Inge Schlapp-Hackl
- Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Janak Sapkota
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Matti Ristolainen
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| |
Collapse
|
7
|
Ivanovska A, Milošević M, Lađarević J, Jankoska M, Matić T, Svirčev Z, Kostić M. A step towards tuning the jute fiber structure and properties by employing sodium periodate oxidation and coating with alginate. Int J Biol Macromol 2024; 257:128668. [PMID: 38092097 DOI: 10.1016/j.ijbiomac.2023.128668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
This paper outlines a novel simple protocol for tuning the structure and properties of jute using sodium periodate (NaIO4) oxidation and coating with alginate. When compared to the raw jute, fabrics oxidized with a 0.2 or 0.4 % NaIO4 solution for 30-120 min exhibited an increased aldehyde group content (0.185 vs. 0.239-0.398 mmol/g), a significantly increased negative zeta potential (from -8.57 down to -20.12 mV), a slight disruption of fiber crystallinity, 15.1-37.5 % and 27.9-49.8 % lower fabric maximum force and stiffness, respectively. Owing to the removal of hydrophobic surface barrier, decreased crystallinity index and the presence of micropores on the fabrics' surfaces, oxidized fabrics have a 22.3-29.6 % improved ability for moisture sorption compared to raw fabric. Oxidized fabrics characterized by very long wetting times and excellent antioxidant activities (> 98 %), can find applications as hydrophobic packaging materials. To further extend the utilization of jute in biocarpet engineering such as water-binding geo-prebiotic supports, oxidized fabrics were coated with alginate resulting in 7.9-24.9 % higher moisture sorption and 352-660 times lower wetting times than their oxidized counterparts. This modification protocol has never been applied to lignocellulosic fibers and sheds new light on obtaining jute fabrics with tuned structure and properties intended for various applications.
Collapse
Affiliation(s)
- Aleksandra Ivanovska
- University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Marija Milošević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Jelena Lađarević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Maja Jankoska
- Ss. Cyril and Methodius University in Skopje, Faculty of Technology and Metallurgy, Ruger Boskovic 16, 1000 Skopje, North Macedonia.
| | - Tamara Matić
- University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; Åbo Akademi University, Faculty of Science and Engineering, Tykistökatu 6A, 20520 Turku, Finland.
| | - Mirjana Kostić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| |
Collapse
|
8
|
Wen J, Almurani M, Liu P, Sun Y. Aldehyde-functionalized cellulose as reactive sorbents for the capture and retention of polyamine odor molecules associated with chronic wounds. Carbohydr Polym 2023; 316:121077. [PMID: 37321714 PMCID: PMC10294296 DOI: 10.1016/j.carbpol.2023.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Aldehyde-functionalized cellulose (AFC) was prepared by oxidizing cellulose with sodium metaperiodate. The reaction was characterized by Schiff's test, FT-IR, and UV-vis study. AFC was evaluated as a reactive sorbent for controlling polyamine-based odor from chronic wounds, and its performance was compared with charcoal, one of the most widely utilized odor-control sorbents through physisorption. Cadaverine was used as the model odor molecule. A liquid chromatography/mass spectrometry (LC/MS) method was established to quantify the compound. AFC was found to rapidly react with cadaverine through the Schiff-base reaction, which was confirmed by FT-IR, visual observation, CHN elemental analysis, and the ninhydrin test. The sorption and desorption behaviors of cadaverine onto AFC were quantified. With clinic-relevant cadaverine concentrations, AFC demonstrated much better sorption performance than charcoal. At even higher cadaverine concentrations charcoal showed higher sorption capacity, probably due to its high surface area. On the other hand, in desorption studies, AFC retained much more of the sorbed cadaverine than charcoal. When AFC and charcoal were combined, the pair demonstrated excellent sorption and desorption behaviors. The XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay confirmed that AFC has very good in vitro biocompatibility. These results suggest that AFC-based reactive sorption can be a new strategy to control odors associated with chronic wounds for improved healthcare.
Collapse
Affiliation(s)
- Jianchuan Wen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Menal Almurani
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Pengyuan Liu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Yuyu Sun
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
| |
Collapse
|