1
|
Kolařík V, Hromádková A, Knirsch A, Prucková Z, Janovský P, Rouchal M, Ward JS, Rissanen K, Vícha R. Metal cations switch geometry of β-cyclodextrin complexes. Chem Commun (Camb) 2025. [PMID: 40237151 DOI: 10.1039/d5cc00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Cationic guests with an adamantylphenyl moiety can form two distinct arrangements with the conical β-cyclodextrin macrocycle. Different metal cations were found to promote the formation of one of the two possible forms, depending on their van der Waals radii. Bulkier ions prefer the wider secondary rim of β-cyclodextrin, pushing the cationic part of the guest towards the narrower primary rim, and vice versa.
Collapse
Affiliation(s)
- Václav Kolařík
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Aneta Hromádková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Adam Knirsch
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Petr Janovský
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| |
Collapse
|
2
|
Araque LM, Infantes-Molina A, Rodríguez-Castellón E, Garro-Linck Y, Franzoni B, Pérez CJ, Copello GJ, Lázaro-Martínez JM. Ionic Crosslinking of Linear Polyethyleneimine Hydrogels with Tripolyphosphate. Gels 2024; 10:790. [PMID: 39727548 DOI: 10.3390/gels10120790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by 1H high-resolution magic angle spinning (1H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS). In addition, the mobility and confinement of water molecules within the co-crosslinked hydrogels were studied by low-field 1H NMR. The addition of small amounts of TPP, 0.03 to 0.26 mmoles of TPP per gram of material, to the PEI-EGDE hydrogel resulted in an increase in the deformation resistance from 320 to 1080%, respectively. Moreover, the adsorption capacity of the hydrogels towards various emerging contaminants remained high after the TPP crosslinking, with maximum loading capacities (qmax) of 77, 512, and 55 mg g-1 at pH = 4 for penicillin V (antibiotic), methyl orange (azo-dye) and copper(II) ions (metal ion), respectively. A significant decrease in the adsorption capacity was observed at pH = 7 or 10, with qmax of 356 or 64 and 23 or 0.8 mg g-1 for methyl orange and penicillin V, respectively.
Collapse
Affiliation(s)
- Luis M Araque
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Antonia Infantes-Molina
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Instituto Interuniversitario en Biorrefinerías I3B, Universidad de Málaga, 29010 Málaga, Spain
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Instituto Interuniversitario en Biorrefinerías I3B, Universidad de Málaga, 29010 Málaga, Spain
| | - Yamila Garro-Linck
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG), Córdoba 5000, Argentina
| | - Belén Franzoni
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG), Córdoba 5000, Argentina
| | - Claudio J Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad de Mar del Plata, Mar del Plata 7600, Argentina
| | - Guillermo J Copello
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Juan M Lázaro-Martínez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
3
|
Liang X, Huang C, Liu H, Chen H, Shou J, Cheng H, Liu G. Natural hydrogel dressings in wound care: Design, advances, and perspectives. CHINESE CHEM LETT 2024; 35:109442. [DOI: 10.1016/j.cclet.2023.109442] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
4
|
Chen C, Pang X, Li Y, Yu X. Ultrafast Self-Healing, Superstretchable, and Ultra-Strong Polymer Cluster-Based Adhesive Based on Aromatic Acid Cross-Linkers for Excellent Hydrogel Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305875. [PMID: 38054799 DOI: 10.1002/smll.202305875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/19/2023] [Indexed: 12/07/2023]
Abstract
Synthetic hydrogel strain sensors rarely exhibit a comprehensive combination of mechanical properties such as ultra-stretchability, ultrafast self-healing, and high sensitivity. Herein, seven small molecule enhanced mechanical behaviors of polymer-cluster based hydrogels are demonstrated. The oxidized polyethyleneimine/polymeric acrylic acid (ohPEI/PAA) hydrogels with aromatic formic acids as supramolecular cross-linkers are prepared by simultaneous formation of ohPEI polymer clusters and PAA upon the addition of ammonium persulfate. The optimized hydrogel adhesive exhibits comprehensive excellent properties, such as high extensibility (up to 12 298%), real-time mechanical self-healing capability (<1 s, 93% efficiency), high uniformity, underwater adhesivity, and water-sealing ability. The proper binding strength of hydrogel and skin (47 kPa) allows the hydrogel to be utilized as highly sensitive (gauge factor:16.08), highly conductive (2.58 mS cm-1), and underwater strain sensors. Specially, the adhesive strength of the adhesive to wood after dehydration is extremely high, reaching up to 29.59 MPa. Additionally, when glycerol is introduced, the obtained gel maintains the physical properties even at harsh-temperature conditions (-40 to 80 °C). It presents that multiple and hierarchical non-covalent interactions including multiple hydrogen bonding interactions, π-π stacking, electrostatic interactions, and dipole-dipole interactions of polymer clusters, allow for the energy dissipation and contribute to the excellent performance of the hydrogel.
Collapse
Affiliation(s)
- Chun Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Xuelei Pang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| |
Collapse
|
5
|
Hou J, Xu HN. Ejected microcrystals probe jammed states of droplets in cyclodextrin-based emulsions. Carbohydr Polym 2024; 324:121455. [PMID: 37985074 DOI: 10.1016/j.carbpol.2023.121455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
The cyclodextrin (CD)-based emulsions exhibit complex instability behaviors such as rapid flocculation and creaming, and how to capture droplet dispersion states of the emulsions remains a great challenge. Here we prepare the CD-based emulsions with different oil-water volume ratios and CD concentrations by using high-pressure homogenization, and characterize the emulsion droplets by using optical microscopy and confocal laser scanning microscopy. We evaluate the effects of homogenization pressure on the stability of the emulsions, identify armored droplets with different surface features, measure interfacial concentrations of adsorbed ICs microcrystals, and observe ejection of the oil/CD inclusion complexes (ICs) microcrystals from the droplet surface. The droplet dispersion states are sensitive to the dynamic buildup and evolving morphologies of the interfacial microcrystals, and there are clear correlations between the properties of the ejected microcrystals and the characteristics of the emulsions. We ascribe the subsequent ejection of ICs microcrystals from the droplet surface to consolidation and deformation of the films formed between neighboring droplets. The ejection of the ICs microcrystals affords a simple method to detect the droplet-droplet interactions and phase transitions in the CD-based emulsions, which might be a generic feature in the broader context of the creaming processes of emulsions.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|