1
|
Petit N, Chang YYJ, Lobianco FA, Hodgkinson T, Browne S. Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations. Mater Today Bio 2025; 31:101596. [PMID: 40083836 PMCID: PMC11903855 DOI: 10.1016/j.mtbio.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Hyaluronic acid (HyA) is a non-sulphated linear polysaccharide found abundantly in the extracellular matrix, known for its biocompatibility and versatility in tissue engineering. Chemical modifications of HyA, including methacrylate, acrylate, click chemistry, norbornene, or host-guest chemistry, are necessary for the formation of stable hydrogels with tuneable biophysical characteristics. These modifications enable precise control over stiffness, swelling, degradation, and advanced functionalities such as shear-thinning, self-healing, and injectability. Functionalisation further enhances hydrogel bioactivity, enabling controlled cell adhesion, modulation of cell behaviour, hydrogel degradation, and release profiles, as well as inflammation modulation or bacterial growth inhibition. These are achieved by conjugating proteins, peptides, antibodies, or reactive chemical groups. HyA hydrogels find broad applications both in vitro and in vivo. In vitro, HyA-based hydrogels can support the development of models to understand fundamental processes in health and mechanisms behind disease progression, serving as highly tuneable extracellular matrix mimetics. As therapeutic interventions, injectable or implantable HyA-based hydrogels have been developed to repair a range of tissues, including cartilage, bone, muscle, and skin defects. However, issues remain to be addressed before widespread adoption of HyA-based hydrogels as clinical options. Future innovations for HyA hydrogels include its establishment as an enabling technology for the delivery of novel therapeutics, with a particular focus on immunomodulatory molecules, and the development of more dynamic, tissue-mimetic HyA-based hydrogels.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Yu-yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Franz Acker Lobianco
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Gong Y, Zhu B, Chen Y, Li F, Duan W, Martin-Saldaña S, Yang R, Gao X, Zhang B, Luo L, Xiao Z, Du B, Yan L, Bu Y. Organism-Inspired Antioxidant Bioadhesive with Strong Sealing Ability to Prevent Epidural Adhesion. ACS NANO 2024; 18:21411-21432. [PMID: 39079092 DOI: 10.1021/acsnano.4c05921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Epidural adhesion or epidural fibrosis is the major reason for postoperative pain, which remains a clinically challenging problem. Current physical barriers fail to provide a satisfactory therapeutic outcome mainly due to their lack of adhesion, inability to prevent fluid leakage, and exhibiting limited antioxidant properties. Herein, we fabricated a cysteine-modified bioadhesive (SECAgel) with improved sealing and antioxidant properties for epidural adhesion prevention, inspired by the organism's antioxidant systems. The resulting SECAgel showed good injectability and in situ adhesion ability, effectively covering every corner of the irregular wound. Besides, it possessed efficient sealing properties (395.2 mmHg), effectively stopping blood leakage in the rabbit carotid artery transection model. The antioxidant experiments demonstrated that the SECAgel effectively scavenged various radicals and saved the cells from oxidative stress. Two animal models were used to show that the SECAgel effectively inhibited adhesion in both situations with and without cerebrospinal fluid leakage. The RNA sequencing analysis showed that SECAgel treatment effectively inhibited the expression of key genes related to adhesion development, inflammatory response, and oxidative stress. The SECAgel, together with good biocompatibility, can be a good candidate for preventing epidural adhesion in the clinic.
Collapse
Affiliation(s)
- Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
- Department of Burn/Plastic Surgery and Wound Repair, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bin Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yurong Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Furong Li
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Wanglin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Ruopei Yang
- Department of Imaging Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Lei Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Zhengtao Xiao
- School of Basic Medical Sciences, Institute of Molecular and Translational Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yazhong Bu
- Department of Burn/Plastic Surgery and Wound Repair, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
Chen Y, Chen B, Dong J, Yang D, Tang H, Wen L, Li J, Huang L, Zhou J. A tough and bioadhesive injectable hydrogel formed with maleimidyl alginate and pristine gelatin. Carbohydr Polym 2024; 334:122011. [PMID: 38553212 DOI: 10.1016/j.carbpol.2024.122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
Injectable hydrogels have wide applications in clinical practice. However, the development of tough and bioadhesive ones based on biopolymers, along with biofriendly and robust crosslinking strategies, still represents a great challenge. Herein, we report an injectable hydrogel composed of maleimidyl alginate and pristine gelatin, for which the precursor solutions could self-crosslink via mild Michael-type addition without any catalyst or external energy upon mixing. This hydrogel is tough and bioadhesive, which can maintain intactness as well as adherence to the defect of porcine skin under fierce bending and twisting, warm water bath, and boiling water shower. Besides, it is biocompatible, bioactive and biodegradable, which could support the growth and remodeling of cells by affording an extracellular matrix-like environment. As a proof of application, we demonstrate that this hydrogel could significantly accelerate diabetic skin wound healing, thereby holding great potential in healthcare.
Collapse
Affiliation(s)
- Yin Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Baiqi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Deyu Yang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Tang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China; College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lu Huang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
4
|
Milne C, Song R, Johnson M, Zhao C, Santoro Ferrer F, A S, Lyu J, Wang W. Dual-Modified Hyaluronic Acid for Tunable Double Cross-Linked Hydrogel Adhesives. Biomacromolecules 2024; 25:2645-2655. [PMID: 38456398 PMCID: PMC11005013 DOI: 10.1021/acs.biomac.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Conventional techniques for the closure of wounds, such as sutures and staples, have significant drawbacks that can negatively impact wound healing. Tissue adhesives have emerged as promising alternatives, but poor adhesion, low mechanical properties, and toxicity have hindered their widespread clinical adoption. In this work, a dual modified, aldehyde and methacrylate hyaluronic acid (HA) biopolymer (HA-MA-CHO) has been synthesized through a simplified route for use as a double cross-linked network (DCN) hydrogel (HA-MA-CHO-DCN) adhesive for the effective closure and sealing of wounds. HA-MA-CHO-DCN cross-links in two stages: initial cross-linking of the aldehyde functionality (CHO) of HA-MA-CHO using a disulfide-containing cross-linker, 3,3'-dithiobis (propionic hydrazide) (DTPH), leading to the formation of a self-healing injectable gel, followed by further cross-linking via ultraviolet (UV) initiated polymerization of the methacrylate (MA) functionality. This hydrogel adhesive shows a stable swelling behavior and remarkable versatility as the storage modulus (G') has shown to be highly tunable (103-105 Pa) for application to many different wound environments. The new HA-MA-CHO-DCN hydrogel showed excellent adhesive properties by surpassing the burst pressure and lap-shear strength for the widely used bovine serum albumin-glutaraldehyde (BSAG) glue while maintaining excellent cell viability.
Collapse
Affiliation(s)
- Cameron Milne
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rijian Song
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Melissa Johnson
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Chunyu Zhao
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Francesca Santoro Ferrer
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Sigen A
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
- School
of Medicine, Anhui University of Science
and Technology, Huainan 232001, China
| | - Jing Lyu
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| |
Collapse
|